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AFR-Based Fuel Ethanol Content Estimation in
Flex-Fuel Engines Tolerant to MAF Sensor Drifts

Kyung-ho Ahn, Anna G. Stefanopoulou, Fellow, IEEE, and Mrdjan Jankovic, Fellow, IEEE

Abstract—Flexible fuel vehicles (FFVs) can operate on a blend
of ethanol and gasoline in any volumetric concentration of up to
85% ethanol (93% in Brazil). Existing FFVs rely on ethanol sensor
installed in the vehicle fueling system, or on an ethanol estima-
tion based on air-to-fuel ratio (AFR) regulation via an exhaust gas
oxygen (EGO) or A sensor. The EGO-based ethanol detection is de-
sirable from cost and maintenance perspectives but it is known to
be prone to large errors during mass air flow sensor drifts. Ethanol
content estimation can be realized by a feedback-based fuel cor-
rection of the feedforward-based fuel calculation using an exhaust
gas oxygen sensor. When the fuel correction is attributed to the dif-
ference in stoichiometric air-to-fuel ratio (SAFR) between ethanol
and gasoline, it can be used for ethanol estimation. When the fuel
correction is attributed to a mass air flow (MAF) sensor error, it
can be used for sensor drift estimation and correction. Deciding
under which condition to blame (and detect) ethanol and when
to switch to sensor correction burdens the calibration of FFV en-
gine controllers. Moreover, erroneous decisions can lead to biases
in ethanol estimation and in MAF sensor correction. In this paper,
we present AFR-based ethanol content estimation, associated sen-
sitivity and dynamical analysis, and a cylinder air flow estimation
scheme that accounts for MAF sensor drift or bias using an intake
manifold absolute pressure (MAP) sensor. The proposed fusion of
the MAF, MAP, and X sensor measurements prevents severe mis-
estimation of ethanol content in flex fuel vehicles.

Index Terms—Automotive fault detection, engine control, esti-
mation, sensor drift.

NOMENCLATURE
AFR, Stoichiometric air-to-fuel ratio.
C MAF sensor drift parameter.
e Volume fraction of ethanol in a fuel blend.
em Mass fraction of ethanol in a fuel blend.
Pm Intake manifold absolute pressure.
R Gas constant.
T, Intake manifold temperature.
| Total displaced cylinder volume.
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Vi Intake manifold volume.
Wen Air flow rate into the cylinder.
Wy, Feedback fuel flow command.
Wys  Feedforward fuel flow command.
Wyp  Feedforward fuel flow command not compensated
by the fuel puddle dynamics.
Wy Air flow rate through the throttle.
Greek:
oy Switching signal between ethanol adaptation and
others.
Ot Switching signal in MAF sensor drift adaptation.
Ty Volumetric efficiency.
9 Throttle angle.
A Ratio of actual AFR to stoichiometric AFR.

™ar MAF sensor time constant.

I. INTRODUCTION

ETROLEUM-BASED fossil fuels are the dominant

energy source for transportation. Recently, however,
ethanol is being increasingly used as a fuel additive to support
carbon-neutral transportation. The advantage of ethanol, among
others, is that it is a renewable fuel produced from biomass
such as barley, corn, wheat, sugar cane, trees and grasses. As
mandated by the US government Energy Policy Act of 2005
(EPACT2005), 7.5 billion gallons of bio-fuel will be produced
in 2012 to reduce dependence on fossil fuels. Currently avail-
able flexible fuel vehicles can operate on a blend of ethanol and
gasoline in any concentration of up to 85% ethanol. This blend
is denoted by the EXX nomenclature, where XX represents the
volumetric percentage of ethanol in the blend. In the United
States, E85 is commonly used as an alternative to normal
gasoline fuel.! Flexible fuel vehicles are currently being offered
by many manufacturers.

The characteristics of ethanol differ from those of gasoline,
as shown in Table I. The influence of ethanol fuel on a spark
ignition engine, which are induced by the different properties
from those of gasoline, are well reported in [2]. Often ethanol
fuel is associated with driveability and startability problems in
cold and hot weather [3], [4] and at high altitude [5]. Existing
FFVs achieve lower range (miles driven per tank) when oper-
ating on high ethanol content fuel due to its lower combustion
heating value as compared to gasoline. However, as shown in

IIn Brazil, however, a fuel blend called E100 is a blend of 93% ethanol and
7% of water [1]. Water-ethanol fuel blends are not considered in this paper.
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TABLE I
PROPERTIES OF ETHANOL COMPARED WITH GASOLINE

Property ‘ Gasoline | Ethanol
Research Octane Number (RON) 92 111
Density (kg/m?) 747 789
Heat of combustion (MJ/kg) 424 26.8
Stoichiometric air-to-fuel ratio 14.6 9.0
Boiling point (°C) 20-300 78.5
Latent heat of vaporization (kJ/kg) 420 845

Table I, ethanol has a higher octane ratio and therefore, a higher
compression ratio and higher combustion efficiency can be ob-
tained without knocking problems. Another advantage is that,
the high vaporization heat can be used for charge cooling [6],
which can further improve the knock resistance and potentially
fuel economy. Given the effect of fuel variation, flexible fuel
vehicles (FFVs) should embed engine calibration maps in their
controllers and management systems to account for this varia-
tion. Calibration in an optimized flex-fuel strategy involves re-
liably estimating the ethanol percentage. Although this estima-
tion is possible with the addition of a di-electric or electrochem-
ical ethanol concentration sensor in the fueling system, the relia-
bility and the cost of these sensors might prevent their use. Apart
from the cost and reliability issues associated with such sen-
sors, on-board diagnostic (OBD) requirements would require a
redundant method independent of the fuel sensor for assessing
the ethanol percent in order to diagnose the ethanol sensor faults
or degradation.

Typically ethanol content estimation is initiated after the de-
tection of refueling. This estimation is achieved using an ex-
haust gas oxygen (EGO) sensor which calculates the air-to-fuel
ratio (AFR) under the assumption of stoichiometric conditions
given the closed loop control of fuel injection with the feedback
of A measurements. For example, an increased fuel ethanol con-
tent (say, E40 instead of E0), hence decreased stoichiometric
air-to-fuel ratio (AFR, = 12.5 instead of 14.6) according to
Table I would cause lean (A = 1.4 instead of 1.0) EGO sensor
measurement. Due to the feedback control, the fuel injection
amount increases to reach again the stoichiometric condition
(A = 1). This increase is recognized as decreased AFR; and
hence the stoichiometric air-to-fuel ratio (SAFR)-based ethanol
estimation, called SAFR ethanol from now on, is interpreted as
increased fuel ethanol content. The refueling event trigger is
used to avoid misclassifying ethanol content variations as ac-
tuator faults (drifts) or component aging.

