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ABSTRACT

Medium trucks constitute a large market segment of the 
commercial transportation sector, and are also used 
widely for military tactical operations. Recent 
technological advances in hybrid powertrains and fuel 
cell auxiliary power units have enabled design 
alternatives that can improve fuel economy and reduce 
emissions dramatically. However, deterministic design 
optimization of these configurations may yield designs 
that are optimal with respect to performance but raise 
concerns regarding the reliability of achieving that 
performance over lifetime. In this article we identify and 
quantify uncertainties due to modeling approximations or 
incomplete information. We then model their propagation 
using Monte Carlo simulation and perform sensitivity 
analysis to isolate statistically significant uncertainties. 
Finally, we formulate and solve a series of reliability-
based optimization problems and quantify tradeoffs 
between optimality and reliability. The most relevant 
design parameters of the diesel engine, fuel cell, 
driveline and vehicle are considered. The results 
demonstrate the necessity for addressing uncertainty to 
make valid assessments and design decisions.

INTRODUCTION

Improving the fuel efficiency of medium-sized trucks 
(Class 6) has significant dual-use implications, as 
increasing fuel prices strain both the commercial 
transportation industry and military logistics support. 

Fuel is not only consumed while the trucks are being 
driven, but also when they stand still. Traditional 
configurations use the diesel engine to supply the 
energy needed for climate control and cabin accessories 
and/or performing utility-truck tasks in the commercial 
sector, and surveillance and communication tasks in the 

military sector. This is a poor strategy because the 
engine is operating under highly inefficient conditions, 
i.e., low speed and load. In addition, it is environmentally 
detrimental due to the increased emissions. Lastly, it is a 
source of noise, which is especially undesirable for 
military operations. 

Recent efforts for improving fuel efficiency of medium 
trucks have focused on hybridizing the powertrain. 
Previous simulation studies of coordinated power 
management and optimal design have shown that 
hybrid-hydraulic configurations yield higher fuel 
economy benefits relative to electric-hybrid 
configurations, particularly for highly-transient duty 
cycles.  Fuel economy improvements of up to 47% were 
reported for a delivery truck [1], and 32% for a larger 6x6 
off-road medium tactical truck [2].  The advantages of 
the hydraulic hybrid option were attributed mostly to their 
superior efficiency in energy regeneration and storage. 
Nevertheless, there is an increasing need for on-board 
electric energy in both commercial and military trucks in 
order to supply the required power for electric 
accessories used during the so-called “silent-watch”.  To 
eliminate the need for excessive near-idle engine 
operation and overcome the energy density and capacity 
disadvantages of batteries, while fully exploiting the 
benefits of the hybrid-hydraulic configurations, fuel cells 
(FC) are considered as auxiliary power units (APUs) 
enabling electrification of powertrain components [3-7]. 
A recent simulation-based analysis demonstrated that 
using a fuel cell APU can improve fuel economy up to 
10% while driving and almost six times while at 
standstill, during the silent watch (relative to using a 
diesel engine only) [8].  The benefits of electrifying the 
accessories and powering them with the FC APU during 
driving are over-and-above the improvements resulting 
from hybridization. 
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The aforementioned encouraging results were obtained 
by optimizing a selected set of vehicle system level 
design parameters (engine size, hydraulic pump-motor 
size and gear ratio, and accumulator parameters), and 
without considering details of engine-design.  In addition, 
the optimization and consequent evaluation of the fuel 
economy potential of a particular technology was 
performed in a deterministic manner, without considering 
possible uncertainties in design and operating 
parameters, hence the motivation for further work.  In 
the first part of this article, we use high-fidelity tools for 
simulating the diesel engine, driveline and vehicle 
dynamics, to design the engine and the rest of the
powertrain components for optimal vehicle performance. 
This is done without taking into account the reliability of 
the obtained design, the uncertainties inherent to the 
engine, fuel cell, and vehicle modeling processes, and 
the sensitivity with respect to parameters related to 
emerging technologies.  Subsequently, the second part 
of the article is concerned with quantifying and 
propagating uncertainties of engine, fuel cell, driveline 
and vehicle parameters and analyzing their implications 
on design and reliability of performance. 

