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ABSTRACT
Model-based state of charge (SOC) estimation with output

feedback of the voltage error is steadily augmenting more tradi-
tional coulomb counting or voltage inversion techniques in hy-
brid electric vehicle applications. In this paper, the state (SOC)
estimation error in the presence of model parameter mismatch is
calculated for a general lithium ion battery model with linear dif-
fusion or impedance-based state dynamics and nonlinear output
voltage equations. The estimation error due to initial conditions
and inputs is derived for linearized battery models and also ver-
ified by nonlinear simulations. It is shown that in some cases of
parameter mismatch, the state, e.g. SOC, estimation error will
be significant while the voltage estimation error is negligible.

1 INTRODUCTION
With a battery model available, it is a common practice to

design an estimator with voltage feedback, such as a Luenberger
observer or a Kalman filter, to estimate the internal states and
then obtain the battery State of Charge (SOC), State of Power
(SOP) and State of Health (SOH) [1–4]. According to linear sys-
tem theory, if a plant model is observable and known perfectly,
then one can design a stable observer so that the estimated states
x̂ and output ŷ will converge to those of the real plant despite
errors in initial conditions. In this way, an estimator with out-
put feedback can be used to estimate the unmeasurable variables
based on measurable ones, which cannot be achieved as well by
open loop model when subject to unknown initial conditions, un-
measured disturbances and noise. For battery management appli-
cations, a Kalman filter is often applied to estimate SOC [1–3].

∗Address all correspondence to this author.

In applications, models may have different parameters from
the real battery, referred to as parameter mismatch, for many
reasons, such as cell to cell variation, temperature change, cell
degradation and imprecise model identification. Many seminal
papers have shown that adaptive schemes can be used to identify
model parameters and then estimate the battery states [2, 4–7].
However, adaptive schemes and the parameter update law rely
on the error between the predicted and the measured voltage, not
the state (e.g. SOC), which can be more meaningful and critical.
So it is of great practical interest to investigate the estimation er-
rors in the presence of parameter mismatch, especially the errors
in the state when the errors in voltage are negligible.

This work can be viewed as a precursor to a more formal and
rigorous identifiability study similar to the one in [8]. The work
in [8] utilized an implicit model of the electrolyte and solid diffu-
sion coupled with a distributed current density. Important param-
eters were indicated by input (current)-output (voltage) relation
but with limited information or insight on their importance and
effect. This paper, instead, will focus on exploring the effects of
inaccurate parameters on state estimation based on simpler mod-
els with voltage feedback. The asymptotic state error induced by
parameter mismatch is calculated for linearized battery models,
and simulated for nonlinear models with voltage feedback. This
work can guide adaptive schemes in selecting the critical set of
parameters or strengthen modeling efforts by pointing to the im-
portant features to be captured in a control-oriented model.

In Section 2, a generalized battery model formulation for
simplified explicit electrode-averaged electrochemical models
and equivalent circuit models is developed. Analytical deriva-
tions of state estimation error are performed in Section 3 for lin-
earized battery models. Simulation results with nonlinear lithium
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ion battery models are used in Section 4 to further clarify the ex-
pected errors under model mismatches.

2 LITHIUM ION BATTERY MODEL
In this section, it is shown that many battery models can be

generalized in a state-space representation with linear state equa-
tions, where the state matrix A depends on the diffusion-related
dynamics, B on the capacity, and a nonlinear output equation for
the voltage:

ẋ = Ax+Bu, y = f (x,u). (1)

The models considered are (i) a simplified electrochemical
model describing the lithium ion transport during charging and
discharging processes, (ii) equivalent circuit models, and in the
simplest case, (iii) an OCV-R model using coulomb counting for
SOC estimation.

An equivalent circuit model [9], as shown in Fig. 1, can be
summarized with the state space representation

d
dt


SOC
Vc1
· · ·
Vcn

=


0 0 · · ·
0 −1

Rc1C1
· · ·

· · ·
0 · · · −1

RcnCn




SOC
Vc1
· · ·
Vcn

+

− 1

Q
1

C1
· · ·
1

Cn

 I

V = OCV (SOC)−
n

∑
i=1

Vci −RI.

