On some Hamiltonian properties of isomonodromic tau functions.

Andrei Prokhorov
Joint work with Alexander Its
In the memory of L. D. Faddeev

Indiana University-Purdue University Indianapolis
Saint-Petersburg State University

October 19th, 2018

Painlevé equations

- The Painlevé equations was written first time by Painlevé (1900) and Gambier (1910) during their studies of ODEs, whose solution's branching points are independent on initial conditions.
- For example the equation Painlevé-IV is given by

$$
\begin{equation*}
q_{t t}=\frac{q_{t}^{2}}{2 q}+\frac{3}{2} q^{3}+4 t q^{2}+2\left(t^{2}-2 \theta_{\infty}+1\right) q-\frac{8 \theta_{0}^{2}}{q} \tag{1}
\end{equation*}
$$

- This equation is equivalent to the Hamiltonian system with Hamiltonian

$$
H=2 p^{2} q+p\left(q^{2}+2 q t+4 \theta_{0}\right)+q\left(\theta_{0}+\theta_{\infty}\right)
$$

Normal form of the Hamiltonian.

- Takasaki (2000) noticed that if we make change of variable $u(t)=2 e^{i \frac{\pi}{4}} \sqrt{q(i t)}$ we get the equation

$$
u_{t t}=\frac{3 u^{5}}{64}+\frac{t}{2} u^{3}+\left(t^{2}-2 \theta_{\infty}+1\right) u-\frac{4 \theta_{0}^{2}}{u^{3}}
$$

- This equation is equivalent to the Hamiltonian system with the Hamiltonian in the normal form

$$
H=\frac{p^{2}}{2}+V(x, t)
$$

with potential

$$
V(x, t)=-\frac{x^{6}}{128}-\frac{t}{8} x^{4}-\left(t^{2}-2 \theta_{\infty}+1\right) \frac{x^{2}}{2}-\frac{16 \theta_{0}^{2}}{x^{2}}
$$

Connection problem

- The Riemann-Hilbert approach provides us with asymptotic for solutions of Painlevé equations as t approaches infinity. The asymptotic is parametrised by monodromy data.
- The natural question is to study the asymptotic of tau function when t_{1} and t_{2} approach infinity in different directions in complex plane.
- The connection problem consists in determining such asymptotics.
- Using the asymptotic for solutions of Painlevé equations we can get the asymptotic for tau function up to the term independent of t_{1}, t_{2}. To find this term is more complicated problem.

Different results

- lorgov, Lisovyy, Tykhyy(2013), Its, Lisovyy, Tykhyy(2014), Lisovyy, Nagoya, Roussillon(2018) got the conjectural results for PVI, PIII, PV using the quasiperiodicity of the connection constant and its interpretation as generating function for canonical transformation.
- Its, P.(2016), Lisovyy, Roussillon (2017), Its, Lisovyy, P.(2018) got the results for PIII, PI, PVI, PII using the extension of JMU form suggested by Bertola based on works by Malgrange.
- Bothner, Its, P.(2017), Bothner (2018) got the results for PII, PIII, PV using interpretation of extension of JMU in terms of an action.
- The main result of authors is relation with action for all Painlevé equations and Schlesinger equation. In these slides we consider Painlevé-IV case.

Lax pair

- The Lax pair for Painlevé-IV case is given by (see Jimbo Miwa, 1981)

$$
\begin{gathered}
\frac{d \Psi}{d z}=A(z) \Psi(z), \quad \frac{d \Psi}{d t}=B(z) \Psi(z) \\
A(z)=A_{1} z+A_{0}+\frac{A_{-1}}{z}, \quad B(z)=B_{1} z+B_{0} \\
A_{0}=\left(\begin{array}{cc}
t & k \\
\frac{2\left(r-\theta_{0}-\theta_{\infty}\right)}{k} & -t
\end{array}\right), \quad A_{-1}=\frac{1}{z}\left(\begin{array}{cc}
-r+\theta_{0} & -\frac{k q}{2} \\
\frac{2 r\left(r-2 \theta_{0}\right)}{k q} & r-\theta_{0}
\end{array}\right), \\
A_{1}=B_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad B_{0}=\left(\begin{array}{cc}
0 & k \\
\frac{2\left(r-\theta_{0}-\theta_{\infty}\right)}{k} & 0
\end{array}\right) .
\end{gathered}
$$

