The smallest eigenvalue distribution of incomplete Laguerre Unitary Ensemble.

Thomas Bothner(University of Michigan), Alexander R. Its, Andrei Prokhorov (IUPUI)
LAGUERRE UNITARY ENSEMBLE

$$
f\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\frac{1}{Z_{n}} \prod_{1 \leq k<j \leq n}\left(\lambda_{j}-\lambda_{k}\right)^{2} \prod_{j=1}^{n} \lambda_{j}^{\alpha} e^{-\lambda_{j}}, \quad \alpha>0, \quad 0<\lambda_{1}<\lambda_{2}<\ldots<\lambda_{n} . \quad \text { (1) }
$$

Such model can be refered as Laguerre Unitary Ensemble. Its k-correlation functions are expressed in terms of Christoffel-Darboux kernel of Laguerre orthogonal polynomials

$$
R_{k}\left(\lambda_{1}, \ldots, \lambda_{k}\right)=\frac{n!}{(n-k)!} \int_{0}^{\infty} \cdots \int_{0}^{\infty} f\left(\lambda_{1}, \ldots, \lambda_{n}\right) \prod_{j=k+1}^{n} d \lambda_{j}=\operatorname{det}\left[K_{n}\left(\lambda_{j}, \lambda_{l}\right)\right]_{j, l=1}^{k} .
$$

COMPLEX Wishart matrices

Consider the $m \times n$ matrix X with complex entries. Suppose that the real and imaginary part of called complex Wishart matrix. Its eigenvalue distribution is given by (1) with $\alpha=n-m$.

FREDHOLM DETERMINANT

The limiting eigenvalue density is described by Marchenko-Pastur law

$$
\lim _{n \rightarrow \infty} R_{1}(n \lambda)=\frac{1}{2 \pi} \sqrt{\frac{4-\lambda}{\lambda}} \chi_{(0,4)}(\lambda) .
$$

The limiting distribution of the smallest eigenvalue is given by Fredholm determinant (see [5])

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{\lambda_{\min }}{4 n} \geq t\right)=\operatorname{det}\left(I-K_{\text {Bess }}\right),
$$

where $K_{\text {Bess }}$ is acting in $L^{2}(0, t)$ with the kernel

$$
\begin{equation*}
K_{\text {Bess }}(\lambda, \mu)=\frac{\phi(\lambda) \psi(\mu)-\phi(\mu) \psi(\lambda)}{\lambda-\mu}, \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi(\lambda)=J_{\alpha}(\sqrt{\lambda}), \quad \psi(\lambda)=\frac{1}{2} \sqrt{\lambda} J_{\alpha}^{\prime}(\sqrt{\lambda}) . \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& \text { THINNING PROCEDURE } \\
& \text { Thinning procedure consists of removing every eigenvalue independently with probability } \\
& 1-\gamma \in[0,1) \text {. The distribution of corresponding minimal eigenvalue } \lambda_{\text {min }}(\gamma) \text { is given by (see [3]) } \\
& \lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{\lambda_{\min }(\gamma)}{4 n} \geq t\right)=\operatorname{det}\left(I-\gamma K_{\text {Bess }}\right) . \tag{4}
\end{align*}
$$

$$
\begin{aligned}
& \text { MAIN RESULT } \\
& \text { Theorem. [2] } \\
& \lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{\lambda_{\min }(\gamma)}{4 n} \geq t\right)=1-\frac{\gamma}{\Gamma^{2}(\alpha+2)}\left(\frac{t}{4}\right)^{\alpha+1}(1+o(1)), \quad t \rightarrow 0, \\
& \lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{\lambda_{\min }(\gamma)}{4 n} \geq t\right)=e^{-\frac{\nu}{\pi} \sqrt{t}}(16 t)^{\frac{\nu^{2}}{8 r^{2}}} e^{\frac{\alpha}{2}}\left|G\left(1+\frac{i v}{2 \pi}\right)\right|^{2}(1+o(1)), \quad t \rightarrow+\infty, \\
& \text { where } v=-\ln (1-\gamma) \text { and } G(\lambda) \text { is the Barnes } G \text {-function. }
\end{aligned}
$$

The case of complete spectrum was resolved in [4]

Riemann Hilbert problem
The Bessel kernel (2) is of integrable type. The corresponding Riemann-Hilbert problem has form

1. $Y(\lambda)$ is analytic outside of the interval $(0, t)$, oriented from left to right,
2. $Y_{+}(\lambda)=Y_{-}(\lambda)\left[\begin{array}{cc}\left.I-2 \pi i \gamma\left(\begin{array}{cc}\phi(\lambda) \psi(\lambda) & -\phi^{2}(\lambda) \\ \psi^{2}(\lambda) & -\phi(\lambda) \psi(\lambda)\end{array}\right)\right] \text {, } \text {, } \text {, }{ }^{2}(\lambda)\end{array}\right.$
3. $Y(\lambda)=I+\frac{Y_{1}}{\lambda}+O\left(\frac{1}{\lambda^{2}}\right), \quad \lambda \rightarrow \infty$.