(2)

In Eq. (2), the first state captures the bulk charge (SOC). The re-
sulting open circuit voltage (OCV ) is connected in series with n
R-C circuits, where the states are the capacitor voltages, Vci. Us-
ing as input u the current I, which is positive for discharging, and
output y as the terminal voltage V , the equivalent circuit model is
clearly in the form of Eq. (1), where A is a diagonal matrix whose
diagonal elements include the bulk SOC integrator and the nega-
tive inverse of all RciCi elements. B depends on the bulk capacity
of the battery Q and the various capacitances Ci, and the output
terminal voltage is the summation of OCV as a nonlinear func-
tion of SOC, the voltage across the capacitors Vci, and voltage
drop due to overpotential. Overpotential is here considered to be
purely resistive, computed as the product of an internal resistance
R and current I. It is noted that the OCV and all the resistances
are potentially functions of temperature and SOC. Such variabil-
ity and other uncertain factors, motivate this study on the effects
of parameter mismatch on the SOC estimation error.

For simplicity, an OCV-R model will be used for analysis,
shown in the dashed box in Fig. 1, which can be written:

˙SOC =− I
Q
, V = OCV (SOC)−RI (3)

Figure 1. EQUIVALENT CIRCUIT MODEL SCHEMATIC [9]

where the state is SOC and the current I and voltage V correspond
to input u and output y respectively. For the parameters, A is zero
in this case, B is the inverse of the battery capacity Q, f is the
nonlinear OCV function, and R is the internal resistance.

Eq. (1) can also be used for a control-oriented simplified
electrochemical model [1], as shown in Fig. 2. In this model,

Figure 2. SIMPLIFIED ELECTROCHEMICAL MODEL SCHEMATIC [1]

lithium ions migrate between cathode and anode spherical repre-
sentative particles during the charging and discharging processes.
The lithium storage medium, the cathode particle here, is sliced
into n pieces, and the concentration of each slice csi constitutes
one state. The SOC is related to the bulk lithium concentration,
which is calculated as the average of all the states. The input is
the external current I addressing the galvanostatic operation, and
the output is the terminal voltage V . The model can be written as

d
dt


cs1
cs2
. . .
csn

=
Ds

∆2
r
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1
2 −2 3

2 · · ·

0 0
. . . 0

0 · · · n−1
n − n−1

n




cs1
cs2
. . .
csn

+ 1
AeδFas∆r


0
0
. . .
n+1

n

 I

V = OP(csn, I)+OCV (csn)−R f I.
(4)
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The state matrix A is now the diffusion dynamic matrix, basically
the discrete implementation of Fick’s 2nd law. Input matrix B is
related to the electrode dimensions relevant to capacity. Specif-
ically, Ae is the electrode area, δ is the electrode thickness, as is
active particle surface and ∆r is the spatial discretization param-
eter. The concentration at the particle-electrolyte interface, cse, is
related to the last state csn and represents the lithium immediately
available. It can be viewed as the SOP [5]. The terminal voltage
V consists of the overpotential OP as a nonlinear function of cse
and current, OCV , and a lumped ohmic voltage drop.

Based on the analysis of the above three very common mod-
els, the state(s) x for a lithium ion battery model is the energy
storage level, either lithium concentrations or SOC, input u is
current I, and the output y is the terminal voltage V , which is
described by a nonlinear function f of the state and input.

A typical OCV profile of a LiFePO4/C battery is shown in
Fig. 1. Such a nonlinear OCV function is flat in the middle SOC
range and quite steep at the two ends, and thus it can be approxi-
mated by a piecewise linear function with three pieces as shown
in Fig. 1. More complicated nonlinear OCV profiles can be lin-
earized around multiple nominal points, and such piecewise lin-
ear representations are very convenient for control analysis and
design. The states, input and output of the model are now the
deviation of variables around nominal points. The previous non-
linear OCV function is replaced by linearized approximations.

