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Painlevé equations

The Painlevé equations was written first time by Painlevé
(1900) and Gambier (1910) during their studies of ODEs,
whose solution’s branching points are independent on initial
conditions.

For example the equation Painlevé-IV is given by

qtt =
q2t
2q

+
3

2
q3 + 4tq2 + 2(t2 − 2𝜃∞ + 1)q − 8𝜃20

q
. (1)

This equation is equivalent to the Hamiltonian system with
Hamiltonian

H = 2p2q + p(q2 + 2qt + 4𝜃0) + q(𝜃0 + 𝜃∞).



Normal form of the Hamiltonian.

Takasaki (2000) noticed that if we make change of variable
u(t) = 2e i

𝜋
4

√︀
q(it) we get the equation

utt =
3u5

64
+

t

2
u3 + (t2 − 2𝜃∞ + 1)u − 4𝜃20

u3
.

This equation is equivalent to the Hamiltonian system with
the Hamiltonian in the normal form

H =
p2

2
+ V (x , t),

with potential

V (x , t) = − x6

128
− t

8
x4 − (t2 − 2𝜃∞ + 1)

x2

2
− 16𝜃20

x2



Connection problem

The Riemann-Hilbert approach provides us with asymptotic
for solutions of Painlevé equations as t approaches infinity.
The asymptotic is parametrised by monodromy data.

The natural question is to study the asymptotic of tau
function when t1 and t2 approach infinity in different
directions in complex plane.

The connection problem consists in determining such
asymptotics.

Using the asymptotic for solutions of Painlevé equations we
can get the asymptotic for tau function up to the term
independent of t1, t2. To find this term is more complicated
problem.



Different results

Iorgov, Lisovyy, Tykhyy(2013), Its, Lisovyy, Tykhyy(2014),
Lisovyy, Nagoya, Roussillon(2018) got the conjectural results
for PVI, PIII, PV using the quasiperiodicity of the connection
constant and its interpretation as generating function for
canonical transformation.

Its, P.(2016), Lisovyy, Roussillon (2017), Its, Lisovyy, P.(2018)
got the results for PIII, PI, PVI, PII using the extension of
JMU form suggested by Bertola based on works by Malgrange.

Bothner, Its, P.(2017), Bothner (2018) got the results for PII,
PIII, PV using interpretation of extension of JMU in terms of
an action.

The main result of authors is relation with action for all
Painlevé equations and Schlesinger equation. In these slides
we consider Painlevé-IV case.



Lax pair

The Lax pair for Painlevé-IV case is given by (see Jimbo
Miwa, 1981)

dΨ

dz
= A(z)Ψ(z),

dΨ

dt
= B(z)Ψ(z)

A(z) = A1z + A0 +
A−1

z
, B(z) = B1z + B0

A0 =

(︂
t k

2(r−𝜃0−𝜃∞)
k −t

)︂
, A−1 =

1

z

(︃
−r + 𝜃0 −kq

2
2r(r−2𝜃0)

kq r − 𝜃0

)︃
,

A1 = B1 =

(︂
1 0
0 −1

)︂
, B0 =

(︂
0 k

2(r−𝜃0−𝜃∞)
k 0

)︂
.



The compatibility condition

The compatibility condition for the Lax pair has form

dA

dt
− dB

dz
+ [A,B] = 0.

It is equivalent to the system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dq

dt
= −4r + q2 + 2tq + 4𝜃0,

dr

dt
= −2

q
r2 +

(︂
−q +

4𝜃0
q

)︂
r + (𝜃0 + 𝜃∞)q,

dk

dt
= −k(q + 2t).

The function q(t) satisfies Painlevé-IV equation (1).



Local behavior of Ψ-function at infinity

The first equation of the Lax pair has irregular singularity of
Poincaré rank 2 at infinity.

We have the following formal solution at infinity

Ψ∞(z) = G∞(z)eΘ∞(z), Θ∞(z) = 𝜎3

(︂
z2

2
+ tz − 𝜃∞ ln z

)︂
,

G∞(z) =

(︂
I +

g1
z

+
g2
z2

+ O

(︂
1

z3

)︂)︂
, z → ∞

𝜎3 =

(︂
1 0
0 −1

)︂
.



