Connection problem for Painlevé tau functions

Andrei Prokhorov

Indiana University-Purdue University Indianapolis

May 3, 2019

Content

Painlevé equations

- 1 Painlevé equations
 - Qualitative description using equation of motion
- 2 Tau function
 - Phase transition in Ising model
 - Review and recent results
- 3 Connection problem for Painlevé-III(D8) tau function.
 - Description of solutions
 - Relation to action
- 4 Isomonodromic deformations
 - Monodromy dependence of tau function
 - Symplectic structure
 - Hamiltonian structure

Painlevé equations

Painlevé equations

Painlevé (1902), Gambier (1910)

$$\frac{d^2u}{dx^2} = 6u^2 + x,\tag{PI}$$

$$\frac{d^2u}{dv^2} = 2u^3 + xu + \alpha,\tag{PII}$$

$$\frac{d^2u}{dx^2} = \frac{1}{u} \left(\frac{du}{dx}\right)^2 - \frac{1}{x} \left(\frac{du}{dx}\right) + \frac{\alpha u^2}{x} + \frac{\beta}{x} + \gamma u^3 + \frac{\delta}{u},\tag{PIII}$$

$$\frac{d^2u}{dx^2} = \frac{1}{2u} \left(\frac{du}{dx}\right)^2 + \frac{3}{2}u^3 + 4xu^2 + 2(x^2 - \alpha)u + \frac{\beta}{u},\tag{PIV}$$

$$\frac{d^2u}{dx^2} = \left(\frac{1}{2u} + \frac{1}{u-1}\right) \left(\frac{du}{dx}\right)^2 - \frac{1}{x} \left(\frac{du}{dx}\right) + \frac{(u-1)^2}{x^2} \left(\alpha u + \frac{\beta}{u}\right) + \frac{\gamma u}{x} + \frac{\delta u(u+1)}{u-1}, \tag{PV}$$

$$\begin{aligned} \frac{d^2u}{dx^2} &= \frac{1}{2} \left(\frac{1}{u} + \frac{1}{u-1} + \frac{1}{u-x} \right) \left(\frac{du}{dx} \right)^2 - \left(\frac{1}{x} + \frac{1}{x-1} + \frac{1}{u-x} \right) \frac{du}{dx} \\ &+ \frac{u(u-1)(u-x)}{x^2(x-1)^2} \left(\alpha + \frac{\beta x}{u^2} + \frac{\gamma(x-1)}{(u-1)^2} + \delta \frac{x(x-1)}{(u-x)^2} \right), \end{aligned}$$

$$\gamma \delta \neq 0$$
,
 $\gamma = 0$, $\alpha \delta \neq 0$ or $\delta = 0$, $\beta \gamma \neq 0$,
 $\gamma = \delta = 0$, $\alpha \beta \neq 0$,
 $\delta \neq 0$,
 $\delta = 0$, $\gamma \neq 0$.

(PIII(D6))

(PIII(D7))

(FIII(D0))

(PIII(D8))

(PV)

(PV-deg)

Properties

Equation of sort

$$\frac{d^2u}{dx^2} = F\left(u, \frac{du}{dx}, x\right)$$

with right hand side rational in u, $\frac{du}{dx}$ and x.

- Painlevé property (Hinkkanen, Laine (1999), (2001), (2004)):
 - Painlevé I, II, IV meromorphic solutions
 - Painlevé III, V meromorphic solutions in variable $t = \ln x$
 - Painlevé VI meromorphic solution on the covering of $\mathbb{C}\setminus\{0,1\}$
- General solutions are transcendental (Umemura, Watanabe (1988), (1995), (1997), (1998), (1999))
- Families of rational, algebraic and special functions solutions. (see https://dlmf.nist.gov)
- Isomonodromic deformations of linear ODEs with rational coefficients (Jimbo, Miwa, (1980))
- Backlund transformations (see https://dlmf.nist.gov)
- Hamiltonian systems (Okamoto (1980))

Painlevé equations

- gap probabilities in random matrix theory (Tracy, Widom, (1994))
- asymptotics of nonlinear PDEs (Ablowitz-Segur, (1977))
- Ising model (Barouch, Mccoy, Tracy, Wu (1976))
- conformal field theory (Gamayun, lorgov, Lisovyy, (2012), (2013))
- quantum cohomology (Dubrovin (1996), Guzzetti (2001))
- diffusion processes (Bloomendal, Virag (2013))

Okamoto (1980)

$$H = \frac{w^2}{2} - 2u^3 - xu, (PI)$$

$$H = \frac{w^2}{2} - \frac{u^4}{2} - \frac{u^2x}{2} - u\alpha, \tag{PII}$$

$$H = \frac{w^2 u^2}{x} - \frac{\alpha u}{2} + \frac{\beta}{2u} - \frac{\gamma x u^2}{4} + \frac{\delta x}{4u^2},$$
 (PIII)

$$H = 2w^{2}u - \frac{u^{3}}{8} - \frac{xu^{2}}{2} - \frac{u}{2}(x^{2} - \alpha) + \frac{\beta}{4u},$$
 (PIV)

$$H = \frac{w^2(u-1)^2 u}{x} - \frac{\alpha u}{2x} + \frac{\beta}{2ux} + \frac{\gamma}{2(u-1)} + \frac{\delta ux}{2(u-1)^2},$$
 (PV)

$$H = \frac{w^2 u(u-1)(u-x)}{x(x-1)} - \frac{\alpha u}{2x(x-1)} + \frac{\beta}{2u(x-1)} + \frac{\gamma}{2x(u-1)} + \frac{\delta}{2(u-x)}.$$
(PVI)

Hamiltonians: canonical form

$$p = w, \quad q = u, \quad t = x, \tag{PI}$$

$$p = w, \quad q = u, \quad t = x,$$
 (PII)

$$p = 2wu, \quad q = \ln u, \quad t = \ln x, \quad x > 0 \tag{PIII}$$

$$p = 2w\sqrt{u}, \quad q = \sqrt{u}, \quad t = x,$$
 (PIV)

$$p = 2w(u-1)\sqrt{u}, \quad q = \ln\left(\frac{\sqrt{u}-1}{\sqrt{u}+1}\right), \quad t = \ln x, \quad x > 0 \tag{PV}$$

$$q = \int_{0}^{u} \frac{ds}{\sqrt{s(s-1)(s-x)}}, \quad u = x \cdot \operatorname{sn}^{2}\left(\frac{q}{2}, \sqrt{x}\right)$$

$$t = \ln\left(\frac{1-x}{x}\right), \quad 0 < x < 1. \tag{PVI}$$

May 3, 2019

Hamiltonians: canonical form

$$H = \frac{p^2}{2} - 2q^3 - tq, (PI)$$

$$H = \frac{p^2}{2} - \frac{q^4}{2} - \frac{q^2t}{2} - q\alpha, \tag{PII}$$

$$H = \frac{p^2}{2} - \alpha e^{t+q} + \beta e^{t-q} - \frac{\gamma}{2} e^{2t+2q} + \frac{\delta}{2} e^{2t-2q},$$
 (PIII)