The compatibility condition

- The compatibility condition for the Lax pair has form

$$
\frac{d A}{d t}-\frac{d B}{d z}+[A, B]=0
$$

- It is equivalent to the system

$$
\left\{\begin{array}{l}
\frac{d q}{d t}=-4 r+q^{2}+2 t q+4 \theta_{0} \\
\frac{d r}{d t}=-\frac{2}{q} r^{2}+\left(-q+\frac{4 \theta_{0}}{q}\right) r+\left(\theta_{0}+\theta_{\infty}\right) q \\
\frac{d k}{d t}=-k(q+2 t)
\end{array}\right.
$$

- The function $q(t)$ satisfies Painlevé-IV equation (1).

Local behavior of Ψ-function at infinity

- The first equation of the Lax pair has irregular singularity of Poincaré rank 2 at infinity.
- We have the following formal solution at infinity

$$
\begin{gathered}
\Psi_{\infty}(z)=G_{\infty}(z) e^{\Theta_{\infty}(z)}, \quad \Theta_{\infty}(z)=\sigma_{3}\left(\frac{z^{2}}{2}+t z-\theta_{\infty} \ln z\right) \\
G_{\infty}(z)=\left(1+\frac{g_{1}}{z}+\frac{g_{2}}{z^{2}}+O\left(\frac{1}{z^{3}}\right)\right), \quad z \rightarrow \infty \\
\sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{gathered}
$$

Local behavior of Ψ-function at zero

- The first equation of the Lax pair has regular singularity at zero.
- We have the following solution at zero

$$
\begin{gathered}
\Psi_{0}(z)=G_{0}(z) z^{\theta_{0} \sigma_{3}}, \quad G_{0}(z)=P_{0}(I+O(z)), \quad z \rightarrow 0 \\
P_{0}=\frac{1}{2 \sqrt{k q \theta_{0}}}\left(\begin{array}{cc}
-k q & -k q \\
2 r & 2 r-4 \theta_{0}
\end{array}\right) a^{-\frac{\sigma_{3}}{2}} .
\end{gathered}
$$

- To satisfy the second equation of the Lax pair we need to have

$$
\frac{d a}{d t}=\frac{4 \theta_{0}}{q} a .
$$

The Jimbo-Miwa-Ueno form

- The Jimbo-Miwa-Ueno form is given by

$$
\begin{gathered}
\omega_{\mathrm{JMU}}=-\operatorname{res}_{z=\infty} \operatorname{Tr}\left(\left(G_{\infty}(z)\right)^{-1} \frac{d G_{\infty}(z)}{d z} \frac{d \Theta_{\infty}(z)}{d t}\right) d t \\
=-\operatorname{Tr}\left(g_{1} \sigma_{3}\right) d t \\
=\left[\frac{2}{q} r^{2}-\left(q+2 t+\frac{4 \theta_{0}}{q}\right) r+\left(\theta_{0}+\theta_{\infty}\right)(r+2 t)\right] d t \\
=\left(\frac{q_{t}^{2}}{8 q}-\frac{q^{3}}{8}-\frac{q^{2} t}{2}-\frac{q t^{2}}{2}-\frac{2 \theta_{0}^{2}}{q}+\theta_{\infty} q+2 \theta_{\infty} t\right) d t
\end{gathered}
$$

- In general

$$
\omega_{\mathrm{JMU}}=-\sum_{k=1}^{L} \sum_{a_{\nu}} \mathrm{res}_{z=a_{\nu}} \operatorname{Tr}\left(\left(G_{\nu}(z)\right)^{-1} \frac{d G_{\nu}(z)}{d z} \frac{d \Theta_{\nu}(z)}{d t_{k}}\right) d t_{k}
$$

