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Overview of isomonodromic deformations Matrix linear ODEs with rational coefficients

Matrix linear ODEs with rational coefficients

@ Consider the system of linear differential equations with rational
coefficients with n + 1 singularities at a1, ..., an, 3, = o0 on C. It
can be written as

d¢_A o n r+1 o roo—1 p
-, =A@, ;kzlza +szk1.
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Overview of isomonodromic deformations Matrix linear ODEs with rational coefficients

Matrix linear ODEs with rational coefficients

@ Consider the system of linear differential equations with rational
coefficients with n + 1 singularities at a1, ..., an, 3, = o0 on C. It
can be written as

d¢_A o n r+1 o roo—1 p
-, =A@, ;kzlza +szk1.

@ r, is called Poincaré rank at the point a,.
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Overview of isomonodromic deformations Space of coefficients

Space of coefficients

@ We can notice that the transformation ®(z) — c(z)®(z) with scalar
function c(z) results in map A(z) — A(z) + ¢/(z)c1(z)(exercise).
Choosing proper c(z) we can guarantee (exercise)

Tr(Ay,—k+1) = Tr(Ac,—k-1) =0

] Confluence PlII(Dg) —PIlI(Dg). October 9, 2022  5/42



Overview of isomonodromic deformations Space of coefficients

Space of coefficients

@ We can notice that the transformation ®(z) — c(z)®(z) with scalar
function c(z) results in map A(z) — A(z) + ¢/(z)c1(z)(exercise).
Choosing proper c(z) we can guarantee (exercise)

Tr(Ay,—k+1) = Tr(Ac,—k-1) =0

o For start we shall also assume that all highest order matrix
coefficients A, = A, _,, are diagonalizable

Au,frl, = Gueu,fry Gy_l; eu,fry = diag {911,1’ cee QV,N} s

and that their eigenvalues are distinct and non-resonant:

Op0 # 00 if n>1 «a#/p,
Opo #6035 modZ if =0, a#p.
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Overview of isomonodromic deformations Space of coefficients

Space of coefficients

@ Matrices G, are determined up to right multiplication by diagonal
matrices. We make det(G,) = 1 and keep other N — 1 parameters
free.
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Overview of isomonodromic deformations Space of coefficients

Space of coefficients

@ Matrices G, are determined up to right multiplication by diagonal
matrices. We make det(G,) = 1 and keep other N — 1 parameters
free.

@ We can notice that the transformation ® — C® with constant matrix
C results in map A(z) — CA(z)C~(exercise). We use it to make
Ao diagonal.

y—Foo
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Overview of isomonodromic deformations Space of coefficients

Space of coefficients

@ Matrices G, are determined up to right multiplication by diagonal
matrices. We make det(G,) = 1 and keep other N — 1 parameters
free.

@ We can notice that the transformation ® — C® with constant matrix
C results in map A(z) — CA(z)C~(exercise). We use it to make
Ao diagonal.

@ If roo = 0, then we define

n
Ao =~ Ao
v=1

y—Foo

and make it diagonal.
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Overview of isomonodromic deformations Space of coefficients

Space of coefficients

@ We introduce the space A of coefficients.

A = {aI/ € (Ca Al/,—k-i—17 Aoo7,j,1, @I/,—rln @OO S 5[N ((C)7

s~ lFoo

G, eSLy(C),k=1...n, j=0...r0—2, v=1...n}/ ~
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Space of coefficients

@ We introduce the space A of coefficients.

A = {aI/ € (Ca Al/,—k-i—17 Aoo7,j,1, @I/,—rln @OO S 5[N ((C)7

s~ lFoo

G, eSLy(C),k=1...n, j=0...r0—2, v=1...n}/ ~

@ Two extra constraints are put using change of variable z — az + 3.
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Overview of isomonodromic deformations Space of coefficients

Space of coefficients

@ We introduce the space A of coefficients.