$$H = \frac{p^2}{2} - \frac{q^6}{8} - \frac{q^4t}{2} - \frac{q^2}{2}(t^2 - \alpha) + \frac{\beta}{4q^2},\tag{PIV}$$

$$H = \frac{p^2}{2} - \frac{\alpha}{\sinh^2 \frac{q}{2}} - \frac{\beta}{\cosh^2 \frac{q}{2}} + \frac{\gamma}{2} e^t \cosh q + \frac{\delta}{8} e^{2t} \cosh 2q, \tag{PV}$$

$$H = \frac{p^2}{2} + \frac{1}{8}q^2k^2(k^2 - 1) - \alpha k^2 \operatorname{sn}^2\left(\frac{q}{2}, k\right) + \frac{\beta}{\operatorname{sn}^2\left(\frac{q}{2}, k\right)} - \frac{\gamma(k^2 - 1)}{\operatorname{dn}^2\left(\frac{q}{2}, k\right)} - \frac{(2\delta - 1)(k^2 - 1)}{2\operatorname{cn}^2\left(\frac{q}{2}, k\right)},$$

where
$$k = \frac{1}{\sqrt{1 + e^t}}$$
 (PVI)

Equations of motion

$$\frac{d^2q}{dt^2} = 6q^2 + t \tag{PI(F)}$$

$$\frac{d^2q}{dt^2} = 2q^3 + qt + \alpha, (PII(F))$$

$$\frac{d^2q}{dt^2} = \alpha e^{t+q} + \beta e^{t-q} + \gamma e^{2t+2q} + \delta e^{2t-2q}, \tag{PIII(F)}$$

$$\frac{d^2q}{dt^2} = \frac{3q^5}{4} + 2tq^3 + q(t^2 - \alpha) + \frac{\beta}{2q^3},$$
 (PIV(F))

$$\frac{d^2q}{dt^2} = -\frac{\alpha \cosh(\frac{q}{2})}{\sinh^3(\frac{q}{2})} - \frac{\beta \sinh(\frac{q}{2})}{\cosh^3(\frac{q}{2})} - \frac{\gamma}{2}e^t \sinh(q) - \frac{\delta}{4}e^{2t} \sinh(2q), \tag{PV(F)}$$

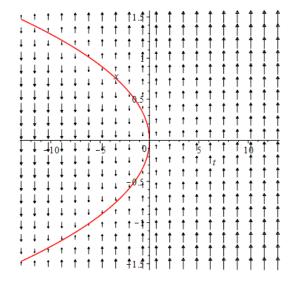
$$\frac{d^2q}{dt^2} = -\frac{q}{4}k^2(k^2 - 1) + \alpha k^2 \operatorname{sn}\left(\frac{q}{2}, k\right) \operatorname{cn}\left(\frac{q}{2}, k\right) \operatorname{dn}\left(\frac{q}{2}, k\right) + \frac{\beta \operatorname{cn}\left(\frac{q}{2}, k\right) \operatorname{dn}\left(\frac{q}{2}, k\right)}{\operatorname{sn}^3\left(\frac{q}{2}, k\right)}$$

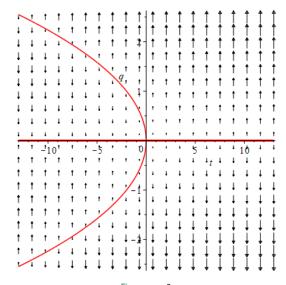
$$+\frac{\gamma k^2 (k^2-1) \operatorname{sn}\left(\frac{q}{2},k\right) \operatorname{cn}\left(\frac{q}{2},k\right)}{\operatorname{dn}^3\left(\frac{q}{2},k\right)}+\frac{(2\delta-1) (k^2-1) \operatorname{sn}\left(\frac{q}{2},k\right) \operatorname{dn}\left(\frac{q}{2},k\right)}{2 \operatorname{cn}^3\left(\frac{q}{2},k\right)}, \quad \text{(PVI(F)}$$

where
$$k = \frac{1}{\sqrt{1 + e^t}}$$

Painlevé I: force field

Painlevé equations





Painlevé equations

Painlevé II: asymptotics of real solutions

The real nonsingular solutions are parametrized by number $s_1 \in i\mathbb{R}, \quad |s_1| \leq 1$. (Kapaev, 1992) The asymptotic at $+\infty$ is given by

$$q(t) = \frac{is_1}{2\sqrt{\pi}t^{\frac{1}{4}}}e^{-\frac{2}{3}t^{\frac{3}{2}}}\left(1 + O\left(\frac{1}{t^{\frac{3}{4}}}\right)\right), \quad t \to +\infty.$$

If $|s_1| < 1$, then the asymptotics at $-\infty$ is given by Ablowitz-Segur solution

$$q(t) = \frac{d}{(-t)^{\frac{1}{4}}} \sin\left(\frac{2}{3}(-t)^{\frac{3}{2}} + \frac{3}{4}d^2\ln(-t) + \phi\right) + O\left(\frac{1}{|t|}\right), \quad t \to -\infty,$$

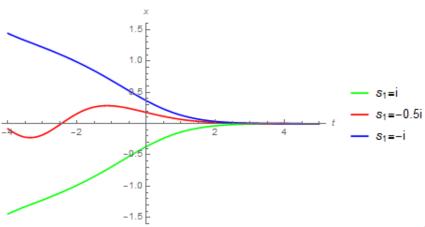
where

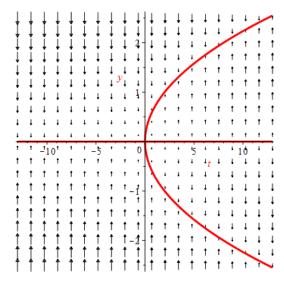
$$d = \sqrt{\frac{1}{\pi}\ln\left(1-|s_1|^2\right)}, \quad \phi = -\frac{\pi}{4} + \frac{3}{2}d^2\ln 2 - \arg\left(\Gamma\left(i\frac{d^2}{2}\right)\right) - \arg(s_1).$$