The paper is organized as follows. In the following 
section we formulate the optimal design problem for a 
medium-sized truck and describe briefly the simulation 
models used for evaluating design alternatives. In the 
next section we identify and quantify sources of 
uncertainty in the modeling process, and determine the 
most important ones by means of a cumulative 
distribution function sensitivity analysis technique. We 
then perform a parametric, probabilistic optimization 
study to quantify performance reliability tradeoffs. We 
finally summarize our findings and draw conclusions. 

OPTIMAL HYDRAULIC-HYBRID POWERTRAIN 
DESIGN FOR A DUAL-USE MEDIUM TRUCK 

We consider the following optimal design problem: 

maximize fuel economy 
with respect to powertrain design variables 

subject to performance constraints 
Full vehicle simulation is used to evaluate fuel economy 
and three performance constraints (acceleration time 
from 0 to 45 mph should not exceed 24 seconds, and 
the truck should be able to maintain a maximum speed 
of 55 mph and 45 mph on 2% and 3% grade, 
respectively). It must be emphasized, since it affects the 
design significantly, that all constraints are evaluated 
assuming that only the engine is used for propulsion. 
This is according to military survivability and mobility 
requirements.

The considered dual-use truck is based on the 
configuration of a medium tactical (military) vehicle with 
a gross vehicle weight of 15,300 kg.  It is a 6X6, full time 
all-wheel-drive truck, powered by a 246 kW six-cylinder, 
turbocharged, intercooled, direct injection diesel engine. 

The truck is modeled using the high-fidelity Vehicle-
Engine-SIMulation (VESIM) environment developed at 
the Automotive Research Center at the University of 
Michigan, which has been validated and used 
extensively [9-11]. A detailed description of the VESIM 
model used in this work is given in [2, 8]. It includes the 
embedded hydraulic system consisting of a pump/motor, 
a transfer case, a reservoir, and an accumulator [2].

The same driving cycle as in [8] has been used to 
evaluate fuel economy, and is depicted in Figure 1. The 
total simulation real-time amounts to 2200 seconds, and 
corresponds to covering a distance of approximately 25 
km on a network of primary, secondary, and cross-
country roads. This driving schedule is chosen to 
represent both commercial and military scenarios.
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Figure 1: Driving cycle 

The fuel cell APU in the proposed truck design 
configuration is not only used to supply power for the 
silent-watch tasks when the truck is at rest, but also to 
electrify the following engine accessories: oil pump, 
power steering pump, and air compressor. We use the 
same load-distribution of these accessories over the 
driving cycle as presented in [8].

The high-fidelity Turbocharged Diesel Engine Simulation 
(TDES) tool was used to model the diesel engine [12-
14]. The user provides the TDES code with over fifty 
inputs characterizing the engine’s geometry, operation, 
and empirical correlation parameters, which are applied 
to the diesel four-stroke cycle using fundamental first 
principles.  A quasi-static, zero-dimensional treatment of 
intake, compression, combustion, and exhaust yields 
cycle-averaged (e.g., brake specific fuel consumption, 
torque, and power) and time-resolved quantities (e.g., in-
cylinder pressures, temperatures, and heat release 
rates) for a single, steady-state operating point. TDES 
automatically generates the engine’s maximum torque 
curve and a complete torque map. Bore, stroke, 
connecting rod length, valve and port diameters, and 
valve lift profiles are adjusted through an automated 
scaling routine which includes knowledge of the 
compression ratio.  Boost pressure and wastegate 
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activation speed are used in an engine boosting 
parameterization scheme. This method has decreased 
computational time and increased robustness by 
supplying TDES with appropriate intake and exhaust 
manifold pressures throughout its entire operating range.  
By defining turbine and compressor efficiencies, 
predictive accuracy remains uncompromised throughout 
the torque map without the need for turbomachinery 
maps.