A = {aI/ € (Ca Al/,—k-i—17 Aoo7,j,1, @I/,—rln @OO S 5[N ((C)7

s~ lFoo

G, eSLy(C),k=1...n, j=0...r0—2, v=1...n}/ ~

@ Two extra constraints are put using change of variable z — az + 3.

@ As the result we have the following formula for dimension of A
(exercise)

n

dimA=n+ (N> —1) <Zry+roo—1> +(N—-1)(n+1)
+n(N? —1) -2 =
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Overview of isomonodromic deformations Formal solutions

Formal solutions

@ The differential equation has formal solutions with the asymptotic

Cbgr)m (z) ~ GVCYD(”) (2) () a5 7 a,

where

o0 k
dW (7) = {/ Y8k (z—a)",

I + 22021 gOO,kzik7

and ©,(z) are diagonal matrix-valued functions,

S Ou
k=—r,

Ou(z) = k

ro Ooo,—k k
— 7"+ Oxplnz
Zk:l k 00,0 )

B Confluence PHII(Dg) —sP(Ds).

(z—a,) +0,0In(z—a,), v=1,...

vV = OQ.

October 9, 2022
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T
Examples

@ One finite point a of rank r > 0.

do A
avF__ 1 s
dz (z—a)rtl

Given A= GOG~! we have for arbitrary constant matrix C(exercise)

o) = Gep (- a) ") C

—r
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Overview of isomonodromic deformations Examples

Examples

@ One finite point a of rank r > 0.
do A
A Y
dz (z—a)rtl
Given A= GOG~! we have for arbitrary constant matrix C(exercise)
o .,
®(z) = Gexp :(Z —a) C
@ One infinite point of rank r > 0.
do
T _A r—lq)
dz i

Given A= GOG~! we have for arbitrary constant matrix C (exercise)
S)
®(z) = Gexp <rzr> C
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S
Stokes rays

@ Define the Stokes rays near point a, by the formula

Re(((©v,—1,)ii = (Ov,—n)ik)(z —ay) ™) =0
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S
Stokes rays

@ Define the Stokes rays near point a, by the formula

Re(((©v,—1)ii = (Ov—r)ik)(z —a,)"™) =0
@ More precisely we denote them as
E{:’k:{z:0< |z —ay| <e,

1 0 .,
arg(z —a,) = - arg((©v,—1,)ii = (Ov,—r, )kk) — 5y T rj}

j=1...2n,
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Overview of isomonodromic deformations Stokes phenomenon

Stokes sectors

@ Forj=1,...,2n, let

Q= {Z 0<|z—a)| <e, 9}1) <arg(z—a,) < 91(2),

0(2)_9](1):7.‘-_’_5}7

J r,
be the Stokes sectors around a,
@ The angles 9}1), 91(-2) can be chosen in such a way that Stokes sector

contains exactly one Stokes ray E{:’k for each pair (i, k). (exercise)
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Overview of isomonodromic deformations Stokes phenomenon

Stokes sectors

@ Forj=1,...,2n, let

Q= {Z 0<|z—a)| <e, 9}1) <arg(z—a,) < 91(2),

0(2)_9](1):7.‘-_’_5}7

J r,
be the Stokes sectors around a,
@ The angles 9}1), 91(-2) can be chosen in such a way that Stokes sector
contains exactly one Stokes ray EJ,-’k for each pair (i, k). (exercise)

@ Parameter § can be chosen small enough so the intersection
Q;, N1, does not contain any Stokes sectors
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Overview of isomonodromic deformations Stokes phenomenon

Solutions in the Stokes sectors

@ It can be shown that in each Stokes sector QJ ,, there is a canonical

solution ¢ (z) with asymptotic CD( )( ) =~ form (2).
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Overview of isomonodromic deformations Stokes phenomenon

Solutions in the Stokes sectors

@ It can be shown that in each Stokes sector €2;, there is a canonical
solution d) (z) with asymptotic CD( )( ) ~ d)gor)m (2).

