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ABSTRACT

The strength of composite materials exhibits a scale effect,
and computationally efficient schemes are required for per-
forming large simulations to characterize the relationship be-
tween strength distributions and size in composites,
incorporating both the statistical and mechanical aspects of the
problem. A new technique for calculating load profiles in
unidirectional, elastic composites containing arbitrarily lo-
cated breaks is used to demonstrate magnification and shield-
ing effects among breaks in the planar setting, which
profoundly influence break (crack) progression and ultimate
strength distributions. Three-dimensional solution techniques
are also outlined.

INTRODUCTION

The strength of fibrous composite materials is determined
by the strength distribution of the reinforcing fibers and the
mechanics of load redistribution around fiber breaks. The
strength of these brittle fibers, unlike the strength of ductile
engineering materials such as metals, exhibits a scale effect:
that is, long fibers are weaker than short fibers. This scale
effect has been observed by many workers [(1-3) for example].
The scale effect results from the mechanism of tensile failure
of the fibers. Brittle fibers are generally strong and uniform in
diameter, but contain a distribution of flaws of different
strength which cause failure, and one is more likely to find a
flaw in a longer fiber than in a short fiber. As a result of this
scale effect in reinforcing fibers, it has been argued that large
composites are generally weaker than small composites (4-6).

There is a substantial body of work available regarding the
purely statistical aspects of the problem of scale effect in
strength in fiber structures. Daniels’ bundle strength work (7),
in which the strength of large, dry bundles using the statistics
of the constituent fibers was derived, is the classic work in this
area; it has been incorporated into analyses for structures from
twisted and braided ropes to composite materials (for areview,
see Reference 8).

In composite materials containing broken fibers, however,
the load sharing becomes much more complicated by the
presence of the matrix. The details of this load transfer be-
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tween broken and unbroken fibers are, in fact, critical in
predicting composite strength. Work has been carried out
using both simple load sharing rules to approximate mechani-
cal behavior in a composite (9-10) and incorporating the
micromechanics of load transfer (11-12). Each of these tech-
niques has inherent problems. The former, purely statistical
approaches, while mathematically more tractable, overly ide-
alize the mechanical load transfer occurring in the real com-
posite, which can produce substantially different overloads on
unbroken fibers than simple mathematical rules would im-
pose, particularly in the case of clustered breaks. In the latter,
micromechanical approaches, finite difference or finite ele-
ment methods are used to account for the more complicated
load sharing. As a result, many types of interfacial and matrix
constitutive behaviors can be modeled, but the simulations are
limited by the amount of computation required, and simula-
tions of sizes of composites of interest to designers (106
multiples of fiber diameters) quickly become impractical.

ANALYSIS: THE BIS TECHNIQUE

In the shear-lag model used in the present work, a superpo-
sition technique for calculating stresses in cracked solids de-
veloped by Kachanov (13-14) for isotropic materials is
modified for use in unidirectional composites. This model, the
break-influence superposition (BIS) technique, is an improve-
ment to Hedgepeth’s analyses (15). In this analysis, and in
modifications to it (16-17), stress profiles in infinite compos-
ites containing breaks along a single transverse line (perpen-
dicular to the fibers’ axes) were calculated. Using the present
technique, fiber load profiles can be found for composites
containing arbitrarily located breaks, as would occur in a real
composite. The BIS also offers an important advantage over
the micromechanical analysis techniques above in terms of
speed of computation in the purely elastic load-transfer case.

The technique consists of three calculations. First, the solu-
tion for the overloads in an infinite, unidirectional, fully elastic
composite sheet containing a single fiber break is obtained
using Hedgepeth’s shear-lag technique. Then, interactions
among arbitrarily located breaks are found, and using bound-
ary conditions forcing the load to negative unity at the break
sites, a superposition technique is used to solve for the over-
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loads in the sheet with many breaks. Finally, a unit load is
added to the fiber load solution, resulting in zero loads at each
break site, and unit (applied) edge loads parallel to the fibers
at infinity. This yields overload factors for all fiber points in
the composite. Figure 1a shows a schematic of Hedgepeth’s
notation, which is adopted here for the multiple break problem,
and Figure 1b shows a free body diagram of a fiber element in
fiber n. In Hedgepeth-type approaches (15-17), fiber breaks
were assumed to occur only along a single transverse line, at
€ =0 (see Figure la).