Since the ethanol content estimation relies on the AFR cal-
culated using the cylinder air charge estimation and issued fuel
amount, the ethanol estimation will erroneously compensate for
the air charge estimation error and/or fuel injector error.

The ethanol estimation is very sensitive to fuel injection er-
rors [7] and will be treated in a separate publication since it re-
quires integration with the estimation of fuel injection error as
in [8] and [9] for flex-fuel direct injection (DI) engines equipped
with in-cylinder pressure sensors. In this paper, the fuel injec-
tion system is considered faultless and well-calibrated, and the
focus is on the ethanol estimation during errors arising in the
air-flow path due to MAF sensor drifts.

If the ethanol content or the stoichiometric AFR is known, the
EGO sensor reading may be used in another adaptation against
MATF sensor drift/bias in the same manner as used in ethanol
content estimation. In other words, the calculated AFR can be
used to update a parameter in the air charge estimation with re-
spect to the fixed stoichiometric AFR. The use of EGO-based
fuel feedback compensation to adapt the feedforward fuel com-
pensation in response to errors in the inlet air sensing is now a
common practice [ 10] referred as air charge adaptation. It is nec-
essary to switch between two adaptations namely, the ethanol
adaptation and the air charge adaptation, to avoid misclassifying
ethanol content variations as sensor drifts or component aging.
An appropriate switching logic using the tank refill trigger and
relevant process characteristics should be devised for that pur-
pose. However, this scheme may cause unobservable biases in
estimations because every estimation is dependent on the true
value of other estimations to guarantee convergence to its actual
value. Convergence of estimations to actual values is important
even though there are no true or reference values to which all
estimations can be reset, once a vehicle leaves the factory or un-
dergoes a major maintenance event unless the vehicle operates
with known fuel. This estimation bias during regular field oper-
ation will be briefly discussed in Section III-A.

In this paper, first, a simple stoichiometric AFR estimation
law using the exhaust oxygen sensor is proposed, analyzed and
discussed in light of closed loop regulation of stoichiometric
condition. This law yields the estimated ethanol percentage in
the fuel. This article then focuses on the cylinder air flow esti-
mation under MAF sensor drift or bias using an intake manifold
absolute pressure (MAP) sensor in order to prevent severe mis-
estimation of ethanol content in flex fuel vehicles [11]. The esti-
mation scheme is independent of the exhaust gas oxygen sensor
measurement which is used for ethanol content update via the
closed loop regulation of stoichiometric condition. Therefore,
the switching between this compensation of MAF sensor drift
and the ethanol content estimation is not necessary and the asso-
ciated estimation bias problem can be avoided. Simulations are
performed to characterize the ethanol content estimation algo-
rithm quantifying various sensitivities and to demonstrate the air
flow estimation with compensation of MAF sensor drift using a
MAP sensor realizing robust ethanol content estimation in flex
fuel vehicles.

II. ETHANOL CONTENT ESTIMATION

This section provides the basic AFR-based ethanol content
estimation algorithm. The principle is first described assuming
a perfect AFR regulation at its stoichiometric value with the use
of a A sensor. Air-to-fuel ratio control around the stoichiometric
ratio of a fuel blend is important for the operation of the catalytic
converter. The majority of gasoline engine powertrains rely on
this regulation which is typically achieved by a combination of
feedforward and feedback fuel injection control. The feedback
controller is based on the measured ratio (A) of the actual air-to-
fuel ratio (AFR) to the stoichiometric ratio (AFR ;) through an
exhaust gas oxygen sensor. The A ratio is compared to A% = 1
and the error is used by a proportional-integral (PI) controller
to adjust the feedback fuel command. Despite all the modeling
and control design efforts, the A regulation is not perfect during
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transients. The ethanol estimation could, hence, rely on heavily
filtered signals compromising speed of response for accuracy.
At first glance the importance of accuracy and the frequency
of refueling event may lead to an assumption that speed of re-
sponse can be easily sacrificed. But the ethanol detection pe-
riod also needs to be as short as possible to reduce the prob-
ability of stopping the car and letting it cool down without a
correct ethanol estimation having been established. This pos-
sibility is undesirable since the cold start depends heavily on
correct ethanol estimation.2 It is hence necessary to thoroughly
understand and develop models to address how the intercon-
nected dynamics of the AFR regulation and the ethanol estima-
tion propagate through the detection process and can be tuned.

A. Principle of SAFR Ethanol Estimation

Given an accurate and fast regulation of A to its desired value
Ades — 1 the stoichiometric value (AFR,) can be calculated
from the ratio of the measured mass air flow W and the known
injected fuel mass flow Wiy;

We

AFR, =
7 Wi

(1)

assuming no mass air flow (MAF) sensor drifts or errors in fuel
injection. The SAFR ethanol estimation is also based on the fol-
lowing two basic relations. First, let e denote the volume frac-
tion of ethanol in gasoline-ethanol blend. And let e,,, denote the
mass fraction of ethanol. Then, ¢,,, is expressed as:

CPeth c &

em = = = (2)
€poth + (1 - e)pgsl e+ (11.652)

(1—e)pgsi
¢+ Peth
where pe¢, = 789 kg/m3 and pgq = 747 kg/m3 denote the den-
sity of ethanol and the density of gasoline, respectively. Second,
the stoichiometric air-to-fuel ratio for flex fuel is expressed as

AFR, =9 %X ¢, + 14.6 X (1 — e,,). 3)

Hence, the volume fraction of e@@ol, e, 1s calculated from an
estimated stoichiometric AFR, AFR, through the ¢,,
146 — ATFR,
€m = - s (4)
5.6
é\m,

1.056 — 0.056 x &,

c=

)