If $s_1 = \pm i$, then the asymptotics at $-\infty$ is given by Hastings-Mcleod solution

$$q(t)=is_1\sqrt{\frac{-t}{2}}+O(t^{-\frac{5}{2}}),\quad t\to -\infty.$$

Painlevé II: real solutions





All pure imaginary solutions q = iy are parametrized by number $s_1 \in \mathbb{C}$. (Its, Kapaev, 1988) The asymptotic at $-\infty$ is given by

$$\begin{split} y(t) &= \frac{\textit{d}}{(-t)^{\frac{1}{4}}} \sin\left(\frac{2}{3}(-t)^{\frac{3}{2}} + \frac{3}{4}\textit{d}^2 \ln(-t) + \phi\right) + O\left(\frac{1}{|t|}\right), \quad t \to -\infty, \\ \textit{d} &= \sqrt{\frac{1}{\pi} \ln\left(1 + |s_1|^2\right)}, \quad \phi = -\frac{\pi}{4} + \frac{3}{2}\textit{d}^2 \ln 2 - \arg\left(\Gamma\left(i\frac{\textit{d}^2}{2}\right)\right) - \arg(s_1). \end{split}$$

If $\operatorname{Im} s_1 \neq 0$ then the asymptotic at $+\infty$ is given by

$$\begin{split} y(t) &= \sigma \sqrt{\frac{t}{2}} + \frac{\sigma \rho}{(2t)^{\frac{1}{4}}} \cos \left(\frac{2\sqrt{2}}{3} t^{\frac{3}{2}} - \frac{3}{2} \rho^2 \ln x + \theta \right) + O\left(\frac{1}{t}\right), \quad t \to +\infty. \\ \rho &= \sqrt{\frac{1}{\pi} \ln \left(\frac{1 + |s_1|^2}{2|\mathrm{Im}(s_1)|} \right)}, \quad \sigma = -\mathrm{sign}(\mathrm{Im}(s_1)), \\ \theta &= -\frac{3\pi}{4} - \frac{7}{2} \rho^2 \ln 2 + \mathrm{arg}(\Gamma(i\rho^2)) + \mathrm{arg}(1 + s_1^2). \end{split}$$

If $\operatorname{Im} s_1 = 0$ the asymptotic at $+\infty$ is given by the Ablowitz-Segur solution,

$$y(t) = \frac{s_1}{2\sqrt{\pi}t^{\frac{1}{4}}}e^{-\frac{2}{3}t^{\frac{3}{2}}}\left(1 + O\left(\frac{1}{t^{\frac{3}{4}}}\right)\right), \quad t \to +\infty.$$

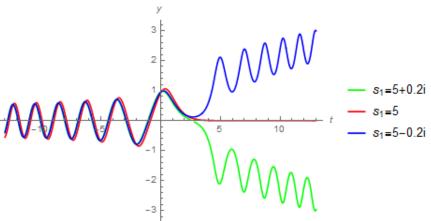


Figure: V. Vasnetsov: Knight at the crossroads.

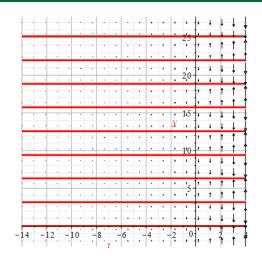


Figure:
$$q=-iy$$
, $\alpha=-\frac{1}{8}$, $\beta=\frac{1}{8}$, $\gamma=\delta=0$, $F(y,t)=-\frac{1}{4}e^t\sin(y)$

Painlevé III(D8): asymptotics of imaginary solutions

All pure imaginary solutions q = -iy are parametrized by two imaginary numbers $a, b \in \mathbb{R}$. (Its, Novokshenov, 1988) The asymptotic at $-\infty$ is given by

$$y(t) = iat + ib + O\left(e^{1-|\operatorname{Re} a|}\right), \quad t \to -\infty,$$

Introduce

$$\zeta = \frac{1}{2} + \frac{1}{2\pi} \left(ib + 6ia \ln 2 \right) + \frac{i}{\pi} \ln \frac{\Gamma\left(\frac{1}{2} + \frac{a}{2}\right)}{\Gamma\left(\frac{1}{2} - \frac{a}{2}\right)}.$$

If $\zeta \notin \mathbb{Z}$ then the asymptotic at $+\infty$ is given by

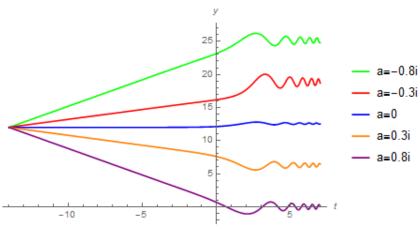
$$\begin{split} y(t) &= 2\pi k + 4\sqrt{-\nu}e^{-\frac{t}{4}}\cos\left(\exp\left(\frac{t}{2}\right) + \frac{\nu t}{2} + \phi\right) + O\left(\exp\left(\frac{3t}{4}(2|\operatorname{Im}\nu| - 1)\right)\right), \\ e^{\pi\nu} &= \frac{\sin 2\pi\eta}{\sin 2\pi\sigma}, \quad k = \lfloor \operatorname{Re}\left(\zeta\right)\rfloor, \quad \sigma = \frac{1}{4} - \frac{a}{4}, \quad \operatorname{Re}\eta = \frac{1}{2}\left\{\operatorname{Re}\left(\zeta\right)\right\}, \quad \operatorname{Im}\eta = \operatorname{Im}\left(\frac{\zeta}{2}\right), \\ \phi &= 2\nu \ln 2 + \frac{3\pi}{4} - \operatorname{arg}(\Gamma(i\nu)) - \operatorname{arg}p, \quad p = -i\frac{\sin 2\pi(\sigma + \eta)}{\sin 2\pi\eta} \end{split}$$

Painlevé III(D8): asymptotics of imaginary solutions

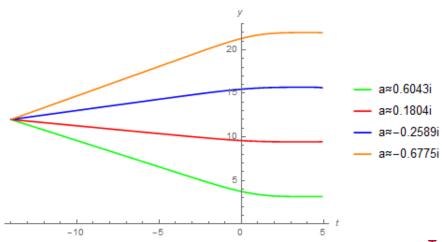
If $\zeta \in \mathbb{Z}$ the asymptotic at $+\infty$ is given by

$$y(t) = \pi + 2\pi k - 2\sinh\left(rac{\pi ia}{2}
ight)\sqrt{rac{2}{\pi}}\exp\left(-rac{t}{4}
ight)\exp\left(-e^{rac{t}{2}}
ight)(1+o(1)), \quad t o +\infty.$$
 $k = \lfloor \operatorname{Re}\left(\zeta
ight)
floor$

Painlevé III(D8): imaginary solutions attaining stable trajectories



Painlevé III(D8): imaginary solutions attaining unstable trajectories



Painlevé III(D6): force field

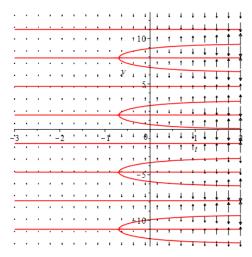
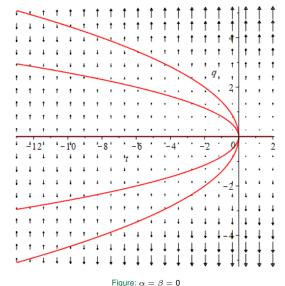


