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Abstract
There is an extensive literature on  identification and analysis of representative volume elements
(RVE’s) in order to bound intrinsic materials properties in porous and nonporous solids. However,
in such analyses there is often an implicit assumption made that solution of several large classes of
linear scientific problems can be simultaneous achieved simply via a single solution of Laplace's
equation for the domain. We find, however, that for an extremely technologically significant class
of disordered fibrous/particular structures, the transport properties and the mechanical properties
cannot simultaneously be found using a single field solution. Specifically, alterations in
microstructure during loading of the material can produce different degrees of effects on mechanical
load transfer and conductivity.  The details of load transfer within stochastic, porous arrays are
critical in understanding their likely properties, which we have shown to exhibit large variability.
Nonetheless, through thoughtful use of stochastic finite element simulation, we are able to provide
technologically useful guidance on material synthesis, construction, and estimations of lifetime in
several key contexts. In doing so, we have addressed several mathematical issues of solution of field
equations around singularities produced by phase contrast, boundary condition choice and material
contrast, and geometric features inherent in fused structures. This work is a summary of some of our
key findings on the subject, and suggests a roadmap for new areas of study, based both on our
simulations and on our experiments on materials used in battery systems.

1. Introduction

We have extensively investigated both mechanical [1-5] and transport [4-8] properties of

stochastic fibrous networks. Several examples of materials investigated are shown in Figs. 1 and 2.

Critical features of these materials include 1) their low density, 2) irregular internal microstructure,

3) reliance on contact of sometimes dissimilar constituent particles in providing electrical

conductivity and 4) their microstructural alteration in the presence of normal service loads.

In Fig. 1, microstructural evolution of an NiMH positive cell substrate is shown, in which a

corrosion process results in microstructural changes (compare sketches of Figs. 3a and 3b for

microstructural assumption). In Fig. 2, a negative plate of a commercial Li-ion cell is shown,

wherein carbon particles of highly variable size and shape form a conductive, electrochemically

active array. In both of these battery technologies, cells undergo internal mechanical loads during

cycling, due to irreversible formation of lower-density side products (NiMH) and intercalation of

carbons and gas formation (Li-ion), respectively.



(a)

(b)
Figure 1. Scanning electron micrographs of positive substrates in the (a) compressed to the post-
cycled volume fraction (~10%), and (b) post-cycled (40 constant current cycles and 150%
overcharge) condition



(a)

(b)
Figure 2. (a) Scanning electron micrograph with 500x magnification, and (b) contacting atomic
force microscope image of negative substrates of the Panasonic CGP30486 lithium-ion battery.



Figure 3. Four possible representations for porous materials comprised of fibers and particles,
including (a) beams representing fibers, with spherical particles, (b) 2D beams representing fibers,
(c) 2D ellipses representing fibers and (d) ellipsoidal particles of varying aspect ratio, representing
both fibers and particles.



Beyond these battery technologies, there are of course a number of other examples of

technologically and scientifically significant porous, fibrous/particulate materials. A few of these

include paper, biomaterials (e.g. trabecular bone, collagen networks), filters, fiberboard, etc. The

continued drive toward analysis of ever smaller-scale materials, and the demonstrated applicability

of some aspects of Newtonian mechanics in polymer networks, suggest that such analysis of

stochastic arrays offers much for problems of high future interest. Additionally, the approaches

taken in the past, including closed-form percolation models [10-16], will likely be supplanted by

more accurate but previously impractical, large-scale (i.e. real-scale or nearly real-scale)

simulations of more realistic microstructure.

Much of this extensive literature on  indentification and analysis of RVE’s in order to bound

intrinsic materials properties hinges on an implicit assumption that solution of several large classes

of linear scientific problems can be simultaneous achieved simply via solution of Laplace's equation

for the domain. For an excellent review on a great deal of the classical work, see Meredith and

Tobias [17]. Our simulations reveal, however, that for the extremely technologically significant

class of disordered fibrous/particular structures studied, the transport properties and the mechanical

properties cannot simultaneously be found using a single field solution. Specifically, alterations in

microstructure during loading of the material can produce different degrees of effect on mechanical

load transfer and conductivity.

Our stochastic approach has centered on generation of, and simulations of response of realistic

microstructures, described by statistical distributions obtained from image analysis of real materials.