B. Dynamic SAFR-Based Ethanol Estimation

Although the AFR regulation to its stoichiometric value is
very fast, it is clear from (4)-(5) that the ethanol estimation needs
to tune-out A excursions due to load changes. The basic SAFR
principle described above can be augmented with an add-on
filter or the basic SAFR scheme can be slightly modified using
adaptive control principles instead of being a static function of
the measured fuel and air measurement to account for these
load-induced X excursions. To design this dynamic SAFR-based
ethanol estimation scheme the full system dynamics of the air,

2Ethanol needs a higher gaseous concentration in air to be flammable, be-
cause it does not contain some of gasoline’s highly volatile components such
as pentane and hexane [12], [13]. Due to these factors, the required fuel flow
rate per cycle event during cold start would vary for different gasoline-ethanol
blends.

the fuel, and the A regulation need to be considered. Fig. 1 shows
the block diagram of AFR control with the proposed dynamic
SAFR-based ethanol estimation. Due to the long delays in the
A feedback loop, most engine controllers employ a feedforward
fuel command which is primarily derived from the estimated
cylinder air charge divided by the assumed stoichiometric ratio
of the assumed fuel blend. Furthermore, the feedforward is usu-
ally designed to eliminate the transient effects of fuel puddle dy-
namics [14], [15] in port fuel injected (PFI) engines as shown in
Fig. 2. Since the puddle dynamics is dependent on the ethanol
content, estimation of ethanol content may also be used for the
transient fuel compensation (TFC). A model of fuel puddle dy-
namics with alternative fuels is discussed in [16]-[18] where a
fuel blend is modeled as a certain combination of organic com-
pounds that mimics the distillation behavior of an actual fuel.
When the assumed stoichiometric ratio is correct, and there are
no errors in the air charge and fuel puddle dynamics estimation,
and no drifts or faults in the injector, the feedforward fuel com-
mand is then perfect and the feedback fuel compensation should
be zero. An estimation algorithm can utilize a nonzero feedback
fuel command to adapt and improve the feedforward fuel com-
pensator so that the feedback converges back to its nominal zero
value.

In the case of an FFV, the engine management system will
have to make a decision and assume that the error arises from
changes in the fuel blend or from component (sensor, actuator)
aging. The ethanol content estimation is then realized through
a fuel adaptation loop by integrating the fuel feedback control
signal, Wy

AFR, = —Ye Wy ter (6)

where A/F\RS denotes the estimated stoichiometric AFR of the
injected fuel, 7. is the adaptation gain, cv,. is a triggering vari-
able which enables the ethanol estimation by setting it to a, =
1 after detecting a tank refill event. The fuel feedback controller
can be emulated by any integral-based controller, and without
loss of generality, we assume a simple proportional-integral (PT)
feedback control signal

Tp1s + 1 -

(1-X. (7

To tune the gains . in (6) one has to consider the full dynamic
system and the kpy and 7py of the A regulation loop as discussed
in the next section.

Wy, = Cpp(s)(A* = X) = —kpr

C. Closed-Loop SAFR Estimation System Dynamics

Letus consider the linearized dynamics of the system with the
simple AFR estimation law about a fixed stoichiometry and a
fixed cylinder air flow associated with a specific load (manifold
pressure) and engine speed. Fig. 2 shows the phenomenological
process considered once the fuel command W;,; is issued to the
injectors all the way until A is measured by the EGO sensor
(cylinder block of Fig. 1 including fuel puddle dynamics for a
PFI engine). We assume that the fuel puddle dynamic behavior
is expressed as a linear time invariant (LTI) transfer function in
the neighborhood of the chosen equilibrium point given by

(1-X)rs+1

Gra(s) = el ®
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where X and 7 denote the wall-impacting fraction of the in-
jected fuel and the vaporization time constant of the fuel puddle,
respectively [19]. The cylinder input X is by definition

Wyt
Wy

AFR,

. )
where Wy denotes the air flow rate into the cylinder, Wy the
fuel flow rate into the cylinder and AFR; the stoichiometric
air-to-fuel ratio. The quantity W is the fuel flow rate that ef-
fectively enters the cylinder related with the fuel injection rate,
Wiyj, by the fuel dynamics such that

Wi = Gra(s)Winj. (10)
Let the Padé approximation of the transport and induction-to-
power (IP) delay from the cylinder input A to the exhaust A be

, 1—%s
5 9

where 74 is the delay time which depends on engine speed. Let
us express the A sensor lag as
1

GSl(S) - 1+ 7,8

(12)

where 7, is the time constant which lumps the chemical, the
electrical, and the communication delays of the EGO sensor.
The measured A is then expressed as
;\ = qu(é)Gd(S))\ (13)
Let us define G(s) as
G(3) 2 Gya(5)Ga(s)Gsls). (14)

The control law without the feedforward compensation of the
fuel dynamics can be summarized as

Wing =Wier + Wy (15)
Wen

w = % 16

vy (16)

I/Vfb = Cfb(é)(l - 5\) (17)

AFR, = — 7.Wp, (18)

where the feedback controller, C;(s), is assumed to be a PI
controller as in (7). Note that here the air flow rate into the
cylinder is assumed to be exactly estimated, W, = Wy,
for the PI gain tuning analysis in Cy, (7). The closed-loop
system is expressed by the set of equations of (9), (10), (13),
and (15)—(18).
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The ability of the overall system to regulate A and to estimate
the actual AF R is shown in detail in the Appendix along with a
tuning approach for the three gain v, and the kp; and 7py given
the engine dynamics.

Fig. 3 illustrates a simulated example of ethanol estimation
with different estimator gains under the same operating sce-
narios. The engine model introduced by Crossley and Cook [20]
was utilized while maintaining the engine speed at 2000 RPM
for throttle-to-cylinder air charge dynamics assuming that the
rotational dynamics are much slower than the mass air flow and
pressure dynamics. In the simulation, the fast estimation used
the estimator gain v, = 5000 selected in Appendix while the
slow estimation used . = 500. The actual ethanol content
changed from 10% to 85% and several throttle step changes
were applied during the ethanol content change. No MAF sensor
error was introduced in the simulation. This example illustrates
the following problem associated with slow ethanol estimation.
If the car has stopped (engine turned off) at the 60th second or
after 1/2 min of running after refueling, the slow ethanol estima-
tion would have had stopped with an E50 instead of E85 value.
An example of such a stop immediately after refueling is fueling
stations at a rest stop. Cold start with assumed E50 instead of the
accurate E85 could have been a problem.