Local behavior of Ψ-function at zero

The first equation of the Lax pair has regular singularity at
zero.

We have the following solution at zero

Ψ0(z) = G0(z)z𝜃0𝜎3 , G0(z) = P0 (I + O (z)) , z → 0,

P0 =
1

2
√
kq𝜃0

(︂
−kq −kq
2r 2r − 4𝜃0

)︂
a−

𝜎3
2 .

To satisfy the second equation of the Lax pair we need to have

da

dt
=

4𝜃0
q

a.



The Jimbo-Miwa-Ueno form

The Jimbo-Miwa-Ueno form is given by

𝜔JMU = − resz=∞ Tr

(︂(︁
G∞(z)

)︁−1 dG∞(z)

dz

dΘ∞(z)

dt

)︂
dt

= −Tr (g1𝜎3) dt

=

[︂
2

q
r2 −

(︂
q + 2t +

4𝜃0
q

)︂
r + (𝜃0 + 𝜃∞)(r + 2t)

]︂
dt

=

(︂
q2t
8q

− q3

8
− q2t

2
− qt2

2
− 2𝜃20

q
+ 𝜃∞q + 2𝜃∞t

)︂
dt

In general

𝜔JMU = −
L∑︁

k=1

∑︁
a𝜈

resz=a𝜈 Tr

(︂(︁
G𝜈(z)

)︁−1 dG𝜈(z)

dz

dΘ𝜈(z)

dtk

)︂
dtk



The isomonodromic tau function

The isomonodromic tau function is given by

ln 𝜏 JMU(t1, t2) =

t2∫︁
t1

𝜔JMU .

We have the relation

ln 𝜏 JMU(t1, t2) = ln 𝜏O(t1, t2) +

t2∫︁
t1

qdt + (𝜃0 + 𝜃∞)(t22 − t21 ).



Hamiltonian structure

We expect

𝜔JMU ≃ Hdt.

Unfortunately if we choose the Hamiltonian in such way, r and
q are not Darboux coordinates for Hamiltonian dynamics.

𝜔JMU =

[︂
2

q
r2 −

(︂
q + 2t +

4𝜃0
q

)︂
r + (𝜃0 + 𝜃∞)(r + 2t)

]︂
dt.

⎧⎪⎨⎪⎩
dq

dt
= −4r + q2 + 2tq + 4𝜃0,

dr

dt
= −2

q
r2 +

(︂
−q +

4𝜃0
q

)︂
r + (𝜃0 + 𝜃∞)q.



Hamiltonian structure

Hamiltonian structure for Painlevé equations was introduced
by Okamoto (1980). It was interpreted in terms of moment
map and Hamiltonian reduction in the dual loop algebra

s̃l2(R)
*

in the work by Harnad and Routhier(1995).

We want to study the Hamiltonian structure using the
extension of Jimbo-Miwa-Ueno form, following works of
Bertola (2010), Malgrange(1983), Its, Lisovyy, P.(2018).



Symplectic form

Consider the configuration space for Painlevé-IV Lax pair
consisting of coordinates

{q, r , k, a, 𝜃0, 𝜃∞}.

We denote by 𝛿 the differential in this space.

Following the work of Its, Lisovyy, P.(2018) consider the form

𝜔0 = resz=∞ Tr
(︁
A (z) 𝛿G∞ (z)G∞ (z)−1

)︁
+ resz=0 Tr

(︁
A (z) 𝛿G0 (z)G0 (z)−1

)︁
= Tr(A−1𝛿G0G

−1
0 −A1𝛿g2

+A1𝛿g1g1 − A0𝛿g1)



Symplectic form

In general this form is given by

𝜔0 =
∑︁
a𝜈

resz=a𝜈 Tr
(︁
A (z) 𝛿G𝜈 (z)G𝜈 (z)−1

)︁
.

In all examples considered the symplectic form for
Hamiltonian dynamics was given by

Ω0 = 𝛿𝜔0.