o Let's show that it is unique. Assume there are two solutions CDJ(-V) (2)
and 2131(-”) (z). We have

Oy

~ —1 Iy z—ay, —rv
(¢J( )(z)) q,J( )(z):e o (zma) (I+0(z—ay))e

o, _
— e (z—ay) T
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Overview of isomonodromic deformations Stokes phenomenon

Solutions in the Stokes sectors

@ It can be shown that in each Stokes sector €2;, there is a canonical
solution d) (z) with asymptotic CD( )( ) ~ d)gor)m (2).

o Let's show that it is unique. Assume there are two solutions CDJ(-V) (2)
and 2131(-”) (z). We have

Oy

~ —1 ,—ry z—a, —ry _el/,*n/ z—a, —ru
(30(2)) 60 (2) = e (11 0(z—a, ) )

@ Since the Stokes sector contains Stokes ray, we can chose direction in
which we compute asymptotic for different entries in such a way that

Re(((©v,—r,)ii = (Ov,—n )ik )(z —a,)" ™) <0

for all i, k.(exercise)
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Overview of isomonodromic deformations Stokes phenomenon

Solutions in the Stokes sectors

It can be shown that in each Stokes sector €2;, there is a canonical
solution d) (z) with asymptotic CD( )( ) ~ d)gor)m (2).

Let's show that it is unique. Assume there are two solutions CDJ(-V) (2)
and 2131(-”) (z). We have

Oy

~ —1 ,—ry z—a, —ry _el/,*n/ z—a, —ru
(30(2)) 60 (2) = e (11 0(z—a, ) )

Since the Stokes sector contains Stokes ray, we can chose direction in
which we compute asymptotic for different entries in such a way that

Re(((©v,—r,)ii = (Ov,—n )ik )(z —a,)" ™) <0

for all i, k.(exercise)
As the result
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Overview of isomonodromic deformations Stokes phenomenon

Stokes and connection matrices

@ Given two solutions ®1(z) and ®,(z), we can check that
&, }(2)®P2(z) is constant matrix.(exercise)
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Overview of isomonodromic deformations Stokes phenomenon

Stokes and connection matrices

@ Given two solutions ®1(z) and ®,(z), we can check that
&, }(2)®P2(z) is constant matrix.(exercise)

@ Stokes and connection matrices relate the canonical solutions CDJ(-V) (2)
in different Stokes sectors and at different singular points:

qD.E:)l :qD,EV)S](V)’ j:17"'72rl/7 ¢g.l/) :¢§.OO)CU7 yz]‘?"'?n‘
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Overview of isomonodromic deformations Monodromy data

Stokes and connection matrices

@ For Stokes matrices we have the formula

v v -1
5= (9f7(2)  of'h(a)

el’x*ﬁ/ —ry el’,*f’u —ry
—e n FTWTV( L 0(z—a))e w )

for z € QJ",/ N Qj-i-l,l/
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Overview of isomonodromic deformations Monodromy data

Stokes and connection matrices

@ For Stokes matrices we have the formula

@ — (¢ (5)) " oW
s = (o(2)) of(2)
el/,ffy —ry _eV,*fu _ —rv
=e w (z=av) (/ + O(Z — au))e v (z=av)
for z € QJ",/ N Qj-i-l,l/
@ Since there is no Stokes rays in the intersection €2, N €211 ,, the

expression Re(((©,,—r, )i — (©v,—r, )kk)(z — a,) ™) does not change
sign in it.

@ That means that we can take limit z — a, for N(I\é_l) entries of SJ.(V)
and obtain zero.
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Overview of isomonodromic deformations Monodromy data

Properties of solution

@ Plugging the asymptotic formula in the differential equation we get
(exercise)

AZ) = 6,60 (2) P2 (500 (2)) g

N 0 (1), v=1,...,n,
()(2_2)7 V= 00.