As a solution, one would think that fast ethanol estimation
is necessary to avoid the above problems by shortening the pe-
riod of ethanol content estimation. However, speeding up the
ethanol estimation introduces another problem from the strong
interaction between throttle-induced A excursions and ethanol
estimation. This interaction is clearly shown in the ethanol esti-
mation plot in Fig. 3 associated with fast ethanol estimation: the
ethanol estimation shows significant transient responses caused

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 21, NO. 3, MAY 2013

by throttle changes (or A excursions). The overall difficulties of
tuning the simple simultaneous ethanol estimator and AFR reg-
ulator are discussed in the Appendix. We concentrate next in an
even harder and more important problem, namely, the ethanol
estimation during a MAF sensor drift.

III. SENSITIVITY OF SAFR-BASED ETHANOL ESTIMATION

This section assumes that the adaptive law (18) and the PI
loop (17) converge at steady state and A, = 1 (lambda regu-
lation is achieved). Suppose that a faulty MAF sensor is used
and assume there is neither injector fault nor EGO sensor error.
Let f. be the MAF sensor error fraction such that Wy = (1 +
fo)Ws, where W is the measured mass air flow through the
throttle and Wy is the actual. The estimated air flow rate into
the cylinder in the steady state is then also expressed as

(19)

The fuel injection or fuel flow rate into the cylinder is solely
determined by the feedforward command in the steady state

Weyl = (1 + fe)Vchl-

—

Wen

Wy = —2L
7 ATR,

(20)
Due to the A Pl-based feedback loop, A is regulated at unity,
and consequently, the actual steady-state AFR is regulated at
the stoichiometric value independently of the fuel

Vchl chl T 1 =y
AFR, = AFR = —— = —— - AFR, = AFR,.
Wf chl 1 + fe
1)

If the stoichiometric air-to-fuel ratio is expressed by the mass
fraction of ethanol, the following equation is obtained:

OXem +146x (1 —¢p) 1

= 22
99X €+ 146 x (1 —¢,,) 1+ fe 22)

where e,,, and é,,, are the actual mass fraction of ethanol and the
estimated mass fraction of ethanol, respectively. The estimated
mass fraction of ethanol, é,,, is then expressed as a function of

fe and Crn
. 14.6
Em — €m — fe (% _em,> .

The estimated volume fraction of ethanol, € can be then calcu-
lated by (5).

Fig. 4 shows the volumetric ethanol content estimation with
5% MAF sensor error. The MAF sensor error fraction is ampli-
fied to ethanol content error by factor of about 2.6 for E0 and of
about 1.8 for E85, respectively.

Simulations were performed to see the transient closed loop
system response with simultaneous sensor errors. Errors in air-
charge estimation, mass air flow (MAF) sensor and manifold
temperature sensor were introduced with an error factor of 5%
separately and at a time to check the sensitivity of the ethanol
estimation.

The PI control gains and the estimator gain were determined
as discussed in Appendix: 7p; = 0.3, kpp = 0.0015, and ~, =
5000. The poles corresponding to the selected gains are marked
as points on the root loci of Figs. 17 and 18 in Appendix.

(23)
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Fig. 6. Manifold absolute pressure and air flow rate into the cylinder induced
by throttle input.

Fig. 5 shows the simulation input. Throttle angles were mod-
ulated with a sequence of step changes and also a step change of
real ethanol content was applied. Initially the fuel used is gaso-
line and then it is changed to E35. Because of this fuel change,
different fuel dynamics parameters were used during the time
span of E35 to account for the dynamic dependency on the fuel
composition:

® XE35 = 03()1,

* TEp3; = 0.4287.

Fig. 6 shows the change in the manifold absolute pressure and
the air flow rate into the cylinder induced by the throttle change.
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Figs. 7-10 show the simulation results. The relative air-to-fuel
ratio A and the estimated ethanol content asymptotically track
their desired values. The A error is very sensitive to an air-charge
error. It is also moderately sensitive to manifold temperature
sensor error, whereas, it is insensitive to MAF sensor error. The
estimated stoichiometric AFR or the estimated ethanol content
converges to the actual value except for the case of MAF sensor
error where the steady-state ethanol percent estimation shows a
30% sensitivity.
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Fig. 10. Simulated ethanol content estimation.
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Fig. 11. Simulated example of switching estimations of ethanol and MAF
sensor drift with fast and slow ethanol estimations.

A. Switching Adaptation

The triggering variable «, in Fig. 1 may be used to deac-
tivate the ethanol adaptation (ct;,, = 0) and activate the other
adaptation loop that corrects the engine maps and/or drifts in
sensors and actuators.

Fig. 11 shows a simulated example of conventional switching
estimations of ethanol content and MAF sensor drift. In the sim-
ulation, the actual fuel changes between E20 and E60 are ex-
aggerated to show qualitatively what would happen after many
refueling. We also assume that the MAF sensor error fraction
fe drifts from 0 to —0.2. The switching variable o, changed
properly between 0 and 1, where «;,. = 1 selected the ethanol
content estimation and «;, = 0 the MAF sensor error fraction
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(or bias) estimation, respectively. In Fig. 11, i, = 1 around
1200 s simulates ethanol detection by refueling event without
actual change of ethanol contents. Again, fast and slow ethanol
estimations were simulated with the same operating scenarios.
Let us first look at the estimation results in Fig. 11 associated
with slow ethanol estimation. The MAF sensor drift occurring
during the ethanol estimation periods is unobservable and it is
incorrectly allocated in the ethanol estimation, hence the accu-
racy of the ethanol estimation is reduced proportionally to the
duration of the estimation period.

In the second example in Fig. 11, the estimation results as-
sociated with fast ethanol estimation is even poorer because the
transient responses induced by the throttle changes were not ac-
counted for at the transition moments from ethanol content es-
timation to MAF sensor drift estimation.

The solution to this problem would be a more comprehen-
sive criterion for switching ethanol estimation on and off. The
new switching criterion would involve monitoring throttle vari-
ability and switching between the two estimations only when
steady-state driving has been achieved. This solution is practi-
cally equivalent with having a slow ethanol estimation with a
longer ethanol estimation period where the MAF sensor drifts
are unobservable and misallocated in estimated ethanol.

We propose a cylinder air flow estimation scheme indepen-
dent of the ethanol estimation in the following sequel, where
the MAF sensor drift is estimated using additional manifold ab-
solute pressure measurements.