Here $\phi(\lambda)$ and $\psi(\lambda)$ are given by (3).
The Hamiltonian (7) is given by

$$
H=\frac{Y_{1,12}}{2} .
$$

UNDRESSING
Introduce

$$
\Psi_{\alpha}(\lambda)=\sqrt{\pi} e^{-i \frac{\pi}{4}}\left(\begin{array}{cc}
I_{\alpha}\left(\left(e^{-i \pi} \lambda\right)^{\frac{1}{2}}\right) & -\frac{i}{\pi} K_{\alpha}\left(\left(e^{-i \pi} \lambda\right)^{\frac{1}{2}}\right) \\
\left.\left(e^{-i \pi} \lambda\right)^{\frac{1}{2}} I_{\alpha}^{\prime}\left(e^{-i \pi} \lambda\right)^{\frac{1}{2}}\right) & -\frac{i}{\pi}\left(e^{-i \pi} \lambda\right)^{\frac{1}{2}} K_{\alpha}^{\prime}\left(\left(e^{-i \pi} \lambda\right)^{\frac{1}{2}}\right)
\end{array}\right),
$$

where $I_{\alpha}(\lambda)$ and $K_{\alpha}(\lambda)$ are modified Bessel functions. Consider

$$
X(\lambda)=\left(\begin{array}{cc}
1 & 0 \tag{5}\\
\frac{4 \alpha^{2}+3}{8} & 1
\end{array}\right) Y(\lambda) \Psi_{\alpha}(\lambda) .
$$

We have (see [1])

1. $X(\lambda)$ is analytic outside of the positive real axis, oriented from left to right
2. $X_{+}(\lambda)=X_{-}(\lambda)\left(\begin{array}{cc}e^{-i \pi \alpha} & 1-\gamma \\ 0 & e^{i \pi \alpha}\end{array}\right), \quad 0 \leq \lambda \leq t$,
$X_{+}(\lambda)=X_{-}(\lambda)\left(\begin{array}{cc}e^{-i \pi \alpha} & 1 \\ 0 & e^{i \pi \alpha}\end{array}\right), \quad \lambda \geq t$,
3. $X(\lambda)=\left(I+O\left(\frac{1}{\lambda}\right)\right)\left(e^{-i \pi \lambda}\right)^{-\frac{1}{4} \sigma_{3}} \frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right) e^{-i \frac{\pi}{4} \sigma_{3}} \exp \left(\left(e^{-i \pi} \lambda\right)^{\frac{1}{2}} \sigma_{3}\right), \quad \lambda \rightarrow \infty$,
$X(\lambda)=\hat{X}_{0}(\lambda)\left(e^{-i \pi} \lambda\right)^{\frac{\alpha}{2} \sigma_{3}}\left(\begin{array}{cc}1 & -\frac{i}{2} \frac{1-\gamma}{\sin (\pi a)} \\ 0 & 1\end{array}\right), \quad \lambda \rightarrow 0, \quad \alpha \notin \mathbb{Z}$,
$X(\lambda)=\hat{X}_{0}(\lambda)\left(e^{-i \pi} \lambda\right)^{\frac{a}{2} \sigma_{3}}\left[I-\frac{e^{i \pi \alpha}}{2 \pi i}(1-\gamma) \ln \left(e^{-i \pi} \lambda\right)\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right], \quad \lambda \rightarrow 0, \quad \alpha \in \mathbb{Z}$,
$X(\lambda)=\hat{X}_{t}(\lambda)\left(I+\frac{\gamma}{2 \pi i}\left(\begin{array}{cc}-1 & -e^{-i \pi \alpha} \\ e^{i \pi \alpha} & 1\end{array}\right) \ln (\lambda-t)\right)\left\{\left(\begin{array}{cc}e^{-i \pi \alpha} & 1 \\ -1 & 0\end{array}\right), \mathfrak{s} \lambda>0 \quad, \lambda \rightarrow t\right.$.

ASYMPTOTICS

Asymptotics $\gamma \rightarrow 0$ and $t \rightarrow 0$ are evaluated by iterating RHP for $Y(\lambda)$. For asymptotics $t \rightarrow+\infty$ we open lenses in the problem for (5). The global parametrix is constructed explicitly. The
parametrix at one is expressed in terms of confluent hypergeometric function. The parametrix a pero is expressed in terms of Bessel function.

ACTION INTEGRAL REPRESENTATION

Using (9) we get

$$
\ln \left(\operatorname{det}\left(I-\gamma K_{\text {Bess }}\right)\right)=\int_{0}^{t} p q^{\prime}-H d s+2 H t+L .
$$

Action integral is convenient for taking derivatives. More precisely, we can rewrite

$$
\ln \left(\operatorname{det}\left(I-\gamma K_{\text {Bess }}\right)\right)=\int_{0}^{\gamma}\left(p \frac{\partial q^{\prime}}{\partial \gamma}\right) d \tilde{\gamma}+2 H t+L .
$$

The last expression allows us to evaluate constant factor at the asymptotics $t \rightarrow+\infty$ of the determinant.