@ The property Tr (A(z)) = 0, implies that Tr (©,(z)) = 0.
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Overview of isomonodromic deformations Monodromy data

Properties of solution

@ Using the Liouville’s formula

V4

det(®(2)) = det(®(z0)) exp / Tr (A(s)) ds

20

and identities
det(G,) =1, Tr(A(z))=0

we deduce that det(®(z)) = 1.
o Property det(®(z)) = 1 implies det(C,)) = 1.
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Overview of isomonodromic deformations Monodromy data

Cyclic relation

@ Let’s perform procedure of analytic continuation starting from

canonical solution ®{°(z)
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Overview of isomonodromic deformations Monodromy data

Cyclic relation

@ Let’s perform procedure of analytic continuation starting from
canonical solution ®{°(z)

@ We continue around infinity

o) (2) 5 V()5 o o) (7)sg(>) | gl

2r,
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Overview of isomonodromic deformations Monodromy data

Cyclic relation

@ Let’s perform procedure of analytic continuation starting from
canonical solution ®{°(z)

@ We continue around infinity

o{®)(z) = o) (2)5) -5 L = o) (2)5) () s()

@ As the result we gain the argument around infinity and around each of
the finite points.
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Overview of isomonodromic deformations Monodromy data

Cyclic relation

@ Let’s perform procedure of analytic continuation starting from
canonical solution ®{°(z)

@ We continue around infinity

o) (2) 5 V()5 o o) (7)sg(>) | gl

2r,

@ As the result we gain the argument around infinity and around each of
the finite points.

@ To remove the extra argument around infinity we multiply the
obtained earlier solution by

e—27ri@oo,o
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Overview of isomonodromic deformations Monodromy data

Cyclic relation

@ To remove the argument coming from finite point a; we multiply the
obtained earlier solution by

C1e?mi®ro0 (52(2)_1 (5291[1)_1 .. (5{1))_1 ¢!
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Overview of isomonodromic deformations Monodromy data

Cyclic relation

@ To remove the argument coming from finite point a; we multiply the
obtained earlier solution by

C1e?mi®ro0 (52(2)_1 (5291[1)_1 .. (5{1))_1 ¢!

@ After removing argument around each of the finite point we get the
identity called cyclic relation.

5100)52(00) o Séfjo)e—%ri@oop CLe2mi®10 (52(2))—1 (55}1)71) -1
(51(1)) -1 C1,1C262meg,0 (Séi))l (552)_1)—1'” (5§2))*1 C{l o
x G270 (52("))_1 (sty) .. (5§”)>_1 Cl=1

I'n
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Overview of isomonodromic deformations Monodromy data

Monodromy data
@ We introduce monodromy data

M = {5}”), 0,0 € sly(C), C, € SLy(C) 1 j=1...2n,

v=1,...,n00;, p=1,...,n}/ ~
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Overview of isomonodromic deformations Monodromy data

Monodromy data

@ We introduce monodromy data

M = {5}”), 0,0 € sly(C), C, € SLy(C) 1 j=1...2n,

v=1,...,n00;, p=1,...,n}/ ~

@ We compute its dimension (exercise)

dim M = (Zn:2r,,+2roo N('V2_1)+(n+1)(N—1)
v=1

+n(N? —1) — (N? - 1)
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Overview of isomonodromic deformations Isomonodromic times

Isomonodromic times

@ Introduce now the set of times
T=A{a,,0,k€sny(C), k=—nr,....,—Liv=1,...,n,

oo; p=1,...,n}/ ~
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Overview of isomonodromic deformations Isomonodromic times

Isomonodromic times

@ Introduce now the set of times
T=A{a,,0,k€sny(C), k=—nr,....,—Liv=1,...,n,

oo; p=1,...,n}/ ~

@ We put two constraints on this set using change of variable
z—az+p
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Overview of isomonodromic deformations Isomonodromic times