Specifically, after linearization, the nonlinear OCV function
for an OCV-R model becomes

δV = αδSOC−RδI (5)

where α = ∂OCV
∂SOC

∣∣
SOC0

is the slope of the OCV curve at a nom-
inal point SOC0. The voltage function for the equivalent circuit
model in Eq. (2) will turn into

δV = αδSOC−R1δI −
n

∑
i=1

δVci. (6)

The voltage function for the simplified electrochemical model in
Eq. (4) will now be

δV =
[
0 · · · ∂OP

∂csn
+ ∂OCV

∂csn

]δcs1
· · ·

δcsn

+(∂OP
∂I

−R f

)
δI. (7)

In summary, Eq. (1) fits some of the most commonly used
control-oriented battery models in galvanostatic mode with volt-
age feedback. The state matrix A represents model dynamics,
the input matrix B is capacity dependent, the voltage approxi-
mated by y = Cx + Du, where C depends on the slope of the
OCV curve, and D directly corresponds to the lumped ohmic re-
sistance. This way, the model formulation in Eq. (1) can be used

as a general form in the subsequent analysis. It is also interesting
to note that there is always one and only one eigenvalue at zero
for those lithium ion battery models considered, which captures
the accumulation of Li concentration or bulk SOC. In this paper,
we are concerned with bounded input, bounded output stability,
and thus the eigenvalue at zero, which represents an integrator,
is unstable. Dynamics associated with stable poles will diminish
in steady state while those associated with unstable poles will re-
main and might even grow unbounded. The unstable eigenvalue
of the battery model is an important physical attribute and will be
explored in the subsequent derivations of SOC estimation error.

3 ESTIMATION ERROR ANALYSIS FOR GENERAL
LINEAR BATTERY MODELS
An observer for linear systems takes the form

˙̂x = Ax̂+Bu+L(y− ŷ), ŷ =Cx̂+Du (8)

where x̂ and ŷ are estimated states and output and L is the ob-
server gain. The difference between the measured and the esti-
mated output is used as feedback to correct the estimated states.
For an actual lithium ion battery, there could be parameter mis-
match due to cell to cell variation, temperature change and cell
degradation, so it is of practical interest to quantify those estima-
tion errors and evaluate which modeling error is the most critical
to reduce during the modeling phase or with on-line adaptation.

In this section, estimation errors will be defined first and
their response to inputs and initial conditions will be derived for
a general linearized battery model. Detailed analysis of model
errors for the linear model will then be performed based on the
error transfer functions.

3.1 Derivation for Estimation Errors
If the model parameters are not known perfectly for the ob-

server, the whole system takes the form

ẋ = Ax+Bu, y =Cx+Du
˙̂x = Âx̂+ B̂u+L(y− ŷ), ŷ = Ĉx̂+ D̂u

x ∈ Rn u ∈ R1 y ∈ R1

(9)

where Â, B̂, Ĉ, and D̂ represent the parameters adopted for the
observer, which might be different from the real parameters A,
B, C and D. Note here that x0 and x̂0 is the deviation of states
from the nominal point. For general battery models, there could
be more than one state, such as spatially varying concentrations
for electrochemical models, but one output (voltage). Denote the
state and output estimation errors by

ex = x− x̂, ey = y− ŷ. (10)
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The Laplace transforms of ex and ey are given by

Ex(s) =(sI − Â+LĈ)−1([ex,0 +(∆A−L∆C)(sI −A)−1x0]

+ [(∆A−L∆C)(sI −A)−1B+∆B−L∆D]U(s)
)

Ey(s) =
C(sI −A)−1x0 −Ĉ(sI − Â)−1x̂0

[1+Ĉ(sI − Â)−1L]

+
C(sI −A)−1B−Ĉ(sI − Â)−1B̂+∆D

1+Ĉ(sI − Â)−1L
U(s)

(11)

where ex,0 = x0 − x̂0 ̸= 0, ∆A = A− Â, ∆B = B− B̂, ∆C =C−Ĉ,
and ∆D = D− D̂ denote the mismatch between modeled and real
parameters. The impact of the initial conditions and inputs on the
estimation errors will be evaluated in the subsequent sections.