IV. SPEED-DENSITY METHOD

In order to avoid problems in the switching adaptation dis-
cussed in Section III-A, the cylinder air flow should be estimated
and account for the MAF sensor drift, independently of A mea-
surement. For this purpose, an intake manifold pressure sensor
may be utilized. Using a manifold absolute pressure (MAP)
sensor may be suitable in the sense that the associated cost is
low. A conventional method from which the cylinder air flow
can be calculated using MAP is the speed-density method

e

Pm
chl =T _Vd

2 'RT, @9

where p,,, denotes the manifold absolute pressure, 7, is the vol-
umetric efficiency, n. is the engine speed (in rps), and V; is the
total displaced cylinder volume. Since 7, bears relatively high
uncertainty, estimating cylinder air flow only using the MAP
measurement via this equation is not a good idea. Therefore, we
will still use the MAF sensor measurement and the drift will
be compensated by the MAP measurement via the speed den-
sity equation. Note that any error fraction in MAP results in the
same amount of error fraction in cylinder air flow from the nom-
inal speed-density equation

6chl

OPm
=Am 25
W (25)

p'n"l,

where nominal speed-density equation assumes that the volu-
metric efficiency, 1, is independent of MAP, p,,,, 1.¢., not a func-
tion of p,,, , which is not strictly true in some real engines though.
Therefore, the potential ethanol estimation error during MAP
drift may not be worse than the ethanol estimation error during
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MAF drift. Moreover, MAP sensor accuracy is usually much
better than MAF sensor accuracy [21], [22]. This fact justifies
the idea of using MAP sensor to correct MAF sensor drift.

V. HIGH GAIN OBSERVER FOR INPUT ESTIMATION

The purpose of this section is to review the input estimation
algorithm that will be used in subsequent sections for correcting
MAF sensor drifts. Stotsky and Kolmanovsky have applied the
following high gain observer technique to cylinder air charge
estimation using a manifold pressure sensor [23]. Their work
serves as a basis for the compensation of MAF sensor drift in
this paper.

We consider an input estimation problem arising from a first-
order dynamic system

=yt (26)

where the signals z and y are measured, but  is a unknown
time-varying input which has to be estimated on line. A high
gain observer is defined in terms of auxiliary variables ¢ and v
such that the estimation of z is given by

T =vz—wv 27
where
ce2i-—r=yzr—v-—=z (28)
and v satisfies
0= —yv +yy + 22 29)

Here +y is a positive observer gain. Evaluating the derivative of
v along the solutions of system (28) one obtains

¢ = —ye — d. (30)
Assume now that 7 is bounded, i.e., that there exists a positive
constant by such that sup, ||£(¢)|| < b;. Multiplying (30) by
2¢, and using an estimate ||2:¢|| < 32/ + ~e? it follows that
de? /dt < —~e® + b? /~ and the following transient bound for
the estimation error is obtained:

b2
(Ol < 4/ e(0)2e + 7_12

Transient bound (31) implies that the upper bound on the es-
timation error for any £ > 0 can be made arbitrarily small by
increasing the design parameter v > 0. Note that if one defines
2 = v/, then (29) reduces to 2 = —v(£—z)+y. Thus 2 can be
viewed as an estimate of z, provided y > 0 is sufficiently large.

The same result can be obtained by filtering both sides of (26)
with a low pass filter [23].

(€2))

VI. ESTIMATION OF FLOW THROUGH THE THROTTLE

A. MAF Sensor Dynamics Including Drift

The MAF sensor dynamics can be described by a first-order
lag [24]

1 _
(Wo — W)

(32)
TMAF

where 747 47 1s the MAF sensor time constant, Wy is the actual
flow through the throttle, and W is the measured flow through
the throttle by the MAF sensor.

The MAF sensor dynamics with drift can be modeled through
a biased sensor gain

: 1

Wé’,n = — (We,n - WQ) (33)
. TMAF
Wo=(1+C)YWy,, (34)

where Wy ., is the mass air flow through the throttle body of
the nominal system and C is a parameter that affects the MAF
sensor gain.

The MAF sensor dynamics is then expressed as

1

TMAF

7, -

(Wo— (1+C)Ws) . (35)

B. Throttle Flow Estimation

To estimate the input, Wy, the high gain observer previously
discussed is utilized. Equation (35) is exactly (26) with z = W,
Yy = _(1/7—MAF)W0 andz = (l/TMAF)(l + CYWy. Thus, we
apply the input observer, (29) and (27), to (35)

bp = — 105 — — LW + 2 W, (36)
TMAF
We =mvar(vsWe — vy) 37
where W is defined as
We 2 (1+C)\W, (38)

/WC is the estimation of W and «y¢ is an observer gain. If we
know the sensor drift C, from the adaptation in Section VIII, we
can estimate Wy

We

I/}[?:
T a0

(39

where Wg is the estimation of Wj.

VII. ESTIMATION OF ENGINE CYLINDER FLOW

This section restates the same observer design as discussed in
[23], which utilizes an intake MAP sensor to estimate the engine
cylinder flow. The same observer can be effectively utilized to
compensate for the volumetric efficiency variation caused by
ethanol content variation in gasoline-ethanol blended fuel, re-
gardless whether the variation is indeed large or not.

A. Manifold Filling Dynamics

The intake manifold filling dynamics is modeled as an
isothermal intake manifold pressure model

RT,,

an

pm = (WH - chl)~ (40)
A conventional technique for estimating the cylinder flow into
a spark ignition (SI) engine involves a speed-density (24). The
volumetric efficiency bears uncertainty and it may be calibrated

by the engine dynamometer test. In any case, the cylinder air
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flow can be viewed as a sum of nominal cylinder flow and an
uncertainty term
Woyl = Weprn + AWy 41
with the nominal cylinder flow W, expressed as a function
of MAP, p,,,, engine speed, n., and possibly ethanol content in
the fuel blend, e
ch],n = (42)

cyl,n (pm: e, (3).