Isomonodromic times

@ Introduce now the set of times
T=A{a,,0,k€sny(C), k=—nr,....,—Liv=1,...,n,

oo; p=1,...,n}/ ~

@ We put two constraints on this set using change of variable
z—az+p

@ We have the following formula for the dimension (exercise)

dim7T =n+ qu+foo (N—-1)-2

v=1
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Overview of isomonodromic deformations Riemann-Hilbert problem

Riemann-Hilbert correspondence

@ The so-called Riemann-Hilbert correspondence states that, up to the
points where the inverse monodromy problem is not solvable, the
space A can be identified with the product T x M, where T denotes

the universal covering of T.
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Overview of isomonodromic deformations Riemann-Hilbert problem

Riemann-Hilbert correspondence

@ The so-called Riemann-Hilbert correspondence states that, up to the
points where the inverse monodromy problem is not solvable, the
space A can be identified with the product T x M, where T denotes

the universal covering of T.

o We shall loosely write,

A~T x M.
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Overview of isomonodromic deformations Riemann-Hilbert problem

Riemann-Hilbert correspondence

@ The so-called Riemann-Hilbert correspondence states that, up to the
points where the inverse monodromy problem is not solvable, the
space A can be identified with the product T x M, where T denotes
the universal covering of T.

o We shall loosely write,

A~T x M.

@ In particular (exercise)

dmA=dim7T +dim M
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Overview of isomonodromic deformations Riemann-Hilbert problem

Riemann-Hilbert problem

@ We can describe the monodromy properties of the solution of matrix
linear ODE using the following setup called Riemann-Hilbert
problem.
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Overview of isomonodromic deformations Riemann-Hilbert problem

Riemann-Hilbert problem

@ We can describe the monodromy properties of the solution of matrix
linear ODE using the following setup called Riemann-Hilbert
problem.

e The matrix-valued function ®(z) is analytic on the domain C\ T,
where [ is oriented contour
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Riemann-Hilbert problem

@ We can describe the monodromy properties of the solution of matrix
linear ODE using the following setup called Riemann-Hilbert
problem.

e The matrix-valued function ®(z) is analytic on the domain C\ T,
where [ is oriented contour

o &, (2) =0_(2)5" or &, (z) = D_(2)C, or P, (z) = b_(2)e> O
on different parts of contour I'. Here + denotes left side of the
contour, while — denotes the right side of the contour.

o O(2) =0 (2), z-a,.

form
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Riemann-Hilbert problem

@ We can describe the monodromy properties of the solution of matrix
linear ODE using the following setup called Riemann-Hilbert
problem.

e The matrix-valued function ®(z) is analytic on the domain C\ T,
where [ is oriented contour

o &, (2) =0_(2)5" or &, (z) = D_(2)C, or P, (z) = b_(2)e> O

on different parts of contour I'. Here + denotes left side of the
contour, while — denotes the right side of the contour.

° cD(Z) = ¢§(l)/3m(z)7 Z — ay.
@ Solution of Riemann-Hilbert problem is unique. Actually, given two
different soltions ®(z) and ®(z) we can notice that ®(z)®1(z) is

analytic on the whole plane, and equal to identity by Liouville's
theorem. (exercise)
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Overview of isomonodromic deformations Riemann-Hilbert problem

Example

¢(Z) ~ GO&)(O) (Z) e—ixz*103/2zeoa3/2’
z— 0.
n = 1

(D(z) ~ (l]\)(OO) (Z) eiXZO'3/22(—@OC_]_)O-3/27
Z — OO

fo =1

(1 0
93=\0 -1
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Overview of isomonodromic deformations Isomonodromic deformations

Isomonodromic deformations

@ Denote t € T.
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Overview of isomonodromic deformations Isomonodromic deformations

Isomonodromic deformations

@ Denote t € 7.
. ov . .
@ One can notice that E(D = U; (z, t?) does not have the jump on

1
the contour ' and is rational function of z. (exercise)
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Overview of isomonodromic deformations Isomonodromic deformations