In conduction modeling, we have taken two main approaches, which are described presently. In

mechanics modeling, we have undertaken modeling of both connecting particles' response and the

behavior of internal joints, or synapses. More recently, we have considered fully three-dimensional

modeling.

2. Representations of Microstructure and Transport Analysis

Strategies for representation of microstructure (several examples of which are shown in Fig. 3)

depend upon strategies for solution of governing equations in the domain of interest. Combinations

of fibers and particles in a stochastic array (Fig. 3a) may be considered, for example, as only an

array of fibers ( Fig. 3b), if the conduction problem is to be solved, and the particle phase can be

considered unimportant (i.e. is not of sufficient volume fraction to form an interpenetrating

percolated network). The same array might be conceived of as an array of narrow ellipses (Fig. 3c)

if one wished to solve a set of field equations in the array, and thus wished to reduce the presence

and order of the attendant geometric singularities produced by sharp corners defining particle



boundaries (though not intersection boundaries). Note that this approach still requires consideration

of these singularities [6] but strategic choice of simulation type can drastically reduce both the

number of iterations required in solution, and the convergence of the solution [ibid.]. Consideration

of particulate networks with somewhat smaller particle aspect ratios (e.g. Fig. 3d) can be

accomplished using this approach, offering a convenient mathematical description of particles

ranging from fiber-like to spheroidal; this advantage becomes evident in analysis of structures with

a widely-varying distributions of particle shape which one would like to define with a single set of

parameters.

Two approaches used in our transport work are shown schematically in the flowchart of Fig. 4.

We have carried out conduction and mechanics simulations of generated microstructures using both

the 1D fiber-generating approach on the left of Fig. 4 [1-5; 7], and conduction simulations using the

field-of-ellipses approach on the right [6]. Our general approach is most clearly illustrated by

demonstration. Two sample fiber networks are shown in Fig. 5. In Figs. 5a and 5b, and Figs. 5c and

5d, original and reduced networks are shown for volume fractions of 20% and 70%, respectively.

The basic scheme is as described in Fig. 4, namely, fibers of statistically-described shape and

orientation are placed in a simulation “window,” whereupon periodicity is enforced (i.e. “ends”

extending beyond the window are reflected within) and truncation of free ends in the network is

performed. This last step is an efficiency possible with analysis of porous, rather than matrix-filled

materials; the ends in porous materials provide negligible contribution to conductivity, and little

contribution to mechanical loads (if mass is neglected and large-deformation impingement of fiber

ends on fiber struts is not considered). In simulations of fields of ellipses, the last step is not

performed, since this approach assumes that a full-field solution is desired, in part to address the

effects of finite phase contrast.

Two arrays of fields-of-ellipses are shown in Fig. 6. In contrast with a 1D fiber assumption, here

we solve the field equations for the array rather than use a circuit analysis (assuming fibers

comprise 1D resistors) in conduction analysis. Use of higher aspect ratio elliptical particles rather

than circular particles dramatically improves the conductivity of the array in this example; here we

see a single example of the advantage of higher aspect ratio in producing percolated networks at

lower volume fraction and overall higher conductivities, with no mass penalty.

Scale dependency in simulation size has been explored for both types of networks in terms

of conductivity [3,4,6,7]; we have found generally that classical reliance on closed-form percolation

models does not sufficiently capture or characterize variability in networks, but that simulation of

real microstructures within an order of magnitude of the actual structure produces excellent

predictive capability of conductivity, even when tracking morphology changes in materials [3,4,7].



Figure 4: Flow chart of network generation for the two approaches described.
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                          (a) (b)

         (c) (d)
Figure 5. Sample networks.In (a) and (b), a 20% initial volume fraction network is shown (a)
before reduction and (b) after reduction. In (b) and (c), a 70%  initial volume fraction network is
shown (c) before reduction and (d) after reduction.  Networks are comprised of fibers with diameter
0.01 and aspect ratio 100, with dimensions of networks as shown on the plots.



Figure 6. Networks in a unit cell (original volume fraction  50%) comprised of (a) ellipses with
uniformly distributed major axis length (average length = 0.3), and fixed minor axis length 0.05,
and (b) circles with diameter 0.1. Images (c) and (d) are voltage contours for fields (a) and (b)  with
boundary conditions prescribed as 1.0V at the  left edge and -1.0V at the  right edge and a ratio of
particle conductivity to matrix conductivity of 50.Resulting normalized effective conductivities for
there arrays arrays, Keffective/Kfiber ,are (a) 0.0708, and (b)0.0 236, respectively.



