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Lax pair

Consider Flaschka-Newell Lax pair for Painlevé-1l equation
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A(z) = —i42°%03 — 4qzos — quioq — itos — i2q°03,
U(z) = —izo3 — qoo.



Painlevé-1l equation
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Riemann-Hilbert problem
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Monodromy data

We make assumption on the monodromy data
arg(l — s183) € (—m, m), nez,

arg(iosy) € <—g, g) , o=sgnR(is) ==+1, neZ,.



Asymptotics of Painlevé function

Function g(t) exhibits the following behaviour
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Connection formulae
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s
Hamiltonian formulation

Introduce Hamiltonian

2
p 2 4
H="% -t - q¢"
Lt —d

p = 2q; plays role of the momentum, q plays role of the coordinate.

do_ oM

e op S qu = tq +2q°.
dp _ _OH

dt  0q’

Introduce tau-function

t

InT(t):/H(y)dy

to




Asymptotics of tau-function

Plugging asymptotics of g(t) in formula for 7(t) we get

C_e 3= ( t)_f“ as t = —oo,
T(t) = 2nf 5 3.2 1
+220e3 t 2”78 ast — +oo.
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Problem: Determine C—+



Extension of differential form

We want to extend the form
Hdt = (q? —qg*— tq2) dt,

on variables {s1,s;} in such a way, that it remains closed.



Extension of differential form

We want to extend the form
Hdt = (qf —qg*— tq2) dt,

on variables {s1,s;} in such a way, that it remains closed.
B. Malgrange(1983) and M. Bertola(2010) provide the following

construction
wo = (qf —qg* - tq2) dt
+= (2q¢9s, — 40°tqs, — qqts, + 2tqeqes, — 2qt2qs,) dst

+ = (29:qs, — 44°tqs, — qqss, + 2tqeqrs, — 2qt2qs,) ds,.
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Closedness

We have

dwo = (Ps,Gs; — Ps,Gs,)ds2 A dsy = dp A dg,

This is symplectic form for Hamiltonian dynamics.
From Painlevé-1l equation it follows that

d
E(Pszqa - pslqsz) = 05

and hence we can observe that

dwo = lim dw = 4ida_ A\ day = 4iv/2dby A db_.

It means that (a4, a-) and (b4, b_) play role of canonical
coordinates at +o0.



The result of previous observations is that the form
w = wo + 4ia;da_ is closed. We can define

In(t, 51, 5) = /w J

This definition is unique up to closed differential in {s1,s}. It does

. C
not affect on our calculation of C—Jr



Asymptotics of form w
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Preliminary answer

Ct v v 5 )
In (?) =~ S+ uP 44 [ aida +V2bidb +c.

This is essentially generating function for canonical transformation
(ay,a-) — (by, b_). Introduce new variables

(14 s15)7 L =e™,
-1 _ _imm
s;  =e".

We can express the answer in terms of Barnes-G function.



Answer

Theorem
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Numeric constant

Consider Hastings-Mcleod solution gm(x), corresponding to the
monodromy data

51:—i, 52:0, S3=i.

2mi

Then gum(t) =e3 qHM(e% t) will correspond to monodromy
data

53 = —i, 51 = 0, Sy = —I.
It satisfies our assumptions on the monodromy data. So to find

) e ) )
numerical constant in ral we need to find the numerical constant

for asymptotics of tau-function of gm(t), which is possible to do
using Airy determinant representation.



Relation to classical action.

We can rewrite form wq in the following compact form
2 4 2
woz(qt—q — tq )dt

2
+3 (29:95 — 4G°tqs, — qQis, + 2t:Ges, — 2G> s, ) dsy

2
+3 (29:9s, — 4G°tqs, — QQts, + 2tqrGrs, — 2qt2Gs, ) dso

= pdq — Hdt + d(%Ht — %pq).

This formula says that form Hdt coincide with the form of classical
action up to a complete differential.

2 1
Hdt = pgedt — Hdt + (gHt _ gpq) dt.
t



Full asymptotic expansion

Consider 5

o(t) = 7(t)Ee e 2 S o Ay
Then we conjecture that

To(t) =D Alp+k,t)e™k  t— —oc
keZ
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where B(u, t) admits the asymptotic expansion

B(p, t) ~ 14> Bi(u)(—



Full asymptotic expansion

To(t):XZ C(V—2k,t)ei7rpk, t — +oo
keZ
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where D(v, t) admits the asymptotic expansion,

D(v,t) ~ 1+ > Di(u)t ™.



Quasiperiodicity

Taking into account the work of
Baik,Buckingham,DiFranco,lts(2009) we get
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We can check, that

x(u+1,1m) =e ™x(u,m), and x(v+2,p)=e""x(v,p)
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