Isomonodromic deformations

@ Denote t € 7.
. ov . .
@ One can notice that TCD = U; (z, t?) does not have the jump on

1
the contour ' and is rational function of z. (exercise)
@ The function ¢ (z) = ¢ (z, F) satisfies an overdetermined system

{ — A8 (=),

9 — U (2,f) ® (2,5), i=1,...dim(T)
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Overview of isomonodromic deformations Isomonodromic deformations

Isomonodromic deformations

@ Denote t € 7.
. ov . .
@ One can notice that E(D = U; (z, t?) does not have the jump on

1
the contour ' and is rational function of z. (exercise)

@ The function ¢ (z) = ¢ (z, F) satisfies an overdetermined system

{ — A8 (=),

9 — U (2,f) ® (2,5), i=1,...dim(T)

@ The compatibility of this system implies the monodromy preserving
deformation equation:

0A oy
ot; Y

UL AL, i=1,...dim(T)
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Painlevé equations

Painlevé equations
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Painlevé equations

Painlevé equations

@ For N = 2 the cases with dim(7) = 1 are listed below.(exercise)
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Painlevé equations

Painlevé equations

@ For N = 2 the cases with dim(7) = 1 are listed below.(exercise)

n=0, reo=3,

n=1 n=1 reo=1,
n=1 n=0, rw=2,
n=2, nn=nr=>0,

reo = 1,

n=3, n=n=rn=rx=0~0,

Confluence PIII(Dg) —PIII(Dg).

(Painlevé Il (JM))
(Painlevé I11(Ds))
(Painlevé V)
(Painlevé V)
(Painlevé VI)

October 9, 2022 26 /42



Painlevé equations

Painlevé equations

@ We can also write the structure of corresponding matrix linear ODEs.
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Painlevé equations

Painlevé equations

@ We can also write the structure of corresponding matrix linear ODEs.

A(Z) = Ac>o,—3Z2 + Aoo,—2Z + Aoo,—1>

A A

Az) =22+ 220 Ay
z z
A

A(Z) = 2’0 + Aoo,—l + AOO7_2Z
Ao Aopo

Alz) = ——— + — + Ao _

(Z) 21 + 2 + 00,—19

A A A

Az) = 30 Ao o,o’
z—x z-1 z

B Confluence PHI(Dg) —sPI(Ds).

(Painlevé I (JM))

(Painlevé 111(Dg))
(Painlevé V)
(Painlevé V)

(Painlevé VI)
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Painlevé equations

Resonant cases

o Consider N = 2. If the leading coefficient of A(z) at a, is nilpotent
then corresponding rank is substracted by %
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Painlevé equations

Resonant cases

o Consider N = 2. If the leading coefficient of A(z) at a, is nilpotent

then corresponding rank is substracted by %

@ The isomonodromic deformations in resonant cases produce the
following Painlevé equations.

n=20,
n=0,
n=1,
n=1,
n=2,

5
roo:§7
r. —§
%o = 5
1
r1:1, rOO_Ea
1 1
= fo = —
n 21 [ee) 27
1
n=rnr=0, foo = 5

Confluence PIII(Dg) —PIII(Dg).

(Painlevé 1)
(Painlevé Il (FN))
(Painlevé 111(Dy))
(Painlevé 111(Dg))

(Painlevé V-deg)
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Painlevé equations

Resonant cases

@ The corresponding linear ODEs have the following form
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Painlevé equations

Resonant cases

@ The corresponding linear ODEs have the following form

A(z) = Aoo,—322 + Aso,—2Z + Ao~ 1, A?)O,,3 =0, (Painlevé I)
A
A(Z) = Acor2z + A1+ =2, A2, =0, (Painlevé Il (FN))
z b
A A
Az) =221+ 220 p Ay, AR =0, (Painlevé 111(D7))
V4 zZ ’
Ao1 |, Ao
Al2) = —5 + == + Ac1, A=A, =0
(Painlevé I11(Dg))
_ Ao Ao 2 o
Alz) = 21 + . + Aco,—1, A%-1 =0 (Painlevé V-deg)