3.2 Analysis of the Estimation Error due to unknown
initial conditions

In this section we consider only the response to initial con-
ditions and thus assume that the current input is equal to zero. It
follows from Eq. (11) that

Ey(s) =
C(sI −A)−1x0

1+Ĉ(sI − Â)−1L
− Ĉ(sI − Â)−1x̂0

1+Ĉ(sI − Â)−1L
. (12)

It can be shown by the following analysis that the steady state er-
rors for ey will be zero if the unstable dynamics of the real battery
are accurately modeled in the observer. The unstable dynamics
consists of the single eigenvalue at the origin, representing the
bulk SOC state, and it is reasonable to assume that the observer
also contains an integrator to model the accumulation/depletion
of the lithium ion. Hence the voltage estimation error will be
asymptotically equal to zero, even under parameter mismatch.
Eq. (12) is now used to derive this conclusion.

By applying the easily proven matrix identity (I + Ĉ(sI −
Â)−1L)−1Ĉ(sI− Â)−1 = Ĉ(sI− Â+LĈ)−1, we have that the sec-
ond term on the right hand side of Eq. (12), which is the error
induced by x̂0, is equal to Ĉ(sI − Â+LĈ)−1x̂0. Its poles are the
eigenvalues of the observer, denoted as λCLE . As long as the esti-
mator is designed to be asymptotically stable, λCLE will be stable
and converge to zero eventually.

The first term on the right hand side of Eq. (12), which is the
error induced by x0, is denoted as

C(sI −A)−1x0

1+Ĉ(sI − Â)−1L
=

D̂(s)
D(s)

N(s)
D̂(s)+ N̂(s)

C(sI −A)−1x0 =
N(s)
D(s)

, 1+Ĉ(sI − Â)−1L = 1+
N̂(s)
D̂(s)

.

(13)

It is clear that the roots of D(s) are the eigenvalues of A, denoted
as λA, the roots of D̂(s) are the eigenvalues of Â, denoted as λÂ,

and the roots of D̂(s)+ N̂(s) are the eigenvalues of the observer,
λCLE . It can be argued that if Â has the unstable eigenvalue of A
at zero, i.e. the model captures the bulk charge integrator, the un-
stable roots of D(s) and D̂(s) will get canceled in Eq. (13). Hence
the poles for the first term on the right hand side of Eq. (12) will
be the stable roots of D̂(s)+ N̂(s), λCLE , and the uncanceled sta-
ble eigenvalues of A. In this way, the steady state value for the
first term on the right hand side of Eq. (12) will be zero.

Based on the above analysis, when Â models the bulk charge
integrator, Ey(s) can be written by partial fraction expansion as

Ey(s) =

(
n

∑
i=1

Rx0→y
CLE,i

s−λCLE,i
+

k

∑
i=1

Rx0→y
A̸=Â,i

s−λA̸=Â,i

)
x0 +

n

∑
i=1

Rx̂0→y
CLE,i

s−λCLE,i
x̂0

(14)

where Rx0→y
CLE,i are the residues of the error induced by x0 associ-

ated with λCLE , Rx0→y
A ̸=Â,i

are residues of the error induced by x0 as-

sociated with eigenvalues of A that are not canceled by Â, namely
λA ̸=Â,i, and Rx̂0→y

CLE,i are the residues of the error induced by x̂0 as-
sociated with the eigenvalues of the observer. The steady state
value of ey will be zero since all the poles are stable.

An OCV-R model can be used for illustration, where A =
Â = 0, and Eq. (14) becomes

EV (s) =
αδSOC0 − α̂δ ˆSOC0

s+ α̂L
, (15)

where δSOC0 and δ ˆSOC0 are the deviation of the battery and
estimator SOC from the nominal point. The steady state error
will be zero.