The intake manifold filling dynamics, (40), then becomes

RT,, RTy,

I W —
v Ve Vin

W(;yl,'n) -

AWer  (43)

Pm =

B. Cylinder Flow Estimation

Equation (43) is exactly the same as (26) with z = p,,,
y= (Rﬂn/vrn)(vvﬁ - chl,n)a T = _(RTIYL/VVR)AWIC}’I' BY
applying the high gain observer, (29) and (27), to (43), the fol-
lowing input observer is obtained:

RT,,
= —yu+7y (Wg — Wgyl,n) + 'YQPm (44)
. Vin
AWen = RT,, (0 =1Pm) e

where AWN is the estimation of AW, and vy is an observer
gain. The cylinder flow estimation is then expressed as

I/chl - chlvn + (U - PYpm) ﬁm (46)
. RTm, frsnp
D= —r v (Weyl — Woe). 47)

The intake manifold absolute pressure sensor is fast but may
give noisy signals. A low pass filter can be utilized to filter
out such noise. The isothermal intake manifold pressure model,
(40), is used to avoid an excessive phase lag. Based on (40), a
low pass filter can then be developed if Wy and W, are known

RT,,
VTIL

P =

(VVB - chl) + Ty (ﬁm - ﬁm) (48)
where p,,, is the estimated intake manifold absolute pressure and
Pm 1 the measured pressure by the intake manifold absolute
pressure sensor. Observers (47), (46), and (48) are combined to
yield one observer scheme. In (47) and (46), the manifold abso-
lute pressure, p,,, is replaced by the filtered manifold absolute
pressure, Pr, . In (48), the cylinder flow, W1, is replaced by the
estimated cylinder flow, chl. The combined observer is then

summarized as

. RTm el
i = =y (Wt = Wo) (49)
= ' ~ ‘/m
chl (‘\l n (pm s Ney ) ( - ”Ypm) RTrn (50)
~ RTm _ ~
Pm = (W [ W{‘,yl) + ’Yp(pm, - pm) (51)

Vin

VIII. MAF SENSOR DRIFT ADAPTATION

The drift parameter ¢ needs to be known to obtain the esti-
mation of the throttle flow, Wg, in (39). If we can estimate the
cylinder flow, W1, independently of the MAF measurement,
the throttle flow, Wy, can be estimated using (40) with MAP
measurement. Equation (40) is exactly the same as (26) with
z2 = pm, Yy = —(BTw/Vi)Wey and z = (RT,,./V,.)Ws.
Thus, we may apply the input observer, (29) and (27), to (40).
The nominal cylinder flow equation, (42), may approximate the
original speed-density (24) very well in a limited region of op-
erating conditions. We then use the nominal cylinder flow in
applying the input observer

™m

n—— 52
T (52)

. 2
Up = — YnUn — I/chl.n + YnPm

VVH,W = m(’}%pm - 'Un)- (53)
Introducing a triggering variable, 3;,, the following drift param-
eter adaptation can be utilized:

¢ = vo(We — (1 + CYWo ) Bur (54)
where f3;,. is 1 in a limited region of operating conditions where
the nominal cylinder flow equation is very good to approximate

the original speed-density equation and is 0 elsewhere.

IX. COMBINED AIR CHARGE ADAPTATION SCHEME

The observers discussed so far are combined to yield one ob-
server scheme for cylinder air flow estimation. The throttle flow
observer, (36), (37), and (39), the cylinder flow and manifold
absolute pressure observer, (49)—(51) and the MAF sensor drift
parameter observer, (52), (53), and (54), are combined replacing
actual variables by estimated variables

vf = (55)
We =mar(vs WH - 'Uf) (56)
— W,

Wy = — (57)
(1+C)
. RTm, psts) I17
V=7 (Wey1 — We) (58)
chl - Acvl n + (IU - Pﬂ%n) Vm (59)

: o RTHL

./\ RT — A
Pm = v (Wﬁ - chl) + Yy (pm - pm) (60)

ch],n = cyl,n(ﬁmv Ne, P) (61)

. Ty, —

Un = — VnUn — Vn <77 % chl nt 'Vnpmv (62)

o ‘/m ~ /
WH,)/V = RTm (’anm - fUn) (63)

C =10(We — (14 CYWow)Bur- (64)
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X. STEADY-STATE ANALYSIS

The proposed fifth-order observer uses MAP, MAF, n. and
an estimated ethanol content to derive a feedforward fuel calcu-
lated, Wy 51 = W1/ AFR,, that accounts for the MAF sensor
drift. The estimated ethanol is still based on (6). We omit the
stability analysis although this can be achieved using a Lya-
punov-like function as in [23] or evaluating closed-loop ob-
server eigenvalues of the linearized system for selection of the
five available gains. In this section, we evaluate the proposed
scheme and the errors it can introduce. Its potential drawbacks
are highlighted in order to critically evaluate its potential con-
tributions. For steady-state analysis, we assume that there is no
noise in MAP measurement, i.e., p,, = pPy.. The calculation is
straightforward by setting all state equations or all state deriva-
tives to zero. In equilibrium computation, the state (64) is auto-
matically set to zero if 3;. = 0. From all state equations other
than (64), the steady-state results are obtained

Wf@ = chl (65)
W@ = WC = (1 + YWy = (1 + C)VVCyl (66)
Ijm = Pm (67)
= = W, W,
W’cvl = WH = CA = 9/\
' 1+C) (1+0C)
1+C 1+C
= =~VVg = = chl (68)
1+C 1+C
WH,I/V = chl,n = Vchl,n~ (69)
The steady-state estimation errors are then
~  ~ (O-cC C
Wey1 = We = =~Wey1 = — =Wy (70)
i 1+C - 1+C -
P =0 (71)

where estimation errors are defined as chl = Wen — chl,
17179 £ Wo — W\g, Cico- 6’, and p,,, 2 Dm — Pm. From (70),
we can consider the following three different special cases.
1) Ifthere is no steady-state error in drift parameter estimation
(C = 0), there is no error in cylinder air flow estimation in
steady state

Weyl 0. (72)

O=0 "
This is a desirable result because our estimation purpose
is to enhance accuracy of cylinder air flow estimation by
correcting MAF sensor drift.

2) Even ifthere is no MAF sensor drift (C' = 0), the proposed
cylinder estimation will rely on the estimated sensor drift
with following cylinder air flow estimation error in steady
state:

— o )
chl‘c:u = ——=Wen

1+C )

In this case, if MAF sensor drift compensation fails to es-
timate the actual value (C' = 0) correctly, it may cause un-
desirable cylinder air flow estimation error which would

not appear were it not for the drift compensation. Since the
drift parameter estimation depends on the accuracy of the
nominal cylinder flow expression, (42), and is not always
activated according to the switching trigger (., misesti-
mation of the drift parameter is not negligible indeed.

