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EQUATION

We study the Sine-Gordon
Painlevé-III equation

reduction of

Uy, -sinu = 0. (1)

Function u(x) is a nonlinear analogue of Bessel
function J,(x). After substitution w(x) = e
equation (1) becomes Painlevé-III equation.

HAMILTONIAN STRUCTURE

Equation (1) can be written as a non-autonomous
Hamiltonian system,
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The Hamiltonian 4# is given by the formula
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Tau- function is defined by
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NUMERICAL SIMULATION FROM [ 1]

o=0.12—0.251
_ n =0.23 + 0.42i
4 ::- ."'., Slightly different
- definition of 7(x)

was used in [1].

We introduce the differential form considered in [2]: Q = f . Tr(v— 10’ (dS)S™) 5

Prime here denotes the derivative with respect to A. This form acts on vector fields in the space of parameters x, p, g and it is closed.

CONNECTION FORMULA FOR U(X)

The connection formula describes behaviour of u(x) at infinity in terms of its
behaviour at zero. Here are the formulae (see [3])
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I'(z) is Euler's Gamma-function. The formulae are correct under restrictions
| Ima| < 2, |Imv| < 1/2. In particular, they are true for real a and .
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CONNECTION FORMULA FOR TAU-FUNCTION

For tau-function formulae (3),(4) imply
T(x) = Cox~ 5 (1+0(1)),

x — 0,

x?

7(x) =Cox” e T2 (1 +0(1)), x — 00.

Formula (2) defines tau-function up to multiplicative constant. Nevertheless,
question about evaluating the ratio C.,/C, is well-posed. In [ 1] the formula
for this ratio was determined, but proof was not finished. The authors used
recently discovered representation of tau-function as Fourier transform of the
irregular c=1 Virasoro conformal block. The result is the following formula
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Here G(g) is the Barnes G - function. We give arguments for this expression
using Riemann-Hilbert approach.
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DIFFERENTIAL FORM
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If we define T = eJ ‘2 then 7 will satisfy equation (2). Actually one can express Q in terms of u(x). So we have asymptotics for 7(x)
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In 7(x) =—%21nx x — 0,
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Here c; and ¢, do not depend on x, p,q. This formulae allow us to compute the ratio C,/C,.
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RIEMANN-HILBERT SETTING
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Matrix-valued function ¥(A) is sup-
posed to be analytic outside the con-
tour I'.  On contour I' it has conti-
nious limits which satisfy jump con-
dition ¥, (A) = W¥_(A)S(A). Here
“+ 7 denotes the boundary values
from the left side of the contour
and “ — 7 denotes the boundary
values from the right side of the
contour. Jump matrix S(A) is de-
termined piecewise by expressions
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Function W(A) satisfies the following

conditions at zero and infinity

| O(%)), A — 00.
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Py, m; ) here are some constant matrices. If we put
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then u(x) satisfies (1). Parameters p, g € C are related with the parameters

of asymptotic of u(x) via
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