A similar analysis can be conducted for ex. If only the un-
forced response of the state estimation error is considered, Ex(s)
can be reduced to

Ex(s) = (sI − Â+LĈ)−1[ex,0 +(∆A−L∆C)(sI −A)−1x0]. (16)

It can be observed that the poles of Ex are the eigenvalues of the
observer, λCLE , and the eigenvalues of A, λA. The unstable pole
of A might result in a non-zero steady state ex. Partial fraction
expansion for Eq. (16) shows

Ex(s) =
n

∑
i=1

R
ex,0→x
CLE,i

s−λCLE,i
ex,0 +

n

∑
i=1

(
Rx,0→x

CLE,i

s−λCLE,i
+

Rx0→x
A,i

s−λA,i
)x0 (17)

where R
ex,0→x
CLE,i are the residues of Ex,ex0(s) associated with eigen-

value λCLE,i, Rx,0→x
CLE,i are the residues of Ex,x0(s) associated with

eigenvalue λCLE,i and Rx0→x
A,i are the residues of Ex,x0(s) asso-

ciated with the eigenvalue of A matrix λA,i. The term
R

x0→x
A,0

s x0
associated with λA,0 = 0 of A contributes a steady state error.
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Taking an OCV-R model for illustration, Eq. (17) becomes

ESOC(s) =
seSOC,0 −L∆αδSOC0

s(s+Lα̂)
(18)

with steady state error

eSOC(∞) =−∆α
α̂

δSOC0, (19)

which indicates that the final error in SOC estimation due to ini-
tial errors is proportional to the mismatch in OCV slope ∆α and
the deviation of the initial battery from the nominal point δSOC0.

3.3 Analysis of Estimation Error Response to Input
This section evaluates the estimator errors in the presence of

parameter mismatch when current is applied to the battery. When
only the input is considered, Ex and Ey are obtained by keeping
the second term on the right hand side of Eq. (11) as

Ex(s) =(sI − Â+LĈ)−1[(∆A−L∆C)(sI −A)−1B

+∆B−L∆D]U(s)

Ey(s) =
C(sI −A)−1B−Ĉ(sI − Â)−1B̂+∆D

1+Ĉ(sI − Â)−1L
U(s)

(20)

As to be expected, the estimation errors during charging and dis-
charging will be affected not only by the mismatch in system
dynamics (Â ̸= A) and OCV (Ĉ ̸= C), but also by the mismatch
in capacity (B̂ ̸= B) and resistance (D̂ ̸= D).

3.3.1 Estimation Errors induced by Mismatch in
Capacity (∆B). If only mismatch in capacity (∆B) is consid-
ered, it is going to be shown that the estimation errors for both
the states and the output will be finite when subject to bounded
inputs. In this case, Eq. (20) can be reduced to

Ex(s) = (sI −A+LC)−1∆BU(s)

Ey(s) =
C(sI −A)−1∆B

1+C(sI −A)−1L
U(s).

(21)

The poles of Ex(s) will be the eigenvalues of the observer, λCLE ,
which are all stable. Ey(s) can be proven to be equal to C(sI −
A+LC)−1∆BU(s), and then it is obvious that

Ex(s) =
n

∑
i=1

Ru→x
CLE,i

s−λCL,i
U(s), Ey(s) =

n

∑
i=1

Ru→y
CLE,i

s−λCL,i
U(s). (22)

The poles of both Ex and Ey will be the λCLE . Since all the poles
of the observer, λCLE , are stable, the error response to step input
will be finite in steady state.

If an OCV-R model is used as an example, Eq. (22) becomes

ESOC(s) =
∆Q

QQ̂(s+Lα)
I(s), EV (s) =

α∆Q
QQ̂(s+Lα)

I(s) (23)

and their steady state values will be

eSOC(∞) =
∆Q

QQ̂Lα
I, eV (∞) =

∆Q
QQ̂L

I. (24)

From Eq. (24) it can be seen that mismatch in capacity (∆Q) will
result in finite errors for both SOC and voltage estimation when
subject to fixed current input. The errors are proportional to the
amount of mismatch and the current magnitude. Increasing the
observer gain L amplifies such errors but makes estimation more
sensitive to measurement noise.

