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Load redistribution near non-aligned fibre breaks in a
two-dimensional unidirectional composite using break-influence

superposition
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Statistical models for the failure process in unidirec-
tional composite materials require knowledge of the
distribution for strength of the fibres and details of
the load redistribution in the vicinity of single and
multiple fibre breaks. A common technique for
examining these stress concentrations is the shear-
lag approach, originally conceived by Cox [1], in
which the matrix is assumed to transmit only shear
stresses in between the fibres. Hedgepeth’'s classic
solution [2] used this approach to construct a
solution for stress concentrations in a two-
dimensional unidirectional composite consisting of
elastic fibres and matrix, with fibre breaks aligned
transversely along the midline of an infinite sheet
(for schematic and notation, see Fig. 1), for both
static and dynamic stress concentration factors,
Hedgepeth and Van Dyke [3] and Fichter [4}
extended this model respectively to a three-dimen-
sional unidirectional array (square and hexagonal)
with aligned breaks, and to an aligned array of
breaks intermittent with intact fibres.

These shear-lag solutions were limited in two
respects: first, shear-lag theory precluded modelling
of some of the mechanical aspects of the problem
and, secondly, fibre breaks were restricted to a
single line or plane, transverse to the fibre direction.
Finite-element models have been developed to
address these two shortcomings [5,6], but the
solutions, although able to capture many of the key
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Figure I Schematic diagram of the problem solved by Hedgepeth
(2], with notation.
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mechanical aspects of the problem, have proven to
be extremely computationally intensive, Generally
these techniques are used to examine failure proces-
ses in small composites of fewer than 100 fibres,
offering little real direct information on size scales of
interest to designers. On the other hand, comparison
of finite-element method results and shear-lag ana-
lyses has shown that the shear-lag solutions are quite
adequate even in the cases of stiff matrices and high
anisotropic fibres [5].

Examination of statistical scalings occutring in
failure processes of composite materiais of size
exceeding 10° fibre elements requires a more tract-
able solution approach for load redistribution. In
isotropic materials several approaches have been
developed to calculate stress profiles in the presence
of arrays of small cracks, including that by Kachanov
{7}, Kachanov’s technique uses information about
the stress distribution in a solid with only one crack
to deduce the stress profile in the presence of many
cracks, neglecting only the impact of the non-
uniform traction of a crack on other cracks. The
model presented here for fibre load profiles near
breaks combines both Kachanov's model and
Hedgepeth's model to simplify the analysis in large
compuosite sheets. In the present setting the analysis
is exact.

Referring to Fig. 1, the governing equation for
the normalized displacement (IJ,) of fibre n in
Hedgepeth's model is

3y, -
U -2+ U, =0 (1)
JE-
where the normalized constitutive law is

P, =3U,/a¢ (2)

and the normalized axial co-ordinate, displacement
and load (with fibre cross-sectional area A = dh)
are, respectively (see Fig. 1),

X

=— - 3
: (EAB/GRh)'* ®
= —U— (4)
P(b/EAGR)'?
and
F,=P,/P (5}

In Hedgepeth's case of transversely aligned breaks
the original normalized problem involved unit loads
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(P=1) applied on the fibres at the boundaries
(§ = =) and with zero loads at the breaks. Load
and displacement profiles P.(5) and U,(%) were
found for the composite sheet. Two other intermedi-
ate solutions were required to yield this final
solution: first, a “medified” problem where the
applied loads were zero at the boundaries (£ = +)
but compressive unity on the ends of the r broken
fibres and, secondly, an “auxiliary™ problem, which
was the modified problem but with only one break
(with normalized loads denoted L and displace-
ments V), The auxiliary problem was first solved,
and the reciprocal theorem was used to obtain the
solution to the modified problem from the auxiliary
solution. The full solution was obtained from that
for the modified problem by simply adding unity to
the load field and £ to the displacement fieid. For
the case of three breaks (r = 3) the full problem is
skown in Fig. 1, the modified problem in Fig. 2a and
the auxiliary problem in Fig. 2b.