In case of Painlevé-IV we have

Ω0 = −1

q
𝛿r ∧ 𝛿q +

1

k
𝛿k ∧ 𝛿𝜃∞ +

1

a
𝛿a ∧ 𝛿𝜃0 −

1

q
𝛿q ∧ 𝛿𝜃0.



Darboux coordinates

We can choose Darboux coordinates as

p1 = − r

q
, q1 = q,

p2 = ln k = −
t∫︁

c1

(q + 2t)dt, q2 = 𝜃∞

p3 = ln a− ln q =

t∫︁
c2

4𝜃0
q

dt − ln q, q3 = 𝜃0.



Hamiltonian

Jimbo-Miwa-Ueno form in these coordinates take form

𝜔JMU =
(︀
2p21q1 + p1(q21 + 2q1t + 4q3) + (q1 + 2t)(q3 + q2)

)︀
dt

The deformation equations take form⎧⎪⎪⎪⎨⎪⎪⎪⎩
dq1
dt

= 4p1q1 + q21 + 2q1t + 4q3,
dp3
dt

= −4p1 − q1 − 2t,

dp1
dt

= −2p21 − 2p1q1 − 2p1t − q3 − q2,
dp2
dt

= −(q1 + 2t).

These equations become Hamiltonian system with
Hamiltonian given by the equation

𝜔JMU = Hdt



Counterexample

We can choose Darboux coordinates in different way

p̃1 = − r

q
+f (t), q1 = q,

p2 = ln k = −
t∫︁

c1

(q + 2t)dt, q2 = 𝜃∞

p3 = ln a− ln q =

t∫︁
c2

4𝜃0
q

dt − ln q, q3 = 𝜃0.



Counterexample

Jimbo-Miwa-Ueno form in these coordinates take form

𝜔JMU =
(︀
2(p̃1 − f )2q1 + (p̃1 − f )(q21 + 2q1t + 4q3) +(q1 + 2t)(q3 + q2)) dt

The deformation equations take form⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dq1
dt

= 4p̃1q1 − 4fq1 + q21 + 2q1t + 4q3,
dp3
dt

= −4p̃1 + 4f − q1 − 2t,

dp1
dt

= −2(p̃1 − f )2 − 2(p̃1 − f )(q1 + t) − q3 − q2 + f ′,

dp2
dt

= −(q1 + 2t).

These equations become Hamiltonian system with
Hamiltonian given by the equation

𝜔JMU = (H̃ − q1f
′)dt



Hamiltonian

We can ask, what Hamiltonian induce isomonodromic
deformation with respect to described symplectic structure.

Consider the form in the configuration space

𝛼 =
∑︁
a𝜈

resz=a𝜈 Tr

(︂
𝜕A (z)

𝜕t
𝛿G𝜈 (z)G𝜈 (z)−1

)︂

−
∑︁
a𝜈

resz=a𝜈 Tr

(︂
d (𝛿Θ𝜈(z))

dz
G𝜈 (z)−1𝜕G𝜈 (z)

𝜕t

)︂

Conjecture

The form 𝛼 is exact and the Hamiltonian is given by

𝛼 = 𝛿H.



Extension of Jimbo-Miwa-Ueno form

We consider the extended configuration space. For
Painlevé-IV it has coordinates

{t, q1, p1, q2, p2, q3, p3}

We denote by ”d” the differential in this space.

Following Its, Lisovyy, P.(2018) we consider the form

𝜔 = resz=∞ Tr
(︁
A (z) dG∞ (z)G∞ (z)−1

)︁
+ resz=0 Tr

(︁
A (z) dG0 (z)G0 (z)−1

)︁
= Tr(A−1dG0G

−1
0 −A1dg2

+A1dg1g1 − A0dg1).



Extension of Jimbo-Miwa-Ueno form

In general this form is given by

𝜔 =
∑︁
a𝜈

resz=a𝜈 Tr
(︁
A (z) dG𝜈 (z)G𝜈 (z)−1

)︁
.