3.3.2 Estimation Errors induced by Mismatch in
OCV Slope (∆C). When there is only mismatch in the local
slope of the OCV curve (C), it can be established that the steady
state error in output estimation, Ey, will be finite while the error
in state estimation will be an integral of current over time. Under
this scenario, Ex(s) and Ey(s) can be obtained as

Ex(s) =−(sI −A+LĈ)−1L∆C(sI −A)−1BU(s)

Ey(s) =
∆C(sI −A)−1B

1+Ĉ(sI −A)−1L
U(s).

(25)

For Ey(s), by following the same argument as in Eq. (13), it can
be established that all its poles are the eigenvalues of the ob-
server, which are all stable and thus ey will converge to a finite
steady state error.

For Ex(s), its poles consist of the eigenvalues of the observer
and the A matrix. Thus the transfer functions will have one un-
stable pole corresponding to the zero eigenvalue of A. Hence the
SOC estimation error will be an integral of the current over time.
The significance of this error depends on the practical operation
in most applications, where the current is cut off when the bat-
tery hits a certain voltage limit. In this way, this error will stop
growing and be bounded by the operating range of the battery.

For an OCV-R model, ESOC(s) and EV (s) will be

ESOC =
−∆α
Qα̂

(
1
s
− 1

s+Lα̂
)I(s),EV =

∆α
Q(s+Lα̂)

I(s). (26)

As shown in Eq. (26), the estimation errors for SOC will be an
integral of current over time due to a pole at zero. The estima-
tion error for voltage will reach ∆α

Qα̂L I, which is proportional to
the amount of mismatch in the local OCV slope. Increasing L
reduces the error in voltage estimation.
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3.3.3 Estimation Errors induced by Mismatch in
Resistance (∆D). In this case, ex will converge to a finite
value when subject to step inputs, while ey will be zero in steady
state. These facts follow by simplifying Eq. (20):

Ex(s) =−(sI −A+LC)−1L∆DU(s)

Ey(s) =
∆D

1+C(sI −A)−1L
U(s).

(27)

The poles of both Ex(s) and Ey(s) are the eigenvalues of the
closed loop observer, indicating finite steady state estimation er-
rors. Furthermore, it can be proven that Ey(s) has zero at the ori-
gin which is the eigenvalue of A. Consequently, the steady state
error for output estimation subject to step inputs will be zero.

The OCV-R model can also be used as an example for illus-
tration, where

ESOC(s) =− L∆R
s+Lα

I(s), EV (s) =
∆Rs

s+Lα
I(s) (28)

and the steady state values will be

eSOC(∞) =
∆R
α

I, ,eV (∞) = 0. (29)

3.3.4 Estimation Errors induced by Mismatch in
System Dynamics (∆A). The forced responses of the esti-
mation errors when there is only mismatch in system dynamics
A are given by

Ex(s) = (sI − Â+LC)−1∆A(sI −A)−1BU(s)

Ey(s) =
C(sI −A)−1B−C(sI − Â)−1B

1+C(sI − Â)−1L
U(s).

(30)

As for the mismatch in system dynamics ∆A, the only unstable
eigenvalue for the general battery models considered in Section 2
is the one at zero. The dynamic matrix Â of the observer is most
likely going to preserve that zero eigenvalue since it predicts the
bulk SOC behavior. Consequently, ∆A, if any, will be caused
by a mismatch of the stable eigenvalues of the A matrix and the
resultant steady state errors will be finite. Quantitative analysis
of the effect of ∆A will have to deal with the specific structure of
a battery model, and is now under investigation for the general
battery models discussed earlier.