The present solution approach takes a different
direction from that of Hedgepeth, which is necessary

Modified problem

Poil}=-1,0<n<r1
U, 0l=0,n>r-%1,n<0

Auxiliary problem

VolDi=1,n=0
Vo (0i=0,n=0

{b}

Figure 2 Schematic diagrams of {a) modified version of
Hedgepeth's full problem in the case of three fibre breaks and (b)
Hedgepeth's auxiliary problem [2].

because the greatly simplifying symmetry of the
original problem no longer exists. Non-aligned
breaks distort the displacements, so that displace-
ments in the vicinity of a break are no longer
symmetrical around the break. Consider the modi-
fied problem of three breaks as shown in Fig. 3a.
Solutions of three distinct problems as in Fig. 3b (the
dark spots are points of interest, not breaks) are
used to solve the problem in Fig. 3a; this can in turn
be used to solve the desired original problem of unit
applied boundary loads with vanishing loads at the
three break sites. The key to this approach, first
developed by Kachanov {7] for cracks in isotropic
materials, is that the influence of a break on the
other break sites must be accounted for in the
solution of the full problem in Fig. 3a. Determina-
tion of the stress concentrations due to each single
break in succession at the other break sites first must
be obtained.

Solutions to each problem in Fig. 3b are obtained
by simple modifications (translation and scaling) of
Hedgepeth’s auxiliary solution for the static case,
denoted L,(£) in his work. There a discretized
Fourier transform was used to collapse the displace-
ment equations to a single line, and application of
the transformed boundary conditions vielded the
solutions both in the transformed domain and for
individual fibre displacements. The details can be
seen in [2]. The resuliant expression for load (found
frem Equation 2} is the solutien to the problem of a
unit negative load applied on either end of a single

{b) . .
m{Unbroken] points of interest

Figure 3 Solutions for the problems required in solution of stress
concentrations with three arbitrarity located breaks, including (a)
the required final sclution and (b} the solutions to the individual
breaks’ concenirating effects {black markers indicate the locations
of other breaks}.
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break located at (n, §} = (0, 0). This load is given by
F(&) =

-4 Esin{()ﬂ)cos(nﬁ') exp{—2|&fsin(8/2)]d6
(6)

Because the composite sheet is assumed to be
infinite, the solution for the stress concentrations
generated by an arbitrarily located break can be
obtained simply by shifting the above solution for
loads to the appropriate break site. For a given
break labelled ¢ in fibre n;, at position & the
resultant equation for the load distribution is

Fron® = 5) = =4[ sin(0/2)cos (n ~ n)6]

x exp[~21& - & sin (6/2)] a6
™

We now define transmission factors (A;) as the
load generated at break § as a resuit of a compressive
load of negative unit intensity applied on the ends of
break ¢ (Fig. 4} in an infinite sheet with no other
applied stresses. Kachanov [7,8] defined these
rransmission factors as the average traction gener-
ated along the crack j line (where the crack will be)
as a result of a unit-intensity traction applied on the
faces of crack i. Since it is assumed here that normal
stresses in a fibre do not vary radially, but only
axially, and that a ‘“crack” consists only of a
pointwise break, the analysis is exact (it is approxi-
mate for the general cases discussed in ({8]). The
transmission factors for this anisotropic problem can
be calculated directly from a simple modification of
Equation 7. If the ““address™ (n, &) of breaks 1 and 2
are, respectively, (r;, &) and (n,, 5}, the trans-

Figure 4 Two arbitrarily located breaks at £ and j; solution for the
effect of a unit negative load at the edges of the break at { on the
point j must be found.
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mission factor A,, is given by

Ap = —gfnsin(e/z) cos[(n, — ny)8)
X exp{—2|& — &|sin(#/2)]d0 (8

In general, transmission factors A;; are given by

Aj=—i J:sin (8/2) cos [(n, — n,)8]
x exp[—2[&; — &/|sin(8/2)]d8 (9}

For a composite with r breaks, the transmission
factors comprise an r X r symmetric matrix, i.e.
AI}' =A jie

The full solution to the problem of many breaks
can be expressed as a linear combination of solutions
for the corresponding single-break problems. For
the case of three breaks (shown in Fig. 3a) the
corresponding problems are shown in Fig. 3b. The
full solution to such a three-break problem with
breaks at {n, £;). (ns, 5} and (ns, 53) is

P& =K\ F,(§- &)+ KiF,_, (§- %)
+ K;F"_,'S(Tg- - ‘53) (10)

with unknown coefficients K,, K; and K, deter-
mined as follows: the key step is to solve -
simultaneous equations to enforce the boundary
conditions at the break ends (such as Fig. 3a) in the
modified problem; namely, the resultant compres-
sive loads generated at the break sites of the
composite in the presence of interacting cracks must
equal —1 at each break end. For r breaks we
substitute these boundary values into Equation 10 at
each break site (n,, £), and solve r simultaneous
equations. For the case of three breaks

Pn,-(f;-:') = KIFH,-—HJ(SI - gi} + KZ El,-—nz(gi - 52)

+ KiF, (& - 5)=-1 i=1,2,3
{11}

which can be written more compactly in terms of
transmission factors as

-1 Au AIZ Ags Kl
—“1r=49Ap Anp  Axp{k; (12)
-1 A An An) |K

where the diagonal terms A, Ay and Ay are -1,
For an arbitrary number r and arrangement of
breaks, solutions for factors K, ..., K, will yield
the full solution as in Equation 10 for a problem such
as that shown in Fig. 3b.