Eight design variables were chosen to represent the 
diesel engine and the hydraulic system: engine 
displacement and compression ratio, boost pressure, 
wastegate activation speed, pump size (equal to motor 
size), first gear ratio, and accumulator displacement and 
compression ratio. The optimization strategy consisted 
of using the derivative-free algorithm DIvided 
RECTangles (DIRECT) [15] to explore the design space 
defined by the variable bounds as much as possible, 
increasing the probability of finding a global optimum, 
and then the Matlab implementation of the Sequential 
Quadratic Programming (SQP) algorithm [16] to 
converge to a local optimum efficiently.

The design variables, their lower and upper bounds, and 
their baseline and optimal values are listed in Table 1. It 
can be seen that the optimal values of 6 of the 8 design 
variables are at their lower or upper bound. 

Table 1: Design variables, bounds, baseline, and optimal 
values (subscript and superscript stars denote lower and 

upper bound value, respectively) 

Design variable Lower 
bound

Upper 
bound

Baseline 
value 

Optimal
value 

Engine displacement 
[L] 6.0 9.0 7.2 6.0*

Engine compression 
ratio [-] 12 20 16 20*

Boost pressure [bar] 1.8 3.0 2.0 3.0*

Waste activation 
speed [RPM] 1000 1600 1000 1000*

Pump/motor size [L] 0.125 0.50 0.38 0.50*

1st gear ratio [-] 1.5 3.0 2.2 2.3 

Accumulator size [L] 80 130 100 130*

Accumulator
compression ratio [-] 2.0 2.8 2.5 2.55 

This optimal powertrain design yields an improvement of 
10.76% in fuel economy relative to the baseline; 
performance constraints are not active. This means that 
the design is solely restricted by the choice of bound 
values on the design variables. For example, consider 
the two-dimensional plane cut of the eight-dimensional 

design space as depicted in Figure 2. With the variable 
bound values on engine displacement and compression 
ratio from Table 1, the optimum (“optimum 1”) is at the 
intersection of the bound constraints (note the fuel 
economy contours). The acceleration constraint is not 
active, i.e., the optimum is not on the constraint 
boundary but in the interior of the feasible constraint 
domain. If we decrease the compression ratio upper 
bound value to 17, then the acceleration constraint 
becomes active, but the engine displacement optimal 
value is still 6 L (“optimum 2”). If we further wish to 
decrease the upper bound value of the compression 
ratio to 15, then the engine size needs to be increased 
to 6.6 L to satisfy the (active) constraint (“optimum 3”). 
Note that fuel economy is deteriorated in this bound-
moving process. 
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Figure 2: Activity of bound and performance constraints 

The above observations have some interesting 
implications. Note that the engine design of Table 1 
entails maximal compression ratio and boost pressure 
that is activated at minimal engine speed. This enables 
downsizing the engine as much as possible (minimal 
size) to improve fuel economy. Such a design is not 
unrealistic, but it does raise concerns regarding its life-
cycle reliability and materials fatigue. If we decrease the 
upper bound values for variables such as compression 
ratio and boost pressure, we obtain designs that are 
associated with active performance constraints. In this 
situation, however, we have to ask the question of 
whether any design realization, life-cycle, and other 
uncertainties impact the reliability of satisfying these 
constraints, since small deviations from nominal values 
of design variables and/or parameters can cause 
violation of constraints. 

IMPACT OF UNCERTAINTIES 

There are many sources of uncertainty that can affect 
the performance of the truck during its lifetime. First 
there are modeling uncertainties in the simulation 
process due to approximations, lack of data, and 
incomplete knowledge when dealing with advanced but 
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relatively immature technologies. Then there are 
uncertainties related to the realization of the design, i.e., 
the manufacturing process. Finally, there are 
uncertainties related to the operating conditions of the 
truck, e.g., weather, geographical profile, mission 
characteristics, etc. In this work we focus on analyzing 
uncertainties related to modeling and simulations. Figure 
3 illustrates the propagation of uncertainties through the 
high fidelity tools used in the simulations. 