3) If there is no MAF sensor drift compensation (C' = 0),
there is the following cylinder air flow estimation error in
steady state:

Wenlg_y = ~CWeyr- (74)
This case corresponds to use of a conventional cylinder
flow estimation scheme without any compensation of MAF
sensor drift. The estimation error of (74) results in ampli-
fied error in ethanol content estimation after all, hence mo-
tivating our drift compensation scheme discussed so far.

Equation (73) shows estimation performance degradation un-

necessarily caused by using the estimation algorithm proposed

in this paper if there is actually no MAF sensor drift at all. How-
ever, (74) shows why the proposed algorithm is worth using if
the MAF sensor drift is not actually negligible.

In a region of operating conditions where the nominal
cylinder flow equation is a very good approximation of actual
cylinder air flow, i.e., B, = 1, the following equilibrium
equation holds from (64):

We = (14 C)Wy . (75)

The following steady-state estimation results are then immedi-

ately obtained from (68) and (69):

— ——~ o~ AW](- s
Wt =Wy =Wep, C=C+(1+C)——2 (76)
cyl,n
Steady-state estimation errors are then
~ o~ ~ AW,
Wi = Wo = AWy, C=—(1+ C)W—yl. (77)
cyln

If a cylinder flow equation perfectly fits to the actual cylinder
air flow, i.e., AW,y = 0, there will be no errors in cylinder air
flow estimation and drift parameter estimation as shown in (77),
ie, Weyy = 0and C = 0.

XI. SIMULATIONS

Simulation of cylinder air flow estimation under MAF sensor
drift is performed in the configuration of AFR control with
ethanol content estimation as shown in Fig. 1. Note that a
measured intake pressure signal is additionally provided to the
air charge estimation block in Fig. 1 in this simulation. We
use the same manifold breathing dynamics as provided in [20]
and the cylinder block is simulated with a fuel puddle model
developed for a port fuel injected (PFI) flex-fuel engine [18].
The puddle compensation block is realized by a transient fuel
compensator using the fuel puddle model in [18]. In (34), the
drift parameter C' may actually vary very slowly around zero

We = (1 + C(t))Wﬂ,n
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Fig. 12. Cylinder air flow at 2000 RPM.

TABLE 11
PARAMETERS AND OBSERVER GAINS USED IN SIMULATION
Parameters ‘ Value | Unit | | Gains Values Unit
TMAF 0.02 sec Y 27
9
Bl 41328 | bar/kg J _1
™ Yp 17 sec
\ —1 Yn 5
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Fig. 13. Simulated inputs and ethanol estimation error.

In this simulation, the following first-order drift model is uti-
lized to give slow variation of drift parameter, C(7):
. 1
VV:: = __(W:’ - WH):

Tz

z

C=CwW,

where the drift time constant 7, = 60 s and the drift gain C' =
5.0 s/kg are used. Fig. 12 shows the cylinder air flow versus
manifold absolute pressure, p,,, at a fixed engine rpm used in
the simulation. The solid line is for the actual flow, W, and is
used in the engine simulation, and the dashed line is the nom-
inal flow, Wy ,,, modeled by the nominal speed-density equa-
tion and used in the observer. This deviation emulates possible
uncertainty in speed-density equation. Note that the nominal
cylinder flow is close to the actual around p,,, = 0.5 bar. There-
fore, we assume that the known region of operation conditions
for good speed-density approximation is around p,, = 0.5 bar
for simulation.

Parameters and observer gains used in simulation are summa-
rized in Table II. These gains were tuned by looking at eigen-
values of the linearized closed-loop observer system matrix.

Fig. 13 shows simulated inputs, the throttle angle and the
ethanol content. Throttle is modulated with a sequence of sev-
eral step changes emulating tip-ins and tip-outs. The ethanol
content is changed from zero, which means gasoline, to 85%
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Fig. 14. Estimation result. (a) MAP. (b) Throttle flow. (c) Cylinder air flow.

with a ramp profile and then it is changed to 55% later again
with a ramp profile. The second plot also depicts the estimated
ethanol content which is very sensitive to cylinder air flow es-
timation error. The third plot shows the ethanol content estima-
tion error. We can observe that the steady-state error is quite al-
lowable actually due to the improved estimation of cylinder air
flow. The ethanol content estimation error reduces as time goes
by in the first several seconds and this is due to the fact that the
estimated drift parameter, C, converges closer to the actual as
shown in Fig. 15.

Fig. 14 shows the estimation results. MAP measurement is
corrupted adding white noise to the simulated actual manifold
absolute pressure. We can observe reduced noise level in the
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Fig. 16. Simulated A and fuel injection. (a) Simulated A. (b) Simulated fuel
injection.

filtered pressure signal without much lag in Fig. 14(a). Perfor-
mance of the throttle air flow estimation and the cylinder flow
estimation is quite good. Nominally estimated signals, Wy 1
and W\Cylm, show big errors in operating conditions where the
nominal speed-density equation suffers from large deviation
from the actual.

Fig. 15 shows the drift parameter estimation and the trigger
which changes according to operating conditions. Note that
steady-state error in drift parameter estimation remains even
if B, is set to 1 because the (nominal) modeled cylinder flow
through the speed density equation differs from the actual
cylinder air flow equation. The triggering for this simulation is
designed at 2000 engine rpm as

= _J1, if0.4bar < py, < 0.6 bar
Ber(t) = {07 otherwise (78)
1, ifG3.(r)=1, V7 €[t—0.5,1]
(1) = ' .
Fur (1) {(), otherwise (79)

to avoid chattering. Fig. 16(a) shows the A output and Fig. 16(b)
shows the controlled fuel injection results. The air-to-fuel ratio
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is regulated around stoichiometry. The PI feedback signal en-
ables the ethanol content estimation. We can observe that the
total fuel injection and feedforward fuel injection increase in
the interval of ethanol content change. Again, the ethanol con-
tent estimation is always possible as long as the feedback con-
trol is activated regardless of MAF sensor drift and uncertainty
in speed-density equation. Nevertheless, the accuracy of the
ethanol estimation is still degraded if an exact MAF drift com-
pensation is not possible due to significant error in the speed
density model with degradation of cylinder air flow estimation.