Figure: q = iy, $\alpha = -\frac{i}{2}$, $\beta = -\frac{i}{2}$, $\gamma = \frac{1}{2}$, $\delta = -\frac{1}{2}$, $F(y, t) = e^t \cos(y) - e^{2t} \sin(2y)$

Painlevé equations



26 / 64

IUPUI

Painlevé V: force field

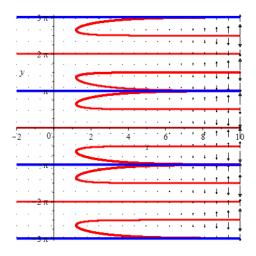


Figure:
$$q = iy$$
, $\alpha = 0$, $\beta = -1$, $\gamma = -2$, $\delta = -2$, $F(y,t) = -\frac{\sin(\frac{y}{2})}{\cos^3(\frac{y}{2})} - e^t \sin(y) - e^{2t} \sin(2y)$

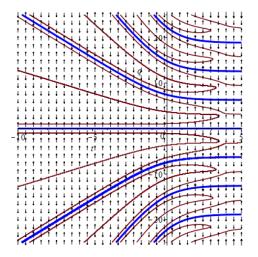


Figure: $\alpha = -20$, $\beta = 1$, $\gamma = 20$, $\delta = 0$

Tau function

Tau function

Definition of tau function

$$\tau(t_1, t_2) = \exp\left(\int_{t_1}^{t_2} H(t)dt\right)$$

Connection problem for tau function

Compute the **the constant term** in the asymptotic of tau function as t_1 and t_2 approach singularities of solution.

Painlevé equations

Phase transition in Ising model: notation

Tau function

The configuration σ represents the spin orientation at every point on the integer lattice.

$$\sigma: \mathbb{Z}^2 \to \{1, -1\}.$$

Energy of configuration σ restricted to $M \times N$ rectangle $\Lambda \in \mathbb{Z}^2$ is defined by the formula

$$E_{\Lambda}(\sigma) = -J \sum_{j,k \in \Lambda} (\sigma_{j,k} \sigma_{j,k+1} + \sigma_{j,k} \sigma_{j+1,k}), \quad J > 0.$$

Spin correlation function along the row is given by

$$\langle \sigma_{1,1}\sigma_{1,n+1}\rangle = \lim_{|\Lambda| \to \infty} \frac{\sum\limits_{\sigma} \sigma_{1,1}\sigma_{1,n+1}e^{-\frac{E_{\Lambda}(\sigma)}{kT}}}{\sum\limits_{\sigma} e^{-\frac{E_{\Lambda}(\sigma)}{kT}}}.$$

Introduce the parameter z

$$z = \tanh\left(\frac{J}{kT}\right)$$
.

The critical temperature T_c is described by the formula

$$z_{\rm c} = \sqrt{2} - 1$$
.

Phase transition in Ising model: correlation functions behavior

The spin correlations go through transition from order to disorder.

Tau function

000000000000

$$T < T_c : \langle \sigma_{1,1}\sigma_{1,n+1} \rangle = O(1), \quad n \to \infty,$$

$$T = T_c : \langle \sigma_{1,1}\sigma_{1,n+1} \rangle = O(n^{-\frac{1}{4}}), \quad n \to \infty,$$

$$T > T_c : \langle \sigma_{1,1}\sigma_{1,n+1} \rangle = O\left(\frac{e^{-cn}}{\sqrt{n}}\right), \quad n \to \infty.$$

Phase transition in Ising model: Painlevé-III(D8) equation.

Tau function

We introduce

$$t = \ln \left(\frac{n^2((z+1)^2-2)^2}{z(1-z^2)} \right).$$

Barouch, Mccoy, Tracy, Wu (1977) showed that

$$\lim_{\substack{T \xrightarrow{n \to \infty} \\ T \to T_c \pm 0}} n^{\frac{1}{4}} \langle \sigma_{1,1} \sigma_{1,n+1} \rangle = 2^{\frac{3}{8}} e^{\frac{t}{8}} \exp \left(- \int\limits_t^{+\infty} \left(\frac{H}{4} + \frac{e^t}{16} \right) dt \right) \left\{ \begin{array}{l} \sinh(\frac{q}{4}), \ T > T_c, \\ \cosh(\frac{q}{4}), \ T < T_c. \end{array} \right.$$

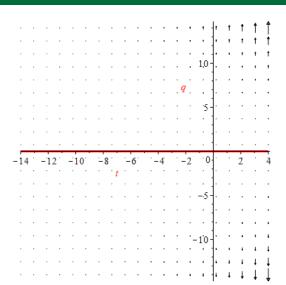
where the function q(t) solves PIII(F) equation with $\alpha = \frac{1}{8}$, $\beta = -\frac{1}{8}$, $\gamma = \delta = 0$.

$$\frac{d^2q}{dt^2} = \frac{1}{4}e^t \sinh q.$$

The Hamiltonian H is given by

$$H(p,q,t) = \frac{p^2}{2} - \frac{e^t \cosh(q)}{4}, \quad p = \frac{dq}{dt}.$$

Phase transition in Ising model: force field for Painlevé equation



Phase transition in Ising model: asymptotic of solution of Painlevé equation

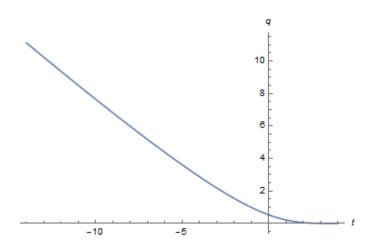
The asymptotic of solution q(t) appearing above is given by

Tau function

$$q(t)\simeq -t+4\ln(2)-2\ln(6\ln(2)-2\gamma-t),\quad t\to -\infty,$$
 $q(t)\simeq 2\sqrt{\frac{2}{\pi}}e^{-rac{t}{4}}e^{-e^{rac{t}{2}}},\quad t\to +\infty.$

where γ is the Euler's constant.

Phase transition in Ising model: graph of solution of Painlevé equation



Phase transition in Ising model: connection problem for tau function

Tracy (1991) solved the connection problem for tau function

Tau function

$$\exp\left(-\int_{t}^{+\infty} \left(\frac{H}{2} + \frac{e^t}{8}\right) dt\right) \simeq e^{\frac{t}{8}} A^{-3} e^{\frac{1}{4}} 2^{-\frac{1}{6}}, \quad t \to -\infty$$

where A is Glaisher-Kinkelin constant.