Fuel
Cell

Engine

Drivetrain
and Vehicle 
Dynamics

Vehicle
Operating 
conditions

Technology 
issues

Model 
parameters

Fuel
Economy

Acceleration

Max. speed

Figure 3: Propagation of uncertainties in the simulation 

FUEL CELL UNCERTAINTIES 

The fuel cell system employed here is described in detail 
in [8]. It is sized to power load all the demands during 
silent watch and electrify the diesel engine auxiliary. The 
loads during silent watch include the power supply for 
ventilation, nuclear-biological-chemical (NBC) protection, 
air-conditioning, communication, and navigation. The 
combined silent watch and mild diesel electrification 
tasks required a 10 kW fuel cell stack. The power 
specifications were met with a stack of 65 cells with 300 
cm2 active membrane electrode assembly (MEA) area. 
The fuel cell is fed by a diesel-fuel reformer through 
catalytic partial oxidation. 

The fuel cell performance depends on three operating 
variables. Namely, temperature, membrane humidity, 
and oxygen excess ratio. From these three factors, 
temperature and membrane humidity exhibit large 
variation within a single cell and from cell to cell. Ideal 
values are around 65 oC and 14, respectively, but in 
reality the fuel cell can be operating in a wider range. 
We model these two uncertain quantities as random 
parameters with beta distributions that are skewed 
towards the right end of the interval. In addition to the 
operating variables, membrane thickness poses an 
additional and quite interesting type of uncertainty for the 
fuel cell performance due to its direct impact to the ionic 
cell resistance and the diffusion coefficient. Increasing 
the membrane thickness improves reliability but it 
decreases cell efficiency and water diffusion through the 
membrane followed by anode drying conditions. Fuel 
cell designers have not reached a consensus yet 
whether thinner or thicker membranes should be used. 
Therefore, it is important to consider a wide range of 
possibilities during the evolution of the system. We 

model this uncertainty using a random parameter with a 
uniform distribution. Table 2 summarizes the distribution 
types and parameters of the fuel cell uncertain 
quantities. The four beta distribution parameters 
represent lower and upper range limits and function 
shape parameters. The two uniform distribution 
parameters represent lower and upper range limits.

Table 2: Fuel cell random parameters 

Random parameter Distribution information 

Temperature [oC] Beta(50,65,6,2) 

Humidity ratio [-] Beta(5,14,6,2) 

Membrane thickness [cm] Uniform(0.0125,0.0175) 

A set of experimental data from a similar 24 cell stack 
was used to quantify the cell-cell variability. 
Furthermore, to estimate the impact of uncertain 
operating conditions on the output of interest of the fuel 
cell system, i.e., the delivered voltage, we performed 
1,000 Monte Carlo simulations by sampling values for 
the random parameters according to the distributions of 
Table 2. The simulations were performed on a detailed 
model of the stack polarization curve found in [17]. 

The results are shown in Figure 4. It can be observed 
that there is a variation of +/- 10-50 % depending on the 
load, i.e., the current output demanded. Using the 
generated polarization curves, we simulated 1,000 silent 
watches and obtained an estimate of the probability 
density function for the fuel consumption depicted in 
Figure 5, which demonstrates the adverse effects of the 
uncertainties on efficiency (note that the outliers are 
biased towards high fuel consumption). 
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Carlo simulation (1,000 samples) 
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ENGINE SIMULATION UNCERTAINTIES 

The Turbocharged Diesel Engine Simulation tool used to 
generate the torque maps fed into VESIM for the vehicle 
simulation takes as inputs a large number of 
parameters. In the optimization study presented in the 
previous section, these parameters were assigned 
constant values. In reality however, several parameters 
are uncertain, and can take values within a range 
according to a distribution dictated by knowledge or 
data. In fact, the engine design variables (first 4 
variables in Table 1) were also considered to be random 
since exact displacement cannot be realized due to 
manufacturing imperfections, and compression ratio, 
boost pressure, and wastegate activation speed optimal 
values cannot be achieved with high accuracy. The 
distribution types and parameters of the engine random 
quantities are listed in Table 3. The normal distribution 
parameters represent mean and standard deviation. 