XII. CONCLUSION

In this paper, estimation of the ethanol content in flex-fuel
vehicles using an AFR-based approach using the stoichiometric
AFR control based on A sensing is demonstrated with a model.
The closed-loop dynamics are derived to capture the distur-
bance rejection characteristic for A regulation and the associated
ethanol estimation error. Tuning of the fuel feedback control and
the ethanol estimation gains are shown with root loci and non-
linear simulations.

As the high sensitivity of the AFR-based ethanol content esti-
mation to MAF sensor error is shown, a cylinder air flow estima-
tion scheme that accounts for mass air flow sensor drift or bias
is developed in order to avoid misestimation of ethanol content.
First, we discuss the consequences, such as possible estimation
biases resulting from switching between ethanol and cylinder
air flow estimations using an EGO sensor. To obtain a more
reliable cylinder air flow estimation by compensating for the
MAF sensor drift, the intake manifold pressure sensor signal is
utilized together with the speed density principle at selected op-
erating regions. The proposed algorithm involves switching on
the correction of MAF sensor drift at operating regions where
there is high confidence that the speed density model has high
accuracy. Simulation is performed to demonstrate the air flow
estimation with the compensation of MAF sensor drift using an
intake manifold pressure sensor. In the simulation, the effect
of the air flow estimation on the ethanol content estimation in
flex fuel vehicles is shown with a realistic assumption of engine
modeling accuracy.

APPENDIX
TUNING OF THE BASIC SAFR ESTIMATION
AND AFR CONTROLLER

A simple tuning approach for the combined AFR regulation
and ethanol estimation is provided below. It is shown that al-
though both objectives are simultaneously achieved at steady-
state, there is a dynamic coupling that complicates the controller
tuning.

The simple dynamic analysis and tuning follows a classical
linear control approach. We use the superscript © to express a
nominal value at equilibrium and use ¢ to express the devia-
tion from the equilibrium. Since we want the estimated stoi-
chiometric AFR, AFR,, to track the actual stoichiometric AFR,
AFR,, we consider the SAFR estimation error dynamics as
well. First, we define the estimation error variable, esrg, 2
AFR, — AFR,.

It is straightforward calculation to obtain the linearized
closed-loop dynamics by differentiating system equations with
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respect to a nominal set point [25]. The linearized closed-loop
dynamics results in

5)\ _ Tl(S) TQ(&) (5W6y1 (80)
bearr, | | T3(s) Tu(s)]| | 6AFR,
where the closed-loop transfer functions are
1 X721+ 7y8)(1 + 2s)
Ti(s) = . 2
1(9) WCOYI D(S) (81)
1 214 7es)(Ts + 1)(1 + Zts)
Ty(s) = — . 82
9=~ IR0 D(s) (82)
1 Yekp1X7s(Tprs + 1)(1 — Fts)
Ta(s .
=, DG 9
1 Yekp1(tprs + 1)(7s + 1)(1 — Fts)
T4(S) =1— 0 - .
AFR? D(s)
(84)
with
D(s) 2 s ( )(1+rs Wrs+ 1)+ kpr

: 5) (1-X)rs +1) (1_ Tz—dg) (rprs + 1).
(85)

Yo 1
AFRY) W}

It is easy to check that the DC gains of the closed-loop transfer
functions, 71 (s), Ta(s), T5(s), and T4 (s) are all zero with posi-
tive gains, which implies the disturbance rejection characteristic
for the output AFR regulation (6.1) and for the estimation error
dearnr, . Therefore, the A output is asymptotically regulated to
unity, ensuring stoichiometric operation, and the estimation of
stoichiometric AFR asymptotically converges to the actual sto-
ichiometric AFR if positive gains can be found that guarantee
stability and good performance for all the four transfer functions
in (80).

PI Gain Tuning of the A Feedback Controller: For the gain
tuning of the feedback PI controller, consider the system of a
fixed stoichiometry without the stoichiometric AFR estimation.
This is equivalent to setting v, = 0 and 6AFR,; = 0 in the
closed-loop dynamics equation associated with 6\ from (80).
The closed-loop dynamic behavior is then expressed as

1 1- Gfd(s)

WO

S\ =
00 1+ ﬁG(S)Cﬂa(S)

OWoeyt. (86)

The variable p; in the PI feedback controller can be determined
by placing the controller zero to cancel the slowest stable pole
of G(s). If the slowest pole is associated with the fuel dynamics,
we can set 7p; = 7. The root locus with variation of £py can then
be utilized to tune the gain, kp;. Fig. 17 shows the root locus of
the closed-loop transfer function with the variation of kp; for a
fixed 7p1. To obtain the locus in Fig. 17, the engine parameters
were chosen as:

e X=03,7=03s,74=02s,7, =0.07s.
The PI control gains were tuned to

¢ TP — 0.3, kPI = 0.0015.

20 ‘ ‘ : : :
sensor pole
151 1
puddle zero
10r . 1
Pl integrator pole
e Of / delay zero |
2 yd
o 0p
©
E
_5 = -
=10 puddle pole cancelled .
with Pl controller zero
_1 5 - 4
delay pole
- 0 1 1 i L L 1 1 1
-15 -10 -5 0 5 10 15 20 25 30
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Fig. 17. Root locus with the variation of kpy.
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Fig. 18. Root locus with the variation of 7.

Ethanol Estimator Gain Tuning: First, the root locus is ap-
plied for the D(s) in (85) for a set of fixed feedback gains, 7p1
and kp1, determined by the method of the previous subsection.
Fig. 18 shows the root locus of the original closed-loop transfer
functions with the variation of . for a set of fixed feedback
gains previously tuned. The estimator gain -y, affects the nu-
merator of both transfer functions, 73(s) and 74(s), and hence
tuning the gain is not clearly explained only with the root locus.
However, the estimator gain where the roots cross the imagi-
nary axis in the locus (see Fig. 18) is 7. = 1.7 x 10°, which
determines the range of . for stability. The estimator gain was
actually chosen after a few simulations as

e . = 5000
which is much smaller than the stability bound. Smaller gains
may result in slower ethanol adaptations but reducing undesir-
able transient responses. Implication of different estimator gains
has been addressed in Section III-A.
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