] Confluence PlII(Dg) —PIlI(Dg). October 9, 2022 29 /42



Confluence diagram

Confluence diagram
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Confluence diagram

Confluence diagram for Painlevé equations

PVL ,/ ,:sd LRURERON
p’z’jW/
L& é e%i’% T
LY Pi-dey

Drawing from the paper by Chekhov, Mazzocco, Rubtsov (2016).
] Confluence PlII(Dg) —PIlI(Dg). October 9, 2022 31/42



Confluence diagram

Confluence diagram for classical special functions
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Panlevé I11(D6) equation

@ The Painlevé-1ll (D6) equation is given by

u”:(u,)z_i/_kﬁouz_’_%_{_zlu?’_i
u X X X u
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Panlevé I11(D6) equation

@ The Painlevé-1ll (D6) equation is given by

u”:(u,)z_i/_kﬁouz_’_%_{_zlu?’_i
u X X X u

@ The confluence PIII(Dg) — PIII(Dg) is described by the following
limiting procedure (exercise)
x—ex, ©g—=0p+el, Op = 0,—ct 0.
where PIII(Dg) is given by

17 LAV VT
u”zg_i_ki_,_,'
u X X X
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Backlund transformation

Backlund transformation J
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Backlund transformation

Backlund transformation

@ Introduce the following Backlund transformation with

"+ 2xu? + 2bu — u+2
B:(a,b,u)—><a—|—1,b—1, xu' + 2xu* + 2bu u—i—x)

u(xu' + 2xu? + 2au + u + 2x)
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Backlund transformation

Backlund transformation

@ Introduce the following Backlund transformation with

"+ 2xu? + 2bu — u+2
B:(a,b,u)—><a—|—1,b—1, xu' + 2xu* + 2bu u—i—x)

u(xu' + 2xu? + 2au + u + 2x)

@ Denote (©g + n, O — n,up) = B"(©p, O, ).
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Backlund transformation

Backlund transformation

@ Introduce the following Backlund transformation with

"+ 2xu? + 2bu — u+2
B:(a,b,u)—><a—|—1,b—1, xu' + 2xu* + 2bu u—i—x)

u(xu' + 2xu? + 2au + u + 2x)

@ Denote (©g + n, O — n,up) = B"(©p, O, ).
e Function u,(x) satisfies PIII(Dg) equation with parameters replaced in
the following way (exercise)

(©0,0) = (©0 + n,©5 — n)
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Backlund transformation

Backlund transformation

@ Introduce the following Backlund transformation with

"+ 2xu? + 2bu — u+2
B:(a,b,u)—><a—|—1,b—1, xu' + 2xu* + 2bu u—i—x)

u(xu' + 2xu? + 2au + u + 2x)

@ Denote (©g + n, O — n,up) = B"(©p, O, ).
e Function u,(x) satisfies PIII(Dg) equation with parameters replaced in
the following way (exercise)

(©0,0) = (©0 + n,©5 — n)

@ We expect that sequence of functions u, (%) models confluence
PII(Ds) — PIII(Dg).

o General idea: Backlund transformations are expected to model all
other confluence maps as well.
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Main results

Main results
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Main results

Behavior at zero of generic solutions of PIlI(Ds).

@ Assume that
u(x) ~ aox™
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Main results

Behavior at zero of generic solutions of PIlI(Ds).

@ Assume that
u(x) ~ aox™

@ Plugging it in the equation we can obtain three terms of the type
xP0=2 and terms x2P0—1 360 yx—Po -1

@ Plotting the powers we can see that we can have cancellation of
leading terms only for —1 < By < 1 (exercise!)
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Main results

Behavior at zero of generic solutions of PIlI(Ds).

Theorem (Barhoumi, Lisovyy, Miller, P.)