Table 3: Engine random parameters 

Random parameter Distribution information 

Displacement [L] N(7.2,0.036) 

Compression ratio [-] N(16,0.25) 

Boost pressure [bar] Uniform(1.8,2.2) 

Wastegate activation speed [RPM] Uniform(850,1150) 

Injection timing [oATDC] Uniform(348,352) 

Ambient temperature [oK] Uniform(273,320) 

Heat radiation coefficient [-] (heat 
transfer modeling) Uniform(1.95,2.05)

Heat convection coefficient [-] (heat 
transfer modeling) Uniform(0.035,0.075)

Heat transfer model exponent [-] Uniform(0.6,1) 

Friction correlation model 
coefficient A [-] N(7,0.175)

Friction correlation model 
coefficient B [-] N(1.5,0.375)

Isentropic compressor efficiency [-] N(0.783,0.025) 

Turbine efficiency [-] N(0.8,0.025) 

Watson heat release correlation 
coefficient A [-] N(0.926,0.07)

Watson heat release correlation 
coefficient B [-] N(14.2,1.065)

Combustion time [oATDC] N(125,5) 

Fuel air equivalence ratio upper 
bound [-] Uniform(0.665,0.735)

Intake valve opening timing 
[oATDC] N(-17,1.5)

Exhaust valve opening timing 
[oATDC] N(490,1.5)

Similarly to what we did for the fuel cell, we identified 
these parameters and performed Monte Carlo 
simulations to assess their impact on the results. Figure 
6 illustrates the large variation of the maximal torque 
curve for 1000 samples (+/- 40% deviation from baseline 
at the peak value). 
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Figure 6: Torque variation due to engine modeling 
uncertainties

VEHICLE DYNAMICS AND DRIVETRAIN MODEL 
UNCERTAINTIES

Vehicle dynamics and drivetrain model uncertainties 
include modeling parameters that cannot be determined 
exactly and quantities that represent incomplete 
information regarding the state of the vehicle during its 
lifetime. For example, we can represent different tire/soil 
interactions (due to different road conditions and/or and 
badly maintained or flat tire pressures) by treating the 
rolling resistance parameters as random. Also, various 
cargo configurations result into different coefficient of 
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drag and frontal areas, which can also be represented 
by random parameters. In addition, the efficiencies of 
the transmission and differentials are treated as random 
parameters due to lack of knowledge of exact parameter 
values and the variation during their lifetime.  Power 
requirements and efficiencies of engine and vehicle 
accessories are also considered to be uncertain due to 
variations during their lifetime. Last but not least, the 
uncertainties propagated by the fuel cell and the diesel 
engine, i.e., polarization curve, maximum torque curve, 
and engine torque map, must also be taken into account 
during the full vehicle simulations. Table 4 summarizes 
random quantities and their distribution types and 
parameters.