HAMILTONIAN STRUCTURE

The Fredholm determinant (4) can be represented as

$$
\begin{equation*}
\operatorname{det}\left(I-\gamma K_{\text {Bess }}\right)=\exp \left(\int_{0}^{t} H(s) d s\right) \tag{6}
\end{equation*}
$$

where the Hamiltonian H is given by

$$
\begin{equation*}
H(p, q, t, \alpha)=\frac{q^{2}-1}{4 t} p^{2}-\frac{q^{2}}{4}-\frac{\alpha^{2}}{4 t\left(q^{2}-1\right)} . \tag{7}
\end{equation*}
$$

The corresponding Hamiltonian system is equivalent to equation (see [7])

$$
\begin{equation*}
t\left(q^{2}-1\right)\left(t q^{\prime}\right)^{\prime}=q\left(t q^{\prime}\right)^{2}+\frac{1}{4}\left(t-\alpha^{2}\right) q+\frac{1}{4} t q^{3}\left(q^{2}-2\right) \tag{8}
\end{equation*}
$$

The solution corresponding to (6) is fixed by behavior at zero

$$
q(t)=\frac{\sqrt{\gamma} t^{\frac{\alpha}{2}}}{2^{\alpha} \Gamma(1+\alpha)}(1+o(1)) .
$$

Consider
PAINLEVE EQUATION

$$
y(s)=\frac{-\alpha q\left(4 s^{2}\right)+8 s^{2}}{2 s q\left(4 s^{2}\right) \cdot\left(q^{2}\left(4 s^{2}\right)-1\right)},
$$

where $q(t)$ satisfies equation (8). Then $y(s)$ satisfies Painlevé-III equation

$$
y^{\prime \prime}=\frac{y^{\prime 2}}{y}-\frac{y^{\prime}}{s}+\frac{4}{s}\left(-\alpha y^{2}+1+\alpha\right)+4 y^{3}-\frac{4}{y} .
$$

Jimbo-Miwa-UENO DIFFERENTIAL

Jump matrices for the function (5) are independent of λ. Therefore we can cosider isomol odromic deformations of $X(\lambda, t)$

$$
\frac{\partial X}{\partial \lambda}=\left(-\frac{1}{2}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+\frac{A_{0}}{\lambda}+\frac{A_{t}}{\lambda-t}\right) X(\lambda)=A(\lambda) X(\lambda), \quad \frac{\partial X}{\partial t}=-\frac{A_{t}}{\lambda-t} .
$$

One can express coefficients of matrices A_{0}, A_{t} in terms of $q(t)$. The compatibility condition gives (8). Following [6] we extend the JMU form

$$
\omega=\underset{\lambda=0}{\operatorname{res}} \operatorname{Tr}\left(A(\lambda) \partial\left(\hat{X}_{0}\right) \hat{X}_{0}^{-1}\right)+\underset{\lambda=t}{\operatorname{res}} \operatorname{Tr}\left(A(\lambda) \partial\left(\hat{X}_{t}\right) \hat{X}_{t}^{-1}\right)
$$

$$
+\underset{\lambda=\infty}{\text { res }} \operatorname{Tr}\left(A(z) \partial\left[X \exp \left(-\left(e^{-i \pi} \lambda\right)^{\frac{1}{2}} \sigma_{3}\right)\right] \exp \left(\left(e^{-i \pi} \lambda\right)^{\frac{1}{2}} \sigma_{3}\right) X^{-1}\right) .
$$

After taking the residues we get

$$
\begin{equation*}
\omega=p d q-H d t+d(2 H t+\alpha L)-L d \alpha, \quad L(t)=-\int_{0}^{t} \frac{\alpha^{2} q^{2}}{2 s\left(q^{2}-1\right)} d s . \tag{9}
\end{equation*}
$$

$L(t)$ is expressible in terms of $X(\lambda)$

REFERENCES

[1] T. Bothner, From gap asymptotics to eigenvalue expansions, J. Phys. A: Mathematical and Theo retical 49075204 (2016).
[2] T. Bothner, A. Its, A. Prokhorov, On the analysis of incomplete spectra in random matrix theory through an extension of the Jimbo-Miwa-Ueno differential, arXiv:1708.06480 [math-ph]
[3] O. Bohigas, M. P. Pato Randomly incomplete spectra and intermediate statistics, Phys. Rev. E 74, 036212, 2006 .
[4] P. Deift, I. Krasovsky, J. Vasilevska Asymptotics for a determinant with a confluent hypergeometric kernel, International Mathematics Research Notices, vol 2001, No 9, 2117-2160 (2010).
[5] P. Forrester, Log-gases and random matrices, Princeton University Press, Princeton, NJ, 2010.
[6] A. Its, O. Lisovyy, A. Prokhorov, Monodromy dependence and connection formulefor isomondromic tau functions, , preprint arXiv:1604.03082v1
[7] C. Tracy, H. Widom, Level spacing distribution and the Bessel kernel, Comm. Math. Phys. Volume 161, Number 289 -309 (1994)