By shear-lag assumptions, the derivative of normal fiber load
with axial position is proportional to matrix shear stress. The
governing equation is written in terms of normalized displace-
ments as
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where the normalized fiber constitutive equation, fiber load,
fiber axial displacement, and axial position (for fiber n) are
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respectively, and the actual fiber load, fiber displacement and
axial position are Py, un, and x, respectively. The variables p,
A, G, and E are the applied edge load per fiber, fiber cross-sec-
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Figure 1. a) Schematic of the problem solved by Hedgepeth (5) with notation, and b) Free-body diagram of an element of fiber
n.
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tional area (A =b  h), matrix shear modulus and fiber Young’s
modulus, respectively. The normalizations of Equations 3 and
4, although unintuitive to say the least, simplify calculations
by allowing the convenient normalizations of Equations 1 and
2.

The details of the technique are described in Reference 18,
an outline of the technique follows. The final load distribution
for a composite with fiber break positions (n1, £1), (n2, £2), (n3,
£3), etc. is given by

P,,(E.f) = K] Fn—nl &- 51) t K2 F,,_,,2(§ - &2) +

Ky F n_n3(§ €N+t 1], [6]

where the same fiber may have several breaks along its axis
(n2 =n3, for example), or several fibers have breaks at the same
axial location (§1 = &2 = &3, for example).

The individual breaks’ solutions, for zero edge load and
negative unit tensile load at the broken fiber ends, are
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and the boundary conditions are given by (for a sample case
of three breaks)

-1 Ap A Ayl | K
“lp =41y Ay Ay (Ko, (8]
-1 A Ay Ay (K5
where the transmission factors Ajj are
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Using this technique, the single-break problem needs to be
solved only once for loads on a fine grid of points along
overloaded fibers; shifting of this solution to obtain solutions
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to Equations 7 and 9, and solution of boundary conditions such
as those in Equation 8 can then be used to solve the multiple
break problem. The amount of computation is thus tied to the
number of breaks. The amount of computation in the finite
difference and finite element solutions, by contrast, is tied to
the total volume of the composite.

Only the loads in a quarter of the plane shown in Fig. 1 (§ >
0, n > 0) must be found for the single-break problem because
of its symmetry. These loads are found through numerical
integration of Equation 7. Also, because the loads return to one
at some distance away from a break, solution of the single
break problem is only required for about 15 fibers, and for an
axial length of about & = 16, at which points the loads have
returned to within 0.001 of the unit load.

MAGNIFICATIONS OF
LOADS WITH MULTIPLE BREAKS

Figures 2 and 3 show the load profiles on nearby fibers for
one break and two aligned breaks, respectively. These prob-
lems are of the type solved by Hedgepeth. Figure 4a shows
how tensile load on a broken fiber builds axially, away from
the break, while Figure 4b shows how the tensile loads in the
fibers adjacent to aligned broken fibers vary axially. The
tensile loads in broken fibers in the case of two breaks require
a longer axial length to reach the edge unit load, as is shown
in Figure 4a, and the neighboring fibers to the broken fibers
are more highly overloaded in the case of two breaks than in
the case of a single break, as can be seen by Figure 4b, and
comparison of Figures 1 and 2. The overload on the adjacent
fiber to a broken fiber occurs over an axial length that is on the
order of § = 1.
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Figure 2. Fiber load profiles in a composite with a single
break at (n,E) = (0,0), with applied unit edge load at (§ = *
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Figure 3. Fiber load profiles in a composite with two breaks,
at (n,€) = (0,0) and (1,0), with applied unit edge load at (§ =
to0).

These figures demonstrate the magnification, or stress con-
centration, produced by aligned breaks. It was presumed by
Hedgepeth that the failure in a real composite would in all
likelihood progress in an orderly fashion at one axial location,
where the overloads on fibers neighboring broken fibers would
be highest. A single transverse crack would then produce
failure. From his mechanical analysis, Hedgepeth (15) inferred
the following formula for the stress concentration on the
nearest neighboring unbroken fiber, at the same axial location,
to n breaks,

+1_ 4:6-8--(2b+2)

K, T3.5.-7-9-(2b+1) (101
which was later rigorously derived by Hikami and Chou (19)
using Legendre polynomials. Inspection of Equation 9, Figure
4b, and comparison of Figures 2, 3, and 5 show that the
magnification effect becomes more pronounced as the number
of breaks is increased, as one would expect. Figure 5 will
shortly be compared with other break patterns in the case of
four breaks.