He approximated solution appearing above with the family

$$q(t) \simeq at - 6a\ln(2) + 2\ln\frac{\Gamma\left(\frac{1-a}{2}\right)}{\Gamma\left(\frac{1+a}{2}\right)}, \quad t \to -\infty,$$

$$q(t) = -2\sin\left(\frac{\pi a}{2}\right)\sqrt{\frac{2}{\pi}}\exp\left(-\frac{t}{4}\right)\exp\left(-e^{\frac{t}{2}}\right)(1+0(1)), \quad t \to +\infty.$$

with -1 < a < 0.

The tau function for this family has Fredholm determinant representation.

Other connection problems for tau function

- Painlevé-V-deg equation, Basor, Tracy, (1991)
- Gap probability at the bulk, Sine kernel Fredholm determinant, Painlevé-V equation, Deift, Its, Krasovsky, Zhou (2007)
- Gap probability at the soft edge, Airy kernel Fredholm determinant, Painlevé-II equation, Deift, Its, Krasovsky, (2008)
- Gap probability at the hard edge, Bessel kernel Fredholm determinant, Painlevé-III equation, Deift, Krasovsky, Vasilevska, (2010)

Painlevé equations

Review and recent results

Connection problem for tau function and conformal field theory

- Gamayun, Iorgov, Lisovyy (2012), (2013), Bershtein, Shchechkin(2015): Painlevé tau functions are Fourier transforms of conformal blocks.
- lorgov, Lisovyy Tykhyy (2013): Painlevé VI tau function connection problem
- Its, Lisovyy, Tykhyy (2014): Painlevé III (D8) tau function connection problem

Painlevé equations

Isomonodromic tau function: recent developments on connection problem

- Definition of isomonodromic tau function Jimbo, Miwa, Ueno (1981). For Painlevé equations it coincides with integral of Hamiltonian.
- Properties of isomonodromic tau function: analiticity, meaning of zeros: Miwa (1981), Malgrange (1982), Palmer (1999).
- Monodromy dependence based on work by Malgrange: Bertola (2010,2016)
- Application of Bertola-Malgrange construction for connection problem for tau function. Its localisation. Discovery of relation between tau function and the action: Its, Prokhorov (2016).
- Further development of localised Bertola-Malgrange construction. Application to connection problems: Its, Lisovyy, Prokhorov (2018)
- Relation between action and tau function for all Painlevé equations: Its, Prokhorov (2018)
- Use of relation between tau-function and action to solve connection problem for tau function: Bothner, Its, Prokhorov (2019)
- Improvement of relation between tau-function and action: Bothner, Warner (2019)
- Derivation of relation between tau-function and action based on quasihomogeneity of Hamiltonians: Prokhorov, to appear.

Connection problem for Painlevé-III(D8) tau function.

Description of solutions

We consider generic complex valued family of solutions of PIII(F) with

$$\alpha = -\frac{1}{8}, \quad \beta = \frac{1}{8}, \quad \gamma = \delta = 0$$

$$\frac{d^2q}{dt^2} = -\frac{1}{4}e^t \sinh q. \tag{1}$$

It is parametrised by numbers,

$$k \in \mathbb{Z}, \ \sigma, \eta \in \mathbb{C}: \ 0 < \operatorname{Re}\sigma < \frac{1}{2}, \ 0 < \operatorname{Re}\eta < \frac{1}{2}, \quad \left| \arg \frac{\sin 2\pi\eta}{\sin 2\pi\sigma} \right| < \frac{\pi}{2}$$
 (2)

We specify the following behavior at $t = -\infty$,

$$q(t) = at + b + O\left(e^{1-|\operatorname{Re} a|}\right), \quad t \to -\infty,$$

with

$$a = 1 - 4\sigma$$
, $b = \pi i - 2\pi i k - 4\pi i \eta - (2 - 8\sigma) \ln 8 - 2 \ln \frac{\Gamma(1 - 2\sigma)}{\Gamma(2\sigma)}$,

The behavior of the solution as $t \to +\infty$ was obtained in 1985 by Novokshenov. To describe it introduce parameter

$$\zeta = \frac{1}{2} + \frac{1}{2\pi} \left(ib + 6ia \ln 2 \right) + \frac{i}{\pi} \ln \frac{\Gamma\left(\frac{1}{2} + \frac{a}{2}\right)}{\Gamma\left(\frac{1}{2} - \frac{a}{2}\right)}.$$

We assume that $\zeta \notin \mathbb{Z}$. Then the large t behavior of q(t) is oscillatory, and it is given by the formulae,

$$\begin{split} q(t) &= c_{0,0}^{+} \exp\left(i \exp\left(\frac{t}{2}\right) + \frac{i\nu t}{2} - \frac{t}{4}\right) \left(1 + O\left(\exp\left(-\frac{t}{2}\right)\right)\right) \\ &+ c_{0,0}^{-} \exp\left(-i \exp\left(\frac{t}{2}\right) - \frac{i\nu t}{2} - \frac{t}{4}\right) \left(1 + O\left(\exp\left(-\frac{t}{2}\right)\right)\right) + \\ &- 2\pi i k + O\left(\exp\left(\frac{3t}{4}(2|\operatorname{Im}\nu| - 1)\right)\right), \quad t \to \infty, \end{split}$$

$$e^{\pi\nu} = \frac{\sin 2\pi\eta}{\sin 2\pi\sigma}, \quad c_{0,0}^{\pm} = ie^{\frac{\pi\nu}{2} \mp \frac{i\pi}{4}} 2^{1\pm 2i\nu} \frac{1}{\sqrt{2\pi}} \Gamma(1 \mp i\nu) \frac{\sin 2\pi(\sigma \mp \eta)}{\sin 2\pi\eta}, \quad \nu = \frac{1}{4} c_{0,0}^+ c_{0,0}^-$$

and $\Gamma(z)$ is Euler's Gamma-function. We denoted by $\{\ldots\}$ the fractional part.

Description of solutions

We will need more detailed asymptotics at $+\infty$

$$\begin{split} q(t) &\simeq \sum_{l \geq k \geq 0, \, \epsilon = \pm} c_{k,l}^{\epsilon} r^{\epsilon(2k+1)} \zeta^{2l+2k+1}. \\ r &= \exp\left(i \exp\left(\frac{t}{2}\right) + \frac{i\nu t}{2}\right), \quad \zeta = \exp\left(-\frac{t}{4}\right) \\ c_{0,1}^{\pm} &= \pm \frac{ic_{0,0}^{\pm}}{8} (6\nu^2 \pm 4i\nu - 1) \quad c_{1,0}^{\pm} = \frac{1}{48} (c_{0,0}^{\pm})^3 \end{split}$$

It can be justified using nonlinear steepest descent.

