Connection problem for the tau-function of Sine-Gordon reduction of Painlevé-III equation via Riemann-Hilbert approach.

Alexander R. Its, Andrei Prokhorov (IUPUI)

EQUATION

We study the Sine-Gordon
reduction Painlevé-III equation

$$
\begin{equation*}
u_{x x}+\frac{u_{x}}{x}+\sin u=0 \tag{1}
\end{equation*}
$$

Function $u(x)$ is a nonlinear analogue of Bessel function $J_{0}(x)$. After substitution $w(x)=e^{i u(x)}$ equation (1) becomes Painlevé-III equation

HAMILTONIAN STRUCTURE

Equation (1) can be written as a non-autonomous Hamiltonian system,

$$
\frac{d u}{d x}=\frac{\partial \mathscr{H}}{\partial v}, \quad \frac{d v}{d x}=-\frac{\partial \mathscr{H}}{\partial u} .
$$

The Hamiltonian \mathscr{H} is given by the formula

$$
\mathscr{H}=\frac{v^{2}}{2 x}-x \cos u
$$

Tau- function is defined by

$$
\begin{equation*}
\frac{d \ln \tau}{d x}=-\frac{1}{4} \mathscr{H} \tag{2}
\end{equation*}
$$

NUMERICAL SIMULATION FROM [1]

CONNECTION FORMULA FOR U(X)

The connection formula describes behaviour of $u(x)$ at infinity in terms of its behaviour at zero. Here are the formulae (see [3])

$$
\begin{equation*}
u(x)=\alpha \ln x+\beta+O\left(x^{2-|\operatorname{Im} \alpha|}\right), \quad x \rightarrow 0 \tag{3}
\end{equation*}
$$

$u(x)=b_{+} e^{i x} x^{i v-1 / 2}+b_{-} e^{-i x} x^{-i v-1 / 2}++O\left(x^{3|\operatorname{Im} \nu|-3 / 2}\right), \quad x \rightarrow \infty$,
$v=\frac{1}{2 \pi} \ln \left(\frac{\sin ^{2} 2 \pi \eta}{\sin ^{2} 2 \pi \sigma}\right), \quad b_{ \pm}=-e^{\frac{\pi v}{2} \mp \frac{i \pi}{4}} 2^{1 \pm 2 i v} \frac{1}{\sqrt{2 \pi}} \Gamma(1 \mp i v) \frac{\sin 2 \pi(\sigma \mp \eta)}{\sin 2 \pi \eta}$,

$$
\sigma=\frac{1}{4}+\frac{i}{8} \alpha, \quad \eta=\frac{1}{4}+\frac{1}{4 \pi}(\beta+\alpha \ln 8)+\frac{i}{2 \pi} \ln \left(\frac{\Gamma\left(\frac{1}{2}-\frac{i \alpha}{4}\right)}{\Gamma\left(\frac{1}{2}+\frac{i \alpha}{4}\right)}\right),
$$

$\Gamma(z)$ is Euler's Gamma-function. The formulae are correct under restrictions $|\operatorname{Im} \alpha|<2,|\operatorname{Im} \nu|<1 / 2$. In particular, they are true for real α and β.

CONNECTION FORMULA FOR TAU-FUNCTION

For tau-function formulae (3),(4) imply
$\tau(x)=C_{0} x^{-\frac{\alpha^{2}}{8}}(1+o(1)), \quad x \rightarrow 0$,
$\tau(x)=C_{\infty} x^{\nu^{2}} e^{\frac{x^{2}}{8}+2 v x}(1+o(1)), \quad x \rightarrow \infty$
Formula (2) defines tau-function up to multiplicative constant. Nevertheless, question about evaluating the ratio C_{∞} / C_{0} is well-posed. In [1] the formula for this ratio was determined, but proof was not finished. The authors used recently discovered representation of tau-function as Fourier transform of the irregular $\mathrm{c}=1$ Virasoro conformal block. The result is the following formula

$$
\begin{aligned}
& \quad \frac{C_{\infty}}{C_{0}}=\frac{2^{\frac{3}{2}} e^{-i \frac{\pi}{4}}}{\pi\left(G\left(\frac{1}{2}\right)\right)^{4}}(2 \pi)^{i v} 2^{2 \nu^{2}+\sigma^{2} 24-12 \sigma} e^{2 \pi i\left(\eta^{2}-2 \sigma \eta-\sigma^{2}+2 \eta-\sigma\right)} \frac{\Gamma(1-2 \sigma)}{\Gamma(2 \sigma)} \\
& \times\left(\frac{G(1+i v) G(1+2 \sigma) G(1-2 \sigma) G\left(1+\sigma+\eta+\frac{1-i v}{2}\right) G\left(\frac{1-i v}{2}-\sigma-\eta\right)}{G\left(1+\sigma+\eta+\frac{1+i v}{2}\right) G\left(\frac{1+i v}{2}-\sigma-\eta\right)}\right)^{2} . \\
& \text { Here } G(z) \text { is the Barnes } G \text { - function. We give arguments for this expression } \\
& \text { using Riemann-Hilbert approach. }
\end{aligned}
$$

DIFFERENTIAL FORM

We introduce the differential form considered in [2]: $\Omega=\int_{\Gamma} \operatorname{Tr}\left(\Psi_{-}^{-1} \Psi_{-}^{\prime}(d S) S^{-1}\right) \frac{d \lambda}{2 \pi i}+\frac{1}{2} \int_{\Gamma} \operatorname{Tr}\left(S^{\prime} S^{-1}(d S) S^{-1}\right) \frac{d \lambda}{2 \pi i}+\frac{x}{4} d x+\frac{\alpha d \beta}{4}$.
Prime here denotes the derivative with respect to λ. This form acts on vector fields in the space of parameters x, p, q and it is closed. If we define $\tau=e^{\int \Omega}$, then τ will satisfy equation (2). Actually one can express Ω in terms of $u(x)$. So we have asymptotics for $\tau(x)$ $\ln \tau(x)=-\frac{\alpha^{2}}{8} \ln x-\frac{\alpha^{2}}{8}+c_{1}+o(1), \quad x \rightarrow 0$,
$\ln \tau(x)=\frac{x^{2}}{8}+2 v x+v^{2} \ln x+v^{2}-\frac{i}{4} \int\left(b_{+} d b_{-}-b_{-} d b_{+}\right)+\int \frac{\alpha d \beta}{4}+c_{2}+o(1), \quad x \rightarrow \infty$.
Here c_{1} and c_{2} do not depend on x, p, q. This formulae allow us to compute the ratio C_{∞} / C_{0}.

REFERENCES

[1] A. Its, O. Lisovyy, Y. Tykhyy Connection Problem for the Sine-Gordon/Painlevé III Tau Function and Irregular Conformal Blocks, International Mathematics Research Notices, 22 pages, (2014).
[2] M. Bertola, The dependence on the monodromy data of the isomonodromic tau function, Commun. Math. Phys. 294, 539-579 (2010).
[3] A. S. Fokas, A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, Painlevé transcendents: the RiemannHilbert approach, Mathematical Surveys and Monographs 128, AMS, Providence, RI, (2006).