The "spikes" that occur in the load profiles of unbroken
fibers adjacent to broken fibers (but not in the other fibers; see
Figures 1, 2, and 5) in Figure 4b at § = 0 are the result of the
discontinuity of the fiber at & = 0. Because the load transfer is
accomplished via a fully elastic matrix, the load builds expo-
nentially along the axis of a broken fiber end, with a charac-
teristic shape determined by the ratio of the elastic moduli of
the fiber and matrix and the geometry of the composite. The
neighboring unbroken fiber is subjected at its center, § =0, to
shear forces proportional to the derivative of the broken fiber’s
normal load with axial position. These shear forces acting on
the side facing the broken fiber, however, are of opposite sign,
for the two adjacent broken fiber ends, which produces the
spike in the unbroken fiber’s normal load distribution. The
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Figure 4. a) Loads on broken fibers in the case of a single break at (n,§) = (0,0), and two breaks at (n,£) = (0,0) and (1,0), and
b) Loads on unbroken fibers adjacent to broken fibers, showing fiber peak overloads, in three cases: single break at (n,§) = (0,0),
two breaks at (n,§) = (0,0) and (1,0), and three breaks at (n,§) = (0,0), (1,0) and (2,0).

sub-adjacent fiber has no such spike since shear is transmitted
from an intact fiber, and thus is continuous along the fiber.

SHIELDING OF LLOADS WITH MULTIPLE BREAKS

Real composites do not fail along a single, perfect transverse
line. Even when tensile failure is observed in a 0° test speci-
men, and the transverse crack seems rather clean, it is far from
perfectly perpendicular to the fibers on the microscopic level.
In fact, tiny differences in axial location of sequential fiber
breaks create large differences in overload profiles. Because
fibers fail at flaws which can be scattered widely, fiber breaks
occur at the weakest flaws throughout the composite long
before the failure load is reached. A dominant, jagged crack,
rather than a single, transversely aligned growing crack causes
failure. It is statistically unlikely that the preliminary breaks
produced at these low loads will result in failure of the entire
composite.

In the case of non-aligned breaks, breaks can actually have
an attenuating effect on one another; that is, staggered breaks
can actually lessen the severity of the peak overloads in the
composite. This "shielding" effect is due to the inability of a
broken fiber end to bear much tensile load within some axial
distance of its broken end (see Figure 4a, for single and double
break examples), and the opposite sign of the shear forces on
pairs of broken fiber ends. When break sites are staggered, the
load on neighboring unbroken fibers is less than it would be
were the breaks aligned because of this effect.

Two simple cases are used to illustrate the effect of this
shielding of non-aligned breaks, for the case of four breaks.
Referring again to Figure 5, it can be seen that four aligned
breaks produce substantial overloads on fibers -1 and 4, which
are adjacent to the broken fibers, fibers 0, 1, 2, and 3. The value
of the peak stress concentration factor (at fibers -1 and 4 at §
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Figure 5. Fiber load profiles in a composite with four breaks,
at (n€) = (0,0), (1,0), (2,0) and (3,0), with applied unit edge
load at (€ = £ ).

= 0) is 2.032 (see Equation 10). If the locations of the breaks
are changed slightly, the resulting overloads are changed dra-
matically.

~Figure 6 shows one possible configuration for four breaks.
In fact, in simulations where the fiber elements’ strengths are
taken into account, this situation arises commonly, and will be
the focus of future investigations (20), in that break progres-
sions occur along a jagged lines through the most highly
overloaded axial zones for small volumes of composites with
high variability in fiber strength. In the case shown in Figure
6,the break "addresses™ are (n, £) = (0,0), (1,1),(2,0),and (3,1).
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Figure 6. Schematic of a possible break configuration in the
case of four breaks, at (n,&) = (0,0), (1,1), (2,0), and (3,1).
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Figure 7. Fiber load profiles in a composite with four stag-
gered breaks, at (n,§) = (0,0), (1,1), (2,0), and (3,1), with
applied unit edge load at (€ = t ).

This dimensionless value for the axial break staggering, =1,
corresponds to 10 fiber diameters in the case of a 50% fiber
volume fraction composite comprised of fibers and matrix
where Ef/Gm = 100 (see Equation 5, with b = d). This mis-
alignment amounts to approximately 100 wm in a typical fiber
composite (containing 8-12 um diameter carbon or Kevlar
fibers). In macroscopic evaluation of a failed tensile specimen,
a failure surface containing such slight staggerings of failed
" fibers would appear to have a reasonably smooth surface.
The resulting load profiles are shown for the case of the four
staggered breaks in Figure 7. The shielding effect produced by
the staggering of the breaks can be clearly seen on fibers -1
through 4, where the overloads’ peaks are substantially less
than in the aligned case of Figure 5. Another result of the
staggering of the breaks is the presence of peaks in the broken
fibers themselves, at the axial location of the adjacent breaks.
Figure 8 shows the magnitude of the difference in the peak
overloads. In the staggered case, the peak overload is 1.504,
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at (n,€) = (1,0) and (2,1). Thus, in the staggered case, the peak
loads have been reduced by about 51%, relative to a unit edge
load per fiber, and are located on broken fibers, rather than on
unbroken fibers adjacent to broken fibers. The load in unbro-
ken fibers at the adjacent points to the outermost breaks in this
situation are 1.441, at (n,§) = (-1,0) and (4,1), which is about
57% less than the peak loads in the aligned case relative to a
unit edge load per fiber.