Asymptotic of tau function

We remind that tau function is given by

$$\ln \tau(t_1, t_2, \sigma, \eta) = \int_{t_1}^{t_2} H(t) dt,$$
 (3)

where the Hamiltonian is given by

$$H(p,q,t) = \frac{p^2}{2} + \frac{e^t \cosh(q)}{4}, \quad p = \frac{dq}{dt}.$$

Using the asymptotic of q(t) we arrive at the following asymptotic representation of the tau function as $t_1 \to -\infty$, $t_2 \to +\infty$

$$\ln \tau(t_1, t_2, \sigma, \eta) \simeq \frac{e^{t_2}}{4} + 4\nu e^{\frac{t_2}{2}} + \frac{\nu^2 t_2}{2} - \frac{a^2 t_1}{2} + \ln \Upsilon$$
 (4)

To solve connection problem means to evaluate constant term in the asymptotics, which we called Υ .

Relation between tau-function and action

We remind the formula for Hamiltonian

$$H = \frac{p^2}{2} - \alpha e^{t+q} + \beta e^{t-q}.$$

It is quasihomogeneous

$$H(\lambda p, q, t + 2 \ln \lambda) = \lambda^2 H(p, q, t).$$

Taking derivative with respect to λ and putting $\lambda = 1$ we get

$$p\frac{\partial H}{\partial p} + 2\frac{\partial H}{\partial t} = 2H.$$

We can rewrite it as

$$H = \left(p\frac{dq}{dt} - H\right) + 2\frac{dH}{dt}$$

or in other words

$$\ln \tau(t_1, t_2, \sigma, \eta) = 2H|_{t_1}^{t_2} + S(t_1, t_2, \sigma, \eta)$$

where

Andrei Prokhorov

$$S(t_1, t_2, \sigma, \eta) = \int_{t_1}^{t_2} \left(\rho \frac{dq}{dt} - H \right) dt$$

is the classical action.

Differential identity and alternative integral representation for classical action

Differentiating with respect to parameter ρ we get

$$\begin{split} \frac{\partial S}{\partial \rho} &= \int\limits_{t_1}^{2} \left(\frac{\partial p}{\partial \rho} \frac{dq}{dt} + p \frac{d}{dt} \left(\frac{\partial q}{\partial \rho} \right) - \frac{\partial H}{\partial p} \frac{\partial p}{\partial \rho} - \frac{\partial H}{\partial q} \frac{\partial q}{\partial \rho} \right) dt \\ &= p \frac{\partial q}{\partial \rho} \bigg|_{t_1}^{t_2} + \int\limits_{t_2}^{t_2} \left(\frac{\partial p}{\partial \rho} \frac{dq}{dt} - \frac{\partial q}{\partial \rho} \frac{dp}{dt} - \frac{\partial H}{\partial p} \frac{\partial p}{\partial \rho} - \frac{\partial H}{\partial q} \frac{\partial q}{\partial \rho} \right) dt = p \frac{\partial q}{\partial \rho} \bigg|_{t_1}^{t_2} \end{split}$$

Therefore we can write

$$S(t_1,t_2,\sigma,\eta) = S\left(t_1,t_2,rac{1}{4},rac{1}{4}
ight) + \int\limits_{\left(rac{1}{4},rac{1}{4}
ight)}^{\left(\sigma,\eta
ight)} \left(
horac{\partial q}{\partial\sigma}d\sigma +
horac{\partial q}{\partial\eta}d\eta
ight)igg|_{t_1}^{t_2},$$

We picked the reference point $\sigma = \eta = \frac{1}{4}$, which corresponds to solution $q(t) \equiv 0$. We have

$$S\left(t_1,t_2,\frac{1}{4},\frac{1}{4}\right)=\frac{1}{4}(e^{t_1}-e^{t_2}).$$

Integral representation for connection constant

As the result we have following formula

$$\ln \tau(t_1, t_2, \sigma, \eta) = 2H|_{t_1}^{t_2} + \frac{1}{4}(e^{t_1} - e^{t_2}) + \int_{\left(\frac{1}{4}, \frac{1}{4}\right)}^{\left(\sigma, \eta\right)} \left(\rho \frac{\partial q}{\partial \sigma} d\sigma + \rho \frac{\partial q}{\partial \eta} d\eta\right)\Big|_{t_1}^{t_2}.$$

Using the asymptotic of q(t) we obtain the following representation for connection constant Υ .

$$\ln \Upsilon = 2\nu^2 - a^2 - 2i\nu + \int_{\left(\frac{1}{a}, \frac{1}{a}\right)}^{(\sigma, \eta)} (ic_{0,0}^+ dc_{0,0}^- - adb).$$

Connection constant for Painlevé-III(D8) tau function

Skipping the computation of the integral we get the formula for connection constant

Theorem 1 (Its, Prokhorov, 2016)

Let σ and η be the "monodromy" parameters of the solution q(t) of Painlevé III(D8)(F) equation (1) satisfying the inequalities (2). Then the tau function (3) has the behavior (4) as $t_1 \to -\infty$, $t_2 \to +\infty$ with

$$\Upsilon = (2\pi)^{2i\nu} 2^{4\nu^2 + 48\sigma^2 - 24\sigma} e^{4\pi i (\eta^2 - 2\sigma\eta - \sigma^2 + 2\eta - \sigma)} \left(\frac{\Gamma(1 - 2\sigma)}{\Gamma(2\sigma)} \right)^2 \\
\left(\frac{G(1 + i\nu)G(1 + 2\sigma)G(1 - 2\sigma)\hat{G}(\sigma + \eta + \frac{1 - i\nu}{2})}{\hat{G}(\sigma + \eta + \frac{1 + i\nu}{2})} \right)^4 \frac{(-8i)}{\pi^2 (G(\frac{1}{2}))^8},$$
(5)

where ν is defined in (43), G(z) is the Barnes G – function, and $\hat{G}(z) = \frac{G(1+z)}{G(1-z)}$.

Isomonodromic deformations

Consider the system of linear differential equations with rational coefficients with n + 1singularities at $a_1, \ldots, a_n, a_{\infty} = \infty$ on $\hat{\mathbb{C}}$. It can be written as

$$\frac{d\Phi}{dz} = A(z)\Phi, \qquad A(z) = \sum_{\nu=1}^{n} \sum_{k=1}^{r_{\nu}+1} \frac{A_{\nu,-k+1}}{(z-a_{\nu})^{k}} - \sum_{k=0}^{r_{\infty}-1} z^{k} A_{\infty,-k-1}. \tag{6}$$

We shall also assume that all highest order matrix coefficients $A_{\nu} \equiv A_{\nu,-f_{\nu}}$ are diagonalizable

$$A_{\nu,-r_{\nu}}=G_{\nu}\Theta_{\nu,-r_{\nu}}G_{\nu}^{-1};\quad \Theta_{\nu,-r_{\nu}}=\text{diag}\left\{\theta_{\nu,1},\dots\theta_{\nu,N}\right\},$$

and that their eigenvalues are distinct and non-resonant:

$$\begin{cases} \theta_{\nu,\alpha} \neq \theta_{\nu,\beta} & \text{if} \quad r_{\nu} \geq 1, \quad \alpha \neq \beta, \\ \theta_{\nu,\alpha} \neq \theta_{\nu,\beta} & \text{mod } \mathbb{Z} & \text{if} \quad r_{\nu} = 0, \quad \alpha \neq \beta. \end{cases}$$