The behavior at zero of generic solutions of Plll(De) is described by
r(—2ur (0= %) (% +5+
u(x) ~ e'™(Oo0=Oo+2n) ( W\ ( 2 ) %
rupr (—n- 9 +1)1 (-S +3 - p)

where 0 < Re(u) < 3, —3 < Re(n) < 3, x = 0.

4p—1
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Main results

Behavior at zero of generic solutions of PIlI(Ds).

Theorem (Barhoumi, Lisovyy, Miller, P.)

The behavior at zero of generic solutions of Plll(De) is described by
r(—2ur (0= %) (% +5+
u(x) ~ e'™(Oo0=Oo+2n) ( W\ ( 2 ) %
rupr (—n- 9 +1)1 (-S +3 - p)

where 0 < Re(u) < 3, —3 < Re(n) < 3, x = 0.

4p—1

o Foru=117=0 0. =0=mwe get u(x) =1, and up(x)
become the rational solutions discussed in previous talk.
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Main results

Behavior at zero of generic solutions of PIlI(Ds).

Theorem (Barhoumi, Lisovyy, Miller, P.)

The behavior at zero of generic solutions of Plll(De) is described by
r(—2ur (0= %) (% +5+
u(x) ~ e'™(Oo0=Oo+2n) ( W\ ( 2 ) X
rupr (—n- 9 +1)1 (-S +3 - p)

where 0 < Re(u) < 3, —3 < Re(n) < 3, x = 0.

4p—1

o Foru=117=0 0. =0=mwe get u(x) =1, and up(x)
become the rational solutions discussed in previous talk.

@ Variables i, 1, ©g, © parametrize the monodromy data for
PIl(De) equation.

] Confluence PlII(Dg) —PllI(Dg). October 9, 2022 38/42




Main results

Backlund iterates

Theorem (Barhoumi, Lisovyy, Miller, P.)

The behavior at zero of Backlund iterates up(x) is described by

U, (x) ~ ei7r(@oo —©0+21,)

ML= 20T (=5 + lptnl = $) T (3~ S5 + 5 + |al)
% s Amnl—1
F(lual?T (=5 = ol = S +1) T (3 = &= + 3 = |ual)
7, n € 27, L, n € 27,
Np = and  pp = 1
n+1l, n+1e2Z p—75, n+1e2Z

@ Frobenius method does not work immediately, since solution has
branching at zero. (difficulty compared to rational solutions case).
We use Riemann-Hilbert method.
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Limiting solution
Theorem (Barhoumi, Lisovyy, Miller, P.)
We have

X

X
Uop <£> — WO(X), Uop+1 m — W]_(X)

where w;j(x) solves the PIII(Dg) equation

N2 / 2
y (W) wp Aws 4
wi' = - S -

WJ' X X X

] Confluence PlII(Dg) —PIlI(Dg). October 9, 2022

40 /42



Limiting solution

Theorem (Barhoumi, Lisovyy, Miller, P.)
We have

X X
Uop <£> — WO(X), Uop+1 (2[7—}—]_) — W]_(X)
where w;j(x) solves the PIII(Dg) equation

N2 / 2
y (W) wp Aws 4
wi' = - S -

WJ' X X X

and
wi(x) ~ o/ T(©oc—B0+2n;)sign(1))
24l (1 — 2]y s (§(@o + 2Apy) + F

2
r(2lpy)2sin (37(00 — 2lusl) + F)
] Confluence PlII(Dg) —PIlI(Dg).
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Main results

Further questions

@ The Backlund transformation corresponding to
(©0,000) — (B0 + n,O + n) describes confluence PIII(Dg) —PII.
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Main results

Further questions

@ The Backlund transformation corresponding to
(©0,000) — (B0 + n,O + n) describes confluence PIII(Dg) —PII.

@ The Backlund transformation corresponding to
(©0,000) = (©0 +2n,0) describes confluence PllI(Dg) —PII(D7).
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Main results

Thank you!
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