To summarize the results of Section 3.3, the estimation er-
rors induced by current inputs are different in the presence of
different parameter mismatch. A mismatch in capacity (B) will
induce finite steady state errors in both voltage estimation and
SOC estimation. A mismatch in local OCV slope (C) may cause
finite steady state errors in voltage estimation while the errors in

SOC estimation will be an integral of current over time, due to an
unstable pole at zero in its transfer function. If there is mismatch
in resistance (D), voltage estimation will not be affected under
step inputs but a finite SOC estimation error will be induced at
steady state. The steady state errors due to mismatches in ca-
pacity and local OCV slope can be reduced by increasing the
observer gain L at the cost of sensitivity to measurement noise.

4 SIMULATION FOR NONLINEAR MODELS WITH EX-
TENDED KALMAN FILTER
Simulation of nonlinear lithium ion battery models is con-

ducted to augment the theoretical conclusions for linearized
cases. Specifically, an extended Kalman filter is applied for state
estimation, where the nonlinear function mapping the state to the
output is preserved,

ẋ = Ax+Bu, y = f (x,u)
˙̂x = Âx̂+ B̂u+L(y− ŷ), ŷ = f̂ (x̂,u).

(31)

The observer gain L is tuned based on model fidelity and mea-
surement noise. With an extended Kalman filter, there would be
no approximation errors brought by linearization and the analysis
can be extended to the whole range of operation instead of a cer-
tain region around nominal point. An OCV-R model is used here
for simulation with constant charging current applied. The OCV
curve of a 55mAh A123 LiFePO4 pouch cell taken from exper-
iment is used here for simulation. The OCV and mismatched
OCV curves are shown in Fig. 3. Simulation results are shown
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Figure 3. OCV MISMATCHES.

in Fig. 4, Fig. 5, Fig. 6 and Fig. 7.
Estimation errors due to initial conditions are simulated by

using the nonlinear OCV and mismatched OCV curves shown at
the right side of Fig. 3, where there is a larger mismatch in OCV2

6 Copyright © 2011 by ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 02/17/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



0 100 200 300 400 500
0

5

10

15

20

e S
O

C
 (

%
)

 

 
Mismatched OCV1,SOC

0
=0.6

Mismatched OCV2,SOC
0
=0.6

Mismatched OCV2,SOC
0
=0.7

0 100 200 300 400 500
0

0.005

0.01

0.015

0.02

0.025

t (s)

e V
 (

V
)

Figure 4. ERRORS FOR SOC AND VOLTAGE ESTIMATION SUBJECT
TO INITIAL CONDITIONS.

than in OCV1. It is shown in Fig. 4 that errors in voltage esti-
mation always go to zero. But the steady state SOC estimation
error depends on the extent of mismatch in OCV and the initial
SOC deviation from the 50% point, where the OCV curve and
the mismatched ones are pinned. These are in accordance with
the conclusions from the linear derivation in Eq. (19).
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Figure 5. ERRORS FOR SOC AND VOLTAGE ESTIMATION INDUCED
BY MISMATCH IN CAPACITY SUBJECT TO FIXED CURRENT INPUT.

When there is only mismatch in capacity (B), the battery
model is simulated by charging from 0% to 100% SOC, and thus
the time scale 0−3500s for the estimation errors corresponds to
0% to 100% SOC in a linear relation in Fig. 5. Since the OCV-R
model has no extra dynamics besides an integrator and the error
dynamics for the observer are fast, eSOC and eV can be viewed as
in quasi steady state in Fig. 5. It can be seen that both estimation
errors are proportional to the amount of mismatch in capacity

and the inverse of L. As obtained in Eq. (24), the steady state
eSOC is proportional to α−1, which is the inverse of the slope of
the OCV curve, and thus it follows the shape of α−1 from 0%
to 100% SOC, as shown in Fig. 5. Consequently, the maximum
error occurs in the flat middle SOC range, where α−1 reaches
maximum. Meanwhile, eV will be more consistent because its
steady state value obtained from linear derivation is not related
to α according to Eq. (24) and its values are quite small.
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Figure 6. ERRORS FOR SOC AND VOLTAGE ESTIMATION INDUCED
BY MISMATCH IN RESISTANCE SUBJECT TO CURRENT INPUT.