3. Mechanics Analyses: Mechanisms and Scale-Dependence

Our overall strategy in modeling the mechanics of stochastic fiber/particulate structures has

focused on three aspects of porous networks: first, simulation of 2D fibrous, connecting “struts” in

these materials have been considered; second, the joints within these 2D arrays were considered (as

having some compliance by placement of a torsion spring at their juncture); and third, fully 3D

fibers and fiber/particle interconnects have been considered. A strategy of separation of the

elements for analysis of a porous network is shown in Fig. 7. The sometimes-porous interconnects

can be considered separately from the deformation of the fibrous elements via either insertion of the

aforementioned torsion spring (of some scaled compliance) at the interconnect, shown in Fig. 8, or

via definition of some zone of compliance at the interconnect if the connecting region is relatively

large compared with the fiber struts, as shown in Fig. 9. Solutions for these models, for both two-

beam assemblies and for complete networks, has been described previously by the authors [1-3].

Briefly (following [1]), the governing equations for torsion-spring bonded Timoshenko beams are
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Figure 7.  Strategy of separation of analysis of interconnecting beams from porous
interconnects.

Figure 8.  Two-beam assembly of beams joined by a torsion spring at B.



(a)

(b)

Figure 9.  A reduction of a physically realistic bond between fibers in a fiber/particle network to a
2D assembly (a), and notation for the two-beam assembly of rigidly joined beams, with each beam
having a “compliant zone” of length b2 (b)



allows for solution of all internal displacements and moments. The normalized torsion spring

constant is given by

K =
Kl

EI
(3)

where K is the torsion spring constant, l is the total beam length (l=l1+l2), and E and I are the usual

modulus and moment of inertia.

For the compliant zone model pictured in Fig. 9, wherein lengths of the connected beams are

assumed to have some stiffness other than the beam material, we establish a correspondence with

the torsion spring model as

  

E1 =
2E b1 − b2( ) tan(γ)2 A E2I2 b1b2 − K2b1

4 − 2EKb 1
2I b1 − b2( )[ ] − 12IKL EI + Kb1( ) − 3E2I3[ ]

b2IE + 2b 2b1K − 2Kb1
2( ) 6EI2 + 2 E A t a n (γ)2 b1

2I + 12b 1KI + AKtan( γ)2 b1
3( )             (4)

  

E2 =
−2Eb2 tan(γ)2A E2I2b1b2 − K2 b1

4 − 2EKb1
2I b1 − b2( )[ ] − 12IKb1 EI + Kb1( ) − 3E2I3[ ]

b2IE + Ib1E + 2b1b2K( ) 6 E I2 + 2 E A t a n (γ )2 b1
2I + 12b1KI + AKtan(γ)2 b1

3( )                         (5)

where E1 and E2 are the moduli of the beam material and the material in the compliant zone,

respectively. Thus, a reduction in modulus of a zone of connection is possible to implement either

by placement of a torsion spring at the joint (Fig. 8) or by assumption of a compliant zone around

the joint due to joining by perhaps an interconnecting, porous material (Fig. 9).

Investigation of the moduli and strength of the of networks reveals that the key element in a

very significant range of structures is, in fact, the compliance of the bond, as illustrated by Fig. 10,

showing the strong influence of joint compliance for both modulus and strength. Indeed, the model

selected for the fiber strut (in this case, Timoshenko versus Euler beams) has little effect, even for

short beams, and especially when compared with the properties of the joint. Thus, the connectivity

of the network and the bond densities play a key role in assessing scale effects in simulation.

Results for simple assemblies of connected beams are shown in  Fig. 11. Because of the large effect

of bond compliance, these degenerate networks illustrate the importance of scale in calculation of

network modulus.

In light of the significance of bond type, we have recently [18] modeled 3D interconnects in

fiber/particle networks. We characterize the interpenetration of fibers or particles as degree of

intersect (d.o.i.), as shown in Figs. 12 and 13.



(a)

(b)

Figure 10.  Normalized effective moduli (a) and peak stress (b)  for two normalized torsion spring
constants.  Plots were for networks comprised of fibers with uniform aspect ratio of 10, with
representative cell edge length of lc = 1.2.