51/64

Painlevé equations

Isomonodromic deformations

Let a_{ν} be an irregular singular point of index r_{ν} . For $j=1,\ldots,2r_{\nu}+1$, let

$$\Omega_{j,\nu} = \left\{z: 0 < |z-a_\nu| < \epsilon, \quad \theta_j^{(1)} < \arg\left(z-a_\nu\right) < \theta_j^{(2)}, \quad \theta_j^{(2)} - \theta_j^{(1)} = \frac{\pi}{r_\nu} + \delta\right\},$$

be the *Stokes sectors* around a_{ν} (see, e.g., Wasow, 1965 for more details). According to the general theory of linear systems, in each sector $\Omega_{j,\nu}$ there exists a unique *canonical solution* $\Phi_{j}^{(\nu)}(z)$ of (6) which satisfies the asymptotic condition

$$\Phi_{j}^{(\nu)}(z) \simeq \Phi_{\text{form}}^{(\nu)}(z)$$
 as $z \to a_{\nu}$, $z \in \Omega_{j,\nu}$, $j = 1, \dots, 2r_{\nu} + 1$, (7)

where $\Phi_{\text{form}}^{(\nu)}(z)$ is the formal solution at the point a_{ν}

Formal solutions

Painlevé equations

$$\Phi_{\text{form}}^{(\nu)}(z) = G^{(\nu)}(z) e^{\Theta_{\nu}(z)}, \qquad G^{(\nu)}(z) = G_{\nu} \hat{\Phi}^{(\nu)}(z), \tag{8}$$

where

$$\hat{\Phi}^{(\nu)}(z) = \begin{cases} I + \sum_{k=1}^{\infty} g_{\nu,k} (z - a_{\nu})^{k}, & \nu = 1, \dots, n, \\ I + \sum_{k=1}^{\infty} g_{\infty,k} z^{-k}, & \nu = \infty, \end{cases}$$

and $\Theta_{\nu}(z)$ are diagonal matrix-valued functions,

$$\Theta_{\nu}(z) = \begin{cases} \sum_{k=-r_{\nu}}^{-1} \frac{\Theta_{\nu,k}}{k} (z - a_{\nu})^{k} + \Theta_{\nu,0} \ln(z - a_{\nu}), & \nu = 1, \dots, n \\ -\sum_{k=1}^{r_{\infty}} \frac{\Theta_{\infty,-k}}{k} z^{k} - \Theta_{\infty,0} \ln z, & \nu = \infty. \end{cases}$$

We emphasize, that in (8) we denoted constant matrices as G_{ν} and matrix functions as $G^{(\nu)}$.

53 / 64

Isomonodromic deformations

Stokes and connection matrices

Stokes and connection matrices relate the canonical solutions $\Phi_j^{(\nu)}(z)$ in different Stokes sectors and at different singular points:

$$\Phi_{j+1}^{(\nu)} = \Phi_j^{(\nu)} S_j^{(\nu)}, \quad j = 1, \dots, 2r_{\nu}, \qquad \Phi_1^{(\nu)} = \Phi_1^{(\infty)} C_{\nu}, \quad \nu = 1, \dots, n.$$

Painlevé equations

Riemann-Hilbert correspondence

$$\begin{split} \mathcal{A} &= \{ a_{\nu} \in \mathbb{C}, \ A_{\nu,-k+1}, \ A_{\infty,-j-1}, \ \Theta_{\nu,-r_{\nu}}, \ \Theta_{\infty,-r_{\infty}} \in \mathfrak{sl}_{N}(\mathbb{C}), \ G_{\nu} \in SL_{N}(\mathbb{C}), \\ k &= 1 \dots r_{\nu}, \ j = 0 \dots r_{\infty} - 2, \ \nu = 1 \dots n \} / \sim \\ \mathcal{M} &= \left\{ S_{j}^{(\nu)}, \ \Theta_{\nu,0} \in \mathfrak{sl}_{N}(\mathbb{C}), \ C_{\mu} \in SL_{N}(\mathbb{C}) : j = 1 \dots 2r_{\nu}, \\ \nu &= 1, \dots, n, \infty; \ \mu = 1, \dots, n \right\} / \sim \\ \mathcal{T} &= \{ a_{\mu}, \ \Theta_{\nu,k} \in \mathfrak{sl}_{N}(\mathbb{C}), \ k = -r_{\nu}, \dots, -1; \ \nu = 1, \dots, n, \infty; \ \mu = 1, \dots, n \} / \sim \\ \end{split}$$

The so-called Riemann-Hilbert correspondence states that, up to submanifolds where the inverse monodromy problem for (6) is not solvable, the space $\mathcal A$ can be identified with the product $\widetilde{\mathcal T}\times\mathcal M$, where $\widetilde{\mathcal T}$ denotes the universal covering of $\mathcal T$. We shall loosely write,

$$\mathcal{A}\simeq\widetilde{\mathcal{T}}\times\mathcal{M}$$

Isomonodromic deformations

We denote by $A(z) \equiv A\left(z; \vec{t}; M\right)$ the isomonodromic family having the same set $M \in \mathcal{M}$ of monodromy data. The isomonodromy implies that the corresponding solution $\Phi\left(z\right) \equiv \Phi\left(z, \vec{t}\right)$ satisfies an overdetermined system

$$\begin{cases} \partial_{z} \Phi = A(z, \vec{t}) \Phi(z, \vec{t}), \\ \partial_{T} \Phi = U(z, \vec{t}) \Phi(z, \vec{t}) \end{cases}$$
(9)

The coefficients of the matrix-valued differential form $U \equiv \sum_{k=1}^{L} U_k \left(z, \vec{t}\right) dt_k$ are rational in z. The compatibility of the system (9) implies the monodromy preserving deformation equation:

$$d_{\mathcal{T}}A = \partial_z U + [U, A]. \tag{10}$$

56 / 64

Painlevé equations

Isomonodromic deformations

Let us recall the standard definition of the Jimbo-Miwa-Ueno differential

$$\omega_{\text{JMU}} = -\sum_{\nu=1,\dots,h,\infty} \operatorname{res}_{z=a_{\nu}} \operatorname{Tr} \left(\hat{\Phi}^{(\nu)}(z)^{-1} \partial_{z} \hat{\Phi}^{(\nu)}(z) \ d_{\mathcal{T}} \Theta_{\nu}(z) \right). \tag{11}$$