Using the first choice of Darboux coordinates and Hamiltonian
we can rewrite it for Painlevé-IV case as

𝜔 = p1dq1 + p2dq2 + p3dq3 − Hdt

+ d

(︂
Ht

2
− p1q1

2
− p2q2 − p3q3 +

q23
2

− q3
2

− q22
2

+
q2
2

)︂
(2)



Relation to action integral

Let’s return to the notations in terms of Painlevé-IV equation

q1 = q, p1 =
1

4q

(︀
q′ − q2 − 2qt − 4𝜃0

)︀
,

q2 = 𝜃∞, p2 = −
t∫︁

c1

qdt + c21 − t2,

q3 = 𝜃0, p3 =

t∫︁
c2

4𝜃0
q

dt − ln q,

H = 2p2q + p(q2 + 2qt + 4𝜃0) + (q + 2t)(𝜃0 + 𝜃∞).

Writing the ”dt” part of the formula (2) we get the identity

H = pq′ − H +
1

2
(Ht − pq)′ − 4p𝜃0 − (q + 2t)(𝜃0 + 𝜃∞)



Relation to action integral

We introduce the action integral

S(t1, t2) =

t2∫︁
t1

(pq′ − H)dt.

We have the following formula as the result of the identity
above

ln 𝜏JMU(t1, t2) = S(t1, t2) +
1

2
(Ht − pq)

⃒⃒⃒⃒t2
t1

−
t2∫︁

t1

(4p𝜃0 + (q + 2t)(𝜃0 + 𝜃∞))dt.



Properties of action integral

Assume the monodromy data is parametrized by coordinates
{m1,m2, 𝜃0, 𝜃∞}.

The action integral is better then tau function, because

𝜕S

𝜕m1
(t1, t2) =

t2∫︁
t1

(︂
𝜕p

𝜕m1
q′ + p

𝜕q′

𝜕m1
− 𝜕H

𝜕p

𝜕p

𝜕m1
− 𝜕H

𝜕q

𝜕q

𝜕m1

)︂
dt

= p
𝜕q

𝜕m1

⃒⃒⃒⃒t2
t1

.



Properties of action integral

Similarly, following the idea of Bothner (2018), we have

𝜕S

𝜕𝜃0
(t1, t2) = p

𝜕q

𝜕𝜃0

⃒⃒⃒⃒t2
t1

−
t2∫︁

t1

(4p + q + 2t)dt,

𝜕S

𝜕𝜃∞
(t1, t2) = p

𝜕q

𝜕𝜃∞

⃒⃒⃒⃒t2
t1

−
t2∫︁

t1

(q + 2t)dt.



Relation to action integral

Main result

ln 𝜏JMU(t1, t2) = S(t1, t2) + 𝜃0
𝜕S

𝜕𝜃0
(t1, t2) + 𝜃∞

𝜕S

𝜕𝜃∞
(t1, t2)

+
1

2
(Ht − pq)

⃒⃒⃒⃒t2
t1

− 𝜃0p
𝜕q

𝜕𝜃0

⃒⃒⃒⃒t2
t1

− 𝜃∞p
𝜕q

𝜕𝜃∞

⃒⃒⃒⃒t2
t1

.

S(t1, t2) =

(m1,m2)∫︁
(m

(0)
1 ,m

(0)
2 )

p
𝜕q

𝜕m1

⃒⃒⃒⃒t2
t1

dm1 + p
𝜕q

𝜕m2

⃒⃒⃒⃒t2
t1

dm2.

That formula is the good tool for computing connection
constant up to numerical constant. Finding numerical
constant is still complicated problem.



General case

In the general case we have (see Its, Lisovyy, P.(2018)).

ln 𝜏JMU( ⃗t(1), ⃗t(2))

=

⃗t(2)∫︁
⃗t(1)

−
L∑︁

k=1

∑︁
a𝜈

resz=a𝜈 Tr

(︂(︁
G𝜈(z)

)︁−1 dG𝜈(z)

dz

dΘ𝜈(z)

dtk

)︂
dtk

=

m⃗0∫︁
m⃗

M∑︁
k=1

∑︁
a𝜈

resz=a𝜈 Tr

(︂
A (z)

𝜕G𝜈

𝜕mk
(z)G𝜈 (z)−1

)︂⃒⃒⃒⃒
⃒
⃗t(2)

⃗t(1)

dmk .