The isomonodromic tau function

- The isomonodromic tau function is given by

$$
\ln \tau^{J M U}\left(t_{1}, t_{2}\right)=\int_{t_{1}}^{t_{2}} \omega_{J M U}
$$

- We have the relation

$$
\ln \tau^{J M U}\left(t_{1}, t_{2}\right)=\ln \tau^{O}\left(t_{1}, t_{2}\right)+\int_{t_{1}}^{t_{2}} q d t+\left(\theta_{0}+\theta_{\infty}\right)\left(t_{2}^{2}-t_{1}^{2}\right)
$$

Hamiltonian structure

- We expect

$$
\omega_{J M U} \simeq H d t
$$

- Unfortunately if we choose the Hamiltonian in such way, r and q are not Darboux coordinates for Hamiltonian dynamics.

$$
\begin{aligned}
\omega_{J M U} & =\left[\frac{2}{q} r^{2}-\left(q+2 t+\frac{4 \theta_{0}}{q}\right) r+\left(\theta_{0}+\theta_{\infty}\right)(r+2 t)\right] d t . \\
& \left\{\begin{array}{l}
\frac{d q}{d t}=-4 r+q^{2}+2 t q+4 \theta_{0}, \\
\frac{d r}{d t}=-\frac{2}{q} r^{2}+\left(-q+\frac{4 \theta_{0}}{q}\right) r+\left(\theta_{0}+\theta_{\infty}\right) q .
\end{array}\right.
\end{aligned}
$$

Hamiltonian structure

- Hamiltonian structure for Painlevé equations was introduced by Okamoto (1980). It was interpreted in terms of moment map and Hamiltonian reduction in the dual loop algebra $s l_{2}(\mathbb{R})$ in the work by Harnad and Routhier(1995).
- We want to study the Hamiltonian structure using the extension of Jimbo-Miwa-Ueno form, following works of Bertola (2010), Malgrange(1983), Its, Lisovyy, P.(2018).

Symplectic form

- Consider the configuration space for Painlevé-IV Lax pair consisting of coordinates

$$
\left\{q, r, k, a, \theta_{0}, \theta_{\infty}\right\} .
$$

- We denote by δ the differential in this space.
- Following the work of Its, Lisovyy, P.(2018) consider the form

$$
\begin{gathered}
\omega_{0}=\operatorname{res}_{z=\infty} \operatorname{Tr}\left(A(z) \delta G_{\infty}(z) G_{\infty}(z)^{-1}\right) \\
+\operatorname{res}_{z=0} \operatorname{Tr}\left(A(z) \delta G_{0}(z) G_{0}(z)^{-1}\right)=\operatorname{Tr}\left(A_{-1} \delta G_{0} G_{0}^{-1}-A_{1} \delta g_{2}\right. \\
\left.+A_{1} \delta g_{1} g_{1}-A_{0} \delta g_{1}\right)
\end{gathered}
$$

Symplectic form

- In general this form is given by

$$
\omega_{0}=\sum_{a_{\nu}} \operatorname{res}_{z=a_{\nu}} \operatorname{Tr}\left(A(z) \delta G_{\nu}(z) G_{\nu}(z)^{-1}\right)
$$

- In all examples considered the symplectic form for Hamiltonian dynamics was given by

$$
\Omega_{0}=\delta \omega_{0} .
$$

- In case of Painlevé-IV we have

$$
\Omega_{0}=-\frac{1}{q} \delta r \wedge \delta q+\frac{1}{k} \delta k \wedge \delta \theta_{\infty}+\frac{1}{a} \delta a \wedge \delta \theta_{0}-\frac{1}{q} \delta q \wedge \delta \theta_{0} .
$$