      (a)

       (b)
Figure 11.  Effective moduli (a) and maximum stresses (b) are given for a=30 and a=150 deg, for a
range of torsion spring constants and a variable number of segments.  (Four segments case is
illustrated for both (a) and (b)).



Figure 12.  Definition of the degree of intersect (d.o.i.).

This type of interpenetration, however, has two major deficiencies: first, the stress singularity

produced by the sharp interconnect line prevents reasonable calculation of maximum stress in the

assembly in the linear elastic range, and second, volume (mass) conservation is violated when two

fibers or particles are bonded to one another, if the displaced material is not redistributed. Addition

of a smoothing fillet as in Fig. 14 remedies both deficiencies, smoothing the stress singularity  and

allowing modeling of menisci, similar to those occurring in real sintered or coated materials to

redistribute mass (Fig. 15). Presently, we are investigating the importance of these types of

physically realistic bonds in assessing local damage progression.



(a)

(b)

Figure 13.  3D modeling without fillet.  Detail of the joint of a finite element model of two
intersecting fibers with (a) d.o.i.=0.571 and (b) d.o.i.=0.667.



(a)

(b)

Figure 14.  3D modeling with fillet.  Detail of the joint of a finite element model of two intersecting
fibers with (a) d.o.i.=0.571 and (b) d.o.i.=0.667.



(a)

(b)

Figure 15.  Sections through the joints of two fibers intersecting  with d.o.i.=0.571 for (a) a  model
without a  fillet and (b) a model with a fillet included.  The section in (b) shows that the sharp
corners (and hence the stress singularities) are eliminated by the introduction of a fillet.



4. Future Directions: Toward Improved Microstructural and Nanostructural Design

As the line between material and device continues to become blurred, investigation of the

details of material connectivity and consideration of loads in multifunctional materials will become

more critical, particularly at very small scales. As such, the classical approach of definition of an

appropriate RVE will likely be supplanted by use of stochastic representation of small structures, in

conjunction with FE or other numerical techniques for analysis of response. Coupling of

microstructure and application are particularly important in this newer direction. In the

electrochemical materials described here, the specific morphological changes and in situ loads

significantly affect the way in which material geometry is specified. Nonetheless, investigation of a

few key general phenomena, including bonding, scale and phase contrast using these models has

shown potential application in a number of newer materials systems. A prominent goal is improved

understanding of biomaterials, in both the evolutionary biology context, and in the context of

improved understanding of damage progression in tissues.
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List of Symbols

A cross-sectional area
As shear area
b1 total length of each beam in compliant zone model
b2 length of “compliant zone”
dsegment diameter of a segment in a beam network
E Young’s modulus
E1, E2 Young’s moduli of segments of compliant zone model
Eeffective effective Young’s modulus of a beam assembly
F1, F2 axial force (subscript denotes end at which it is applied)
FAB, FBC axial forces in members AB and BC of torsion spring model
FAD, FDB, axial forces in members AD and DB of compliant zone model
FBE, FEC axial forces in members BF and BC of compliant zone model
Fx1, Fx2 applied force at point C in x-direction. Subscript 1 denotes compliant zone model

and 2, the torsion spring model
Fy1, Fy2 applied force at point C in y-direction. Subscript 1 denotes compliant zone model

and 2, the torsion spring model
G shear modulus
I second moment of area
K torsion spring constant
K1, K2 torsion spring constant.  Subscript denotes end at which spring is located
L beam length
l1, l2 beam lengths
M1, M2 applied moment at point C. Subscript 1 denotes compliant zone model and 2, the

torsion spring model
MAB, MBC moment in members AB and BC of torsion spring model
MAD, MDB moment in members AD and DB of compliant zone model
MBF, MBC moment in members BF and BC of compliant zone model
Q1, Q2 bending moment (subscript denotes end at which it is applied)
S1, S2 shear force  (subscript denotes end at which it is applied)
u x-direction displacement
v y-direction displacement
X1, X2 x-direction displacement of point C. Subscript 1 denotes compliant zone model and

2, the torsion spring model
Y1, Y2 y-direction displacement of point C. Subscript 1 denotes compliant zone model and

2, the torsion spring model
α1, α2 internal rotation between two beams (subscripts denote end) 

ξ1, ξ2, ξ3, ξ4 local coordinates along beam segments of compliant zone and torsion spring models
α angle between beams in two-beam assembly
γ1, γ2 angles between beams of two-beam assembly and x-axis
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