Another possible configuration of breaks is shown in Figure
9. The fiber breaks lie at an angle to the axis & = 0, at (n,§) =
0,0, (1,1), (2,2), and (3,3), with the same axial spacings,
although in different directions, of the successive breaks in
Figure 7. The shielding effect can be seen on fibers -1 through
4 in Figure 10, with the full load profiles shown in Figure 11.
In this case, the peak overload in the composite {at ) =
(-1,0), and (4,3)] is reduced even further, to 1.372 (approxi-
mately 64% less than in the aligned case, relative to a unit edge
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Figure 8. Comparison of the load profiles of the adjacent
unbroken fibers to four fiber breaks, for four aligned breaks
and four staggered breaks (see Figures 5 and 7 for full load
profiles in these cases).
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Figure 9. Schematic of another possible break configuration
in the case of four breaks, at (n) = (0,0), (1,1), (2,2), and
(3.3).
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and four angled breaks (see Figures 5 and 10 for full load
profiles in these cases).

load per fiber). This smaller peak load is a result of the wider
spacing of the breaks, whose influence on neighboring fibers
is reduced with increased axial distance.

THREE-DIMENSIONAL SOLUTIONS

The BIS technique can be used to analyze three-dimensional
as well as planar composites containing breaks. Two geome-
tries, shown in Figures 12 and 13 are illustrated here. Figure
12 shows a coordinate system for a square-packed material
containing one break, and Figure 13 shows another coordinate
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Figure 11. Fiberload profiles in a composite with four angled
breaks, at (n,€) = (0,0), (1,1), (2,2), and (3,3), with applied
unit edge load at (§ = £ o).
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Figure 12. Schematic of coordinate system for the single
break problem, in a three-dimensional, square-packed com-
posite.

system for a hexagonally-packed material containing one
break. As for the planar case, the single break solution can be
used along with boundary conditions such as those in Equation
8 to deduce the resulting load profiles in a material containing
arbitrarily located breaks. Hedgepeth and Van Dyke (16)
solved for the load profiles in a composite in each of these case,
with breaks all contained in the plane & = 0.

The governing equations for the square and hexagonal cases
are respectively

U,

a§2 ¥ Un+l"” t+ Un,m+l + Un—l,m + Un,m—l - 4Un,m =0 [11]

and

dFu,

~—a§2 tUpiim+ U1+ Uiy Uy + (121
Un+1»’n“1 + Un—l,m+1 - 6Un,m =0

The single-break load profiles, with breaks located at (n,m,&)
= (0,0,0) (see Figures 12 and 13) can be written compactly as

broken fiber,
O at(n, m, &) =(0,0,0)
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7
% for hexagonally-
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Figure 13. Schematic of coordinate system for the single
break problem, in a three-dimensional, hexagonally-packed
composite.
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where the factor § is given by
8, =V4—2cos0 — 2cosp [14]
and
35 =V 6 —2c0s6 — 2cosh — 2cosh 2cosd [15]

respectively, for the square- and hexagonally-packed arrays.
These solutions give the fiber load profiles for the shifted
solution; to obtain the result for an edge unit load with zero
load the at the break site, a unit load must be added to Equation
13. The remainder of the analysis follows analogously to the
planar case, with (numerical) double integrations replacing the
single load integrals for the planar case, as interactions from
neighboring fibers in two directions must be considered in the
three-dimensional solids.

CONCLUSIONS AND FUTURE WORK

The BIS technique offers a computationally simple method
of calculating load profiles in both two-dimensional and three-
dimensional, unidirectional, elastic composite. This provides
a means of performing strength simulations for large compos-
ites using the statistics of fiber strength along with the mechan-
ics of elastic load transfer. While real composites exhibit many
types of inelastic behavior which this linear model cannot
account for, this technique will provide a means of evaluating
current statistical theories against the simplest mechanical
case.

Future work will include these strength simulations using
both the two- and three- dimensional cases, and suggest scal-
ing techniques for predictions of unidirectional strength.
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