Darboux coordinates

- We can choose Darboux coordinates as

$$
\begin{gathered}
p_{1}=-\frac{r}{q}, \quad q_{1}=q \\
p_{2}=\ln k=-\int_{c_{1}}^{t}(q+2 t) d t, \quad q_{2}=\theta_{\infty} \\
p_{3}=\ln a-\ln q=\int_{c_{2}}^{t} \frac{4 \theta_{0}}{q} d t-\ln q, \quad q_{3}=\theta_{0}
\end{gathered}
$$

Hamiltonian

- Jimbo-Miwa-Ueno form in these coordinates take form

$$
\omega_{J M U}=\left(2 p_{1}^{2} q_{1}+p_{1}\left(q_{1}^{2}+2 q_{1} t+4 q_{3}\right)+\left(q_{1}+2 t\right)\left(q_{3}+q_{2}\right)\right) d t
$$

- The deformation equations take form

$$
\begin{cases}\frac{d q_{1}}{d t}=4 p_{1} q_{1}+q_{1}^{2}+2 q_{1} t+4 q_{3}, & \frac{d p_{3}}{d t}=-4 p_{1}-q_{1}-2 t \\ \frac{d p_{1}}{d t}=-2 p_{1}^{2}-2 p_{1} q_{1}-2 p_{1} t-q_{3}-q_{2}, & \frac{d p_{2}}{d t}=-\left(q_{1}+2 t\right)\end{cases}
$$

- These equations become Hamiltonian system with Hamiltonian given by the equation

$$
\omega_{J M U}=H d t
$$

Counterexample

- We can choose Darboux coordinates in different way

$$
\begin{gathered}
\tilde{p_{1}}=-\frac{r}{q}+f(t), \quad q_{1}=q \\
p_{2}=\ln k=-\int_{c_{1}}^{t}(q+2 t) d t, \quad q_{2}=\theta_{\infty} \\
p_{3}=\ln a-\ln q=\int_{c_{2}}^{t} \frac{4 \theta_{0}}{q} d t-\ln q, \quad q_{3}=\theta_{0} .
\end{gathered}
$$

Counterexample

- Jimbo-Miwa-Ueno form in these coordinates take form $\omega_{J M U}=\left(2\left(\tilde{p_{1}}-f\right)^{2} q_{1}+\left(\tilde{p_{1}}-f\right)\left(q_{1}^{2}+2 q_{1} t+4 q_{3}\right)+\left(q_{1}+2 t\right)\left(q_{3}+q_{2}\right)\right.$
- The deformation equations take form

$$
\left\{\begin{array}{l}
\frac{d q_{1}}{d t}=4 \tilde{p_{1}} q_{1}-4 f q_{1}+q_{1}^{2}+2 q_{1} t+4 q_{3}, \frac{d p_{3}}{d t}=-4 \tilde{p_{1}}+4 f-q_{1}-2 t \\
\frac{d p_{1}}{d t}=-2\left(\tilde{p_{1}}-f\right)^{2}-2\left(\tilde{p_{1}}-f\right)\left(q_{1}+t\right)-q_{3}-q_{2}+f^{\prime} \\
\frac{d p_{2}}{d t}=-\left(q_{1}+2 t\right)
\end{array}\right.
$$

- These equations become Hamiltonian system with Hamiltonian given by the equation

$$
\omega_{J M U}=\left(\tilde{H}-q_{1} f^{\prime}\right) d t
$$

Hamiltonian

- We can ask, what Hamiltonian induce isomonodromic deformation with respect to described symplectic structure.
- Consider the form in the configuration space

$$
\begin{aligned}
& \alpha=\sum_{a_{\nu}} \operatorname{res}_{z=a_{\nu}} \operatorname{Tr}\left(\frac{\partial A(z)}{\partial t} \delta G_{\nu}(z) G_{\nu}(z)^{-1}\right) \\
& -\sum_{a_{\nu}} \operatorname{res}_{z=a_{\nu}} \operatorname{Tr}\left(\frac{d\left(\delta \Theta_{\nu}(z)\right)}{d z} G_{\nu}(z)^{-1} \frac{\partial G_{\nu}(z)}{\partial t}\right)
\end{aligned}
$$