It was shown by Jimbo, Miwa, Ueno (1981) that this 1-form is closed on solutions of the isomonodromy equation (10):

$$d_{\mathcal{T}}\omega_{\mathrm{JMU}}=0.$$

Therefore one can integrate it and define Jimbo-Miwa-Ueno isomonodromic tau function by

$$\ln \tau(\vec{t_1}, \vec{t_2}, M) = \int_{\vec{t_1}}^{t_2} \omega_{\rm JMU}$$
 (12)

Painlevé equations

Monodromy dependence of tau function

Bertola (2010):

$$d_{\mathcal{M}} \ln \tau(t_1, t_2, M) = \left. \frac{1}{4\pi i} \int_{\Gamma} \text{Tr} \left(\Psi_{-}^{-1} \Psi_{-}' \partial_{\mathcal{M}} J J^{-1} + \Psi_{+}^{-1} \Psi_{+}' J^{-1} \partial_{\mathcal{M}} J \right) dz \right|_{t_1}^{t_2}$$

Lemma 1 (Its, Lisovyy, Prokhorov (2018))

$$d_{\mathcal{T}_{2}}\ln\tau(t_{1},t_{2},M)=\sum_{\nu=1,\dots,n,\infty}\operatorname{res}_{z=a_{\nu}}\operatorname{Tr}\left(G^{(\nu)}\left(z\right)^{-1}A\left(z\right)\,d_{\mathcal{T}_{2}}G^{(\nu)}\left(z\right)\right),$$

$$d_{\mathcal{M}}\ln\tau(t_{1},t_{2},\mathit{M}) = \sum_{\nu=1,\ldots,n,\infty} \mathsf{res}_{\mathit{Z}=\mathit{a}_{\nu}} \mathsf{Tr}\left(\mathit{G}^{(\nu)}\left(\mathit{z}\right)^{-1}\mathit{A}\left(\mathit{z}\right) \, d_{\mathcal{M}}\mathit{G}^{(\nu)}\left(\mathit{z}\right)\right) \bigg|_{t_{1}}^{t_{2}}.$$

Consider 1-form $\omega \in \Lambda^1\left(\widetilde{\mathcal{T}} \times \mathcal{M}\right)$ given by

$$\omega = \sum_{\nu=1,...,n,\infty} \operatorname{res}_{z=a_{\nu}} \operatorname{Tr} \left(A(z) \ dG^{(\nu)}(z) \ G^{(\nu)}(z)^{-1} \right), \tag{13}$$

where $d = d_T + d_M$.

Lemma 2 (Its, Lisovyy, Prokhorov (2018))

Form $d\omega$ is closed form on \mathcal{M} independent on \mathcal{T} .

Conjecture 1 (Its, Lisovyy, Prokhorov (2018))

Form $d\omega$ is nondegenerate form on \mathcal{M} .

The *classical action differential* can be defined as the differential form on $\widetilde{\mathcal{T}} \times \mathcal{M}$.

$$egin{aligned} \omega_{\mathsf{cla}} &= \sum p_j \mathsf{d}q_j - \sum H_k \mathsf{d}t_k \equiv \sum_k \left(\sum_j p_j rac{\partial q_j}{\partial t_k} - H_k
ight) \mathsf{d}t_k + \sum_k \left(\sum_j p_j rac{\partial q_j}{\partial m_k}
ight) \mathsf{d}m_k \ & \\ \mathsf{d}\omega_{\mathtt{cla}} &= \sum_j d_{\mathcal{M}} p_j \wedge d_{\mathcal{M}} q_j. \end{aligned}$$

Conjecture 2 (Its, Prokhorov (2018))

There exists a rational function $G(\vec{p}, \vec{q}, \vec{t})$ of $\vec{p}, \vec{q}, \vec{t}$ such that,

$$\omega = \omega_{\mathsf{cla}} + dG(\vec{p}, \vec{q}, \vec{t}). \tag{14}$$

Moreover, the function $G(\vec{p}, \vec{q}, \vec{t})$ is explicitly computable.

Consider the quotient space

$$A_0 = A/\{T = \text{const}\}$$

and denote the points $f \in A_0$ as

$$f = (f_1, \ldots, f_d), \quad d = \dim \mathcal{M}.$$

Introduce the differential δ on the space A_0 . Consider the form

$$\omega_{a} = \sum_{\nu=1,\dots,n,\infty} \operatorname{res}_{z=a_{\nu}} \operatorname{Tr}\left(G^{(\nu)}(z)^{-1} A(z) \, \delta G^{(\nu)}(z)\right). \tag{15}$$

Form $\delta\omega_a$ is closed form on \mathcal{A}_0 .

Conjecture 3

Form $\delta\omega_a$ is nondegenerate form on \mathcal{A}_0 .

Hamiltonian structure

Usually

$$\frac{\partial \ln \tau \left(\vec{t}, M\right)}{\partial t_k} = H_k \big|_{A(z; \vec{t}, M)}. \tag{16}$$

This identity is sensitive to the changes of coordinates and depends on the choice of symplectic form.

Let's assume that form $\delta\omega_a$ is nondegenerate and that there is a family of Hamiltonians $\{H_k\}_{k=1}^{\dim \mathcal{T}}$. The corresponding Hamiltonian vector fields X_{H_k} defined by the formula

$$\iota_{X_{H_k}}\delta\omega_a = -\delta H_k, \quad k = 1\dots\dim\mathcal{T}$$
 (17)

Where ι denotes the interior product. The dynamics induced by this Hamiltonians on \mathcal{A}_0 is described by

$$\frac{df}{dt_k} = X_{H_k}[f], \quad f \in \mathcal{A}_0, \quad k = 1 \dots \dim \mathcal{T}$$
 (18)

Hamilonian structure

Introduce the following form

$$\Omega_{k} = \sum_{\nu} \operatorname{res}_{z=a_{\nu}} \operatorname{Tr} \left(\frac{\partial A}{\partial t_{k}} \delta G^{(\nu)} \left(G^{(\nu)} \right)^{-1} \right) - \sum_{\nu} \operatorname{res}_{z=a_{\nu}} \operatorname{Tr} \left(\frac{d(\delta \Theta_{\nu})}{dz} \left(G^{(\nu)} \right)^{-1} \frac{\partial G^{(\nu)}}{\partial t_{k}} \right)$$
(19)

We have the following result.

Lemma 3

Assume that dynamics (18) induced by Hamiltonians $\{H_k\}_{k=1}^{\dim \mathcal{T}}$ is isomonodromic and is described by equations (10). Then

$$\delta H_k = \Omega_k. \tag{20}$$

Conjecture 4

Form Ω_k is exact.

If this conjecture holds, it provides the formula for Hamiltonians in general case.

Hamiltonian structure

THANK YOU