An example of the effect of staggered breaks
along the fibre direction is shown for the simplest
case of two breaks on neighbouring fibres separated
by axial distance & in Fig. 5. For increasing distance
& between the two breaks, Ioads at locations (i), {ii)
and (iii) (Fig. 5) are computed (by integrating the
key equations numerically and following the soluticn
procedure outlined above) and given in Table 1. As
this example shows, the resultant load profiles for
non-aligned breaks are significantly different from
those for aligned breaks. In the case of a relatively
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Figure 5 Notation for the two-break example, with breaks separ-
ated axially by distance &, and with points of interest (i), (i) and

(iii).

TABLE I Loads at locations (i}, (i} and (iii) generated in a
composite with two staggered breaks separated by distance 4, as
shown in Fig. §

Load at Load at L.oad at

] (i) {ii} (3i)
6.000 0.600 =1.000 0.600
0.100 0.446 —0.708 0.541
0.200 0.341 —0.503 (.498
0.500 0170 —-0.148 0.421
1.000 0.072 0.100 0.362
2.000 0.041 0.254 0.326
3.000 0.047 0.297 0.321
4.000 0.053 0.313 0.322
5.000 0.057 ©.320 0.324
16.000 0.064 0.330 0.330
100.000 0.067 0.333 0.333

compliant matrix (E/G =100) and a 50% fibre
volume fraction (b =d), the normalized break
spacing & = 1 corresponds to an actual length of 10
fibre diameters (normalization of & is as the normal-
ization of axial co-ordinate & given by Equation 3).
Thus, Table I gives values for resultant loads at
locations (i), (ii) and (iii} in such a material for a
misalignment & ranging from 1 to 1000 fibre dia-
meters, The results for =0 correspond to a
Hedgepeth-type solution and match his results for
the two-break case [2].

Two key points can be observed from this simple
example, for the cases of closely spaced and widely
spaced breaks, respectively. For non-aligned, closely
spaced breaks, it can be seen that even for a slight
staggering (6 = 0.1, corresponding to only one fibre
diameter in the material described above}, the
Tesultant loads at points (i} and (iii} are significantly
lessened. This effect is important, as statistically it
would not be expected to find perfectly aligned
breaks in a composite. The effect of axial dispersion
of closely-spaced breaks on resultant load concentra-
tions is clearly important. In the case of widely
spaced breaks, however, the interaction between
breaks is small, and interestingly can also be
Regative, That is, for a range of break spacings, the
effect of surrounding breaks on a given break can be
to lessen the severity of the resultant load concentra-

tions, or to “‘shield™ the break. This can be seen in
Table I for the two-break example. The loads at (i)
are actually less than those resulting from a single
break at (n, &) = (0, 0) for two breaks separated by
8, where 6> 2. As the distance between breaks
becomes even larger, as shown in Table I for the
case of &= 1000, the resultant loads at (i), (ii) and
(iif) match Hedgepeth's result [2] for a single break
at(n, &) = (0,0).

This method of analysis greatly reduces the
computation in the simplest case of aligned breaks
[2-4], and provides a fast method of solution for the
overloads in a unidirectional composite with an
arbitrary array of breaks. The methed requires three
basic steps: first, computation of the transmission
factors A, through (numerical) integrations given by
Equation 9 (which can be computed initially and
stored for a sufficiently fine grid of potential values
of n,— n; and & — &;); secondly, inversion of the
r X r interaction matrix in Equation 12 to solve for
factors K|, . .., K,; and, thirdly, construction of the
full solution for the loads in the sheets through the
shifted solutions of the single-break problems, as in
Equation 10. The solution is exact for the stated
problem, satisfying both the equilibrium equations
at every point and all of the boundary conditions.
Numerical efficiency results from the fact that the
break-break interactions become negligible beyond
a certain distance.

In future work this solution will be extended to
other geometries. The ultimate goal of the research
is to perform Monte-Carjo simulations for strength
using the mechanical model given here, for compari-
son with various statistical models (for example,
those in [9,10]}. A key aspect to examine is
vaniability in fibre strength and its effect on the
dispersion and shielding phenomena in the strength
distribution of the composite.
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