Conjecture

The form α is exact and the Hamiltonian is given by

$$
\alpha=\delta H .
$$

Extension of Jimbo-Miwa-Ueno form

- We consider the extended configuration space. For Painlevé-IV it has coordinates

$$
\left\{t, q_{1}, p_{1}, q_{2}, p_{2}, q_{3}, p_{3}\right\}
$$

- We denote by " d " the differential in this space.
- Following Its, Lisovyy, P.(2018) we consider the form

$$
\begin{gathered}
\omega=\operatorname{res}_{z=\infty} \operatorname{Tr}\left(A(z) d G_{\infty}(z) G_{\infty}(z)^{-1}\right) \\
+\operatorname{res}_{z=0} \operatorname{Tr}\left(A(z) d G_{0}(z) G_{0}(z)^{-1}\right)=\operatorname{Tr}\left(A_{-1} d G_{0} G_{0}^{-1}-A_{1} d g_{2}\right. \\
\left.+A_{1} d g_{1} g_{1}-A_{0} d g_{1}\right)
\end{gathered}
$$

Extension of Jimbo-Miwa-Ueno form

- In general this form is given by

$$
\omega=\sum_{a_{\nu}} \operatorname{res}_{z=a_{\nu}} \operatorname{Tr}\left(A(z) d G_{\nu}(z) G_{\nu}(z)^{-1}\right)
$$

- Using the first choice of Darboux coordinates and Hamiltonian we can rewrite it for Painlevé-IV case as

$$
\begin{gather*}
\omega=p_{1} d q_{1}+p_{2} d q_{2}+p_{3} d q_{3}-H d t \\
+d\left(\frac{H t}{2}-\frac{p_{1} q_{1}}{2}-p_{2} q_{2}-p_{3} q_{3}+\frac{q_{3}^{2}}{2}-\frac{q_{3}}{2}-\frac{q_{2}^{2}}{2}+\frac{q_{2}}{2}\right) \tag{2}
\end{gather*}
$$

Relation to action integral

- Let's return to the notations in terms of Painlevé-IV equation

$$
\begin{gathered}
q_{1}=q, \quad p_{1}=\frac{1}{4 q}\left(q^{\prime}-q^{2}-2 q t-4 \theta_{0}\right) \\
q_{2}=\theta_{\infty}, \quad p_{2}=-\int_{c_{1}}^{t} q d t+c_{1}^{2}-t^{2} \\
q_{3}=\theta_{0}, \quad p_{3}=\int_{c_{2}}^{t} \frac{4 \theta_{0}}{q} d t-\ln q \\
H=2 p^{2} q+p\left(q^{2}+2 q t+4 \theta_{0}\right)+(q+2 t)\left(\theta_{0}+\theta_{\infty}\right)
\end{gathered}
$$

- Writing the "dt" part of the formula (2) we get the identity

$$
H=p q^{\prime}-H+\frac{1}{2}(H t-p q)^{\prime}-4 p \theta_{0}-(q+2 t)\left(\theta_{0}+\theta_{\infty}\right)
$$

Relation to action integral

- We introduce the action integral

$$
S\left(t_{1}, t_{2}\right)=\int_{t_{1}}^{t_{2}}\left(p q^{\prime}-H\right) d t
$$

- We have the following formula as the result of the identity above

$$
\begin{gathered}
\ln \tau_{J M U}\left(t_{1}, t_{2}\right)=S\left(t_{1}, t_{2}\right)+\left.\frac{1}{2}(H t-p q)\right|_{t_{1}} ^{t_{2}} \\
-\int_{t_{1}}^{t_{2}}\left(4 p \theta_{0}+(q+2 t)\left(\theta_{0}+\theta_{\infty}\right)\right) d t
\end{gathered}
$$