For mismatch in resistance D, the battery is also simulated
by charging from 0% to 100% SOC. The SOC estimation error
is proportional to the amount of mismatch (∆D), and the volt-
age estimation error fluctuates around zero, as shown in Fig. 6.
Observer gain L doesn’t have much effect here. Similar to the
case of mismatch in capacity (B), as predicted by Eq. (29), eSOC
follows the shape of α−1 from 0% to 100% SOC, and the max-
imum error occurs in the flat middle SOC range as α−1 reaches
its peak. Linear derivation also supports the nonlinear simulation
where the steady state eV fluctuates around zero.

For mismatch in the OCV curve, simulations have been con-
ducted with both nonlinear OCV functions and piecewise linear
approximations. It is noted that due to the flatness of the OCV
curve in the middle SOC range, small measurement errors in the
intermediate points, e.g. 10-20mV, which are quite typical in
industrial applications, can result in significant mismatch in the
slope of the OCV curve in that range, as shown in Fig. 3. Step
current input simulation starts at 50%SOC to give zero initial
estimation error. As predicted by Eq. (26), simulation with the
piecewise linear approximation of OCV in Fig. 3 shows that eSOC
response is an integral of current over time in the middle piece
of the OCV curve, and simulation with nonlinear OCV curves
demonstrates similar growing eSOC. The growing rate of such er-
rors are determined by the extent of mismatch and smaller L will
slow down error dynamics, which are also in accordance with
Eq. (26). When SOC goes beyond the flat middle range, eSOC
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Figure 7. ERRORS FOR SOC AND VOLTAGE ESTIMATION INDUCED
BY MISMATCH IN OPEN CIRCUIT VOLTAGE CURVE SLOPE SUBJECT
TO FIXED CURRENT INPUT.

drops back to zero because the mismatched curves are pinned at
the end. The error eV is generally negligible comparing to eSOC.

5 CONCLUSION
In this paper, voltage and SOC estimation errors in the pres-

ence of battery model parameter mismatch are investigated. A
summary of the calculations is listed in Tab. (1). It is clear that
model parameter mismatches can cause significant state (SOC)
estimation error while the voltage estimation error is generally
negligible. Therefore, although an estimator with voltage feed-
back can significantly reduce the errors in voltage estimation in
the presence of parameter mismatches, it is still highly desirable
to obtain accurate model parameters for precise SOC estimation.

The OCV curve may have a major impact on the estimation
error behavior. It can be quite flat and close to linear in the mid-
dle SOC range, and thus mismatch in the slope of OCV curve can
be easily created by small measurement errors. This will cause
the SOC estimation error to grow as an integral of current over
time in the middle SOC range. For hybrid electric vehicles, it can
be problematic since they usually operate in that range and the
eSOC at the two ends of that range can be significant. For battery
electric vehicles, although the error in SOC estimation is small
near 0% and 100%, the erroneous estimation of SOC in the mid-
dle range might cause some gauge problems for the customers,
e.g. over or under-estimation of the navigation range. In addi-
tion, the flatness of the OCV curve in the middle SOC range will
also amplify the SOC estimation errors caused by mismatch in
other battery parameters. Clearly, efforts to tailor lithium ion bat-
tery chemistry to avoid the flat OCV regions will help in SOC es-
timation [10]. Until then, OCV parameterization and its change
during battery aging needs carefully modeling and characteriza-
tion even with the most advanced SOC estimation algorithms.

Table 1. ESTIMATION ERRORS IN THE PRESENCE OF PARAMETER
MISMATCH SUBJECT TO INITIAL CONDITIONS AND INPUTS.

eSOC eV

SOC0, ˆSOC0 ∝ (∆C,SOC0) 0

I,∆B(Capacity) ∝ (∆B, 1
L ,α

−1) ∝ (∆B, 1
L )

I,∆C(OCV ) ∝ (
∫

Idt,∆α) ∝ (∆C, 1
L )

I,∆D(Resistance) ∝ ∆D,α−1 0
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