Properties of action integral

- Assume the monodromy data is parametrized by coordinates $\left\{m_{1}, m_{2}, \theta_{0}, \theta_{\infty}\right\}$.
- The action integral is better then tau function, because

$$
\begin{aligned}
& \frac{\partial S}{\partial m_{1}}\left(t_{1}, t_{2}\right)=\int_{t_{1}}^{t_{2}}\left(\frac{\partial p}{\partial m_{1}}\right. q^{\prime} \\
&\left.+p \frac{\partial q^{\prime}}{\partial m_{1}}-\frac{\partial H}{\partial p} \frac{\partial p}{\partial m_{1}}-\frac{\partial H}{\partial q} \frac{\partial q}{\partial m_{1}}\right) d t \\
&=\left.p \frac{\partial q}{\partial m_{1}}\right|_{t_{1}} ^{t_{2}}
\end{aligned}
$$

Properties of action integral

- Similarly, following the idea of Bothner (2018), we have

$$
\begin{gathered}
\frac{\partial S}{\partial \theta_{0}}\left(t_{1}, t_{2}\right)=\left.p \frac{\partial q}{\partial \theta_{0}}\right|_{t_{1}} ^{t_{2}}-\int_{t_{1}}^{t_{2}}(4 p+q+2 t) d t \\
\frac{\partial S}{\partial \theta_{\infty}}\left(t_{1}, t_{2}\right)=\left.p \frac{\partial q}{\partial \theta_{\infty}}\right|_{t_{1}} ^{t_{2}}-\int_{t_{1}}^{t_{2}}(q+2 t) d t .
\end{gathered}
$$

Relation to action integral

Main result

$$
\begin{aligned}
\ln \tau_{J M U}\left(t_{1}, t_{2}\right) & =S\left(t_{1}, t_{2}\right)+\theta_{0} \frac{\partial S}{\partial \theta_{0}}\left(t_{1}, t_{2}\right)+\theta_{\infty} \frac{\partial S}{\partial \theta_{\infty}}\left(t_{1}, t_{2}\right) \\
& +\left.\frac{1}{2}(H t-p q)\right|_{t_{1}} ^{t_{2}}-\left.\theta_{0} p \frac{\partial q}{\partial \theta_{0}}\right|_{t_{1}} ^{t_{2}}-\left.\theta_{\infty} p \frac{\partial q}{\partial \theta_{\infty}}\right|_{t_{1}} ^{t_{2}} \\
S\left(t_{1}, t_{2}\right) & =\left.\int_{\left(m_{1}^{\left.(0), m_{2}^{(0)}\right)}\right.}^{\left(m_{1}, m_{2}\right)} p \frac{\partial q}{\partial m_{1}}\right|_{t_{1}} ^{t_{2}} d m_{1}+\left.p \frac{\partial q}{\partial m_{2}}\right|_{t_{1}} ^{t_{2}} d m_{2}
\end{aligned}
$$

- That formula is the good tool for computing connection constant up to numerical constant. Finding numerical constant is still complicated problem.

General case

- In the general case we have (see Its, Lisovyy, P.(2018)).

$$
\begin{gathered}
\ln \tau_{J M U}\left(t^{(\overrightarrow{1})}, t^{(\overrightarrow{2})}\right) \\
=\int_{t^{(\overrightarrow{1})}}^{t^{(\overrightarrow{2})}}-\sum_{k=1}^{L} \sum_{a_{\nu}} \operatorname{res}_{z=a_{\nu}} \operatorname{Tr}\left(\left(G_{\nu}(z)\right)^{-1} \frac{d G_{\nu}(z)}{d z} \frac{d \Theta_{\nu}(z)}{d t_{k}}\right) d t_{k} \\
=\left.\int_{\vec{m}}^{\vec{m}_{0}} \sum_{k=1}^{M} \sum_{a_{\nu}} \operatorname{res}_{z=a_{\nu}} \operatorname{Tr}\left(A(z) \frac{\partial G_{\nu}}{\partial m_{k}}(z) G_{\nu}(z)^{-1}\right)\right|_{t^{(\overrightarrow{1})}} ^{t^{(\overrightarrow{2})}} d m_{k} .
\end{gathered}
$$