Table 4: Vehicle simulation random parameters 

Random parameter Distribution information

Gear efficiency [-] (one for each 
gear, 7-gear transmission) Uniform(0.9,0.98)

Transmission ratio scaling factors 
[-] (one for each gear, 7-gear 
transmission)

N(1,0.1)

Differential efficiency [-] (one for 
each of the 3 differentials) Uniform(0.85,0.9)

Rolling resistance scaling factors [-] 
(one for each of the three axles) N(1,0.1)

Frontal area [m2] N(7.5,0.75) 

Drag coefficient [-] N(0.75,0.0375) 

Transmission fluid viscosity [kg/ms]  Beta(0.005,0.1,2,6) 

Pump friction losses [Nm]  N(-34,3.5)  

Airbrake friction losses [Nm] N(5,1) 

Electrical accessories efficiency [-] Uniform(0.85,0.92) 

Reservoir and accumulator friction 
losses [%] Uniform(0.01,0.05)

Altitude [m] (to compute ambient 
temperatures and pressures) Beta(0,3000,2,6)

Polarization curve As propagated from the 
fuel cell 

Torque map and maximal torque 
curve

As propagated from the 
engine

The variation of the above mentioned parameters where 
easily implemented in VESIM since they already existed 
in the model.  This was possible due to the modeling 
approach and implementation.  All VESIM component 
models are developed based on physical quantities that 
are directly calculated from the geometry and material 
properties of the components.  During the simulations 
and optimizations, the corresponding parameters were 
changed and then fed to the stand alone executable of 
the integrated vehicle model. 

Using the fuel cell polarization curves, maximum torque 
curves, and engine torque maps (obtained from the 
previous Monte Carlo simulations), and sampling the 
random parameters of Table 4, 1,000 full vehicle 
simulations were executed to obtain fuel economy 
statistics of the medium truck for the driving cycle of 
Figure 1. The estimated PDF is depicted in Figure 7. 
Considering that the baseline fuel economy is 6.5 mpg, 
we can conclude that the impact of uncertainties is 
adversary in the vast majority of the cases. 

DESIGN OPTIMIZATION UNDER UNCERTAINTY 

Deterministic, simulation-based design optimization of 
engineering systems can be a computationally intensive 
process that may become prohibitively expensive as the 
number of optimization variables increases.
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Figure 7: Estimated PDF of fuel economy 

The additional computational effort required for taking 
into account uncertainties makes optimization under 
uncertainty even more computationally intensive.

The typical remedy to this problem is the creation of 
surrogate models that can be used in the optimization 
process instead of the expensive simulation models. 
Surrogate models are much less expensive but are less 
accurate. Therefore, it is important to use them 
appropriately for exploring the design space and to use 
the high-fidelity simulation tools for validating final 
design decisions. 

The challenge of metamodeling lies in sampling the 
design space to generate the input-output relations used 
to create the surrogate models. It is impractical to 
consider a large number of dimensions (more than, say, 
10)  because the required number of input-output 
relations (and therefore the number of high-fidelity 
simulations) increases exponentially.
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VARIABLE SCREENING 

The only solution available to the aforementioned 
dimensionality curse is to identify the most important 
variables and decrease the size of the problem. Having 
the results of the previous Monte Carlo simulations 
available, we used a CDF sensitivity analysis technique 
[18] to identify which of the random parameters in the 
simulations are statistically significant. 

This method defines confidence intervals according to 
the number of available Monte Carlo simulations and 
computes sensitivities of the estimated CDFs of outputs 
with respect to the random inputs at different CDF 
levels. Thus, we are able to obtain global sensitivity 
metrics over the entire CDF range of the outputs. If the 
curves that fit the sensitivity data are within the 
confidence intervals, then the input is statistically 
insignificant to the output. Two examples are shown in 
Figure 8.
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Figure 8: CDF sensitivity examples 

The plot on the top indicates that all three fuel cell 
random parameters are statistically significant to almost 
the entire CDF range of the silent watch fuel 
consumption. The plot at the bottom indicates that only 
boost pressure, compression ratio, and injection timing 
are statistically significant to the largest part of the CDF 
range of the acceleration performance. 

Using this type of sensitivity analysis, we were able to 
identify the most important random parameters and 
decrease the size of the optimization under uncertainty 

problem significantly. The results are summarized in 
Table 5 according to output of interest. 

Table 5: Statistically significant random parameters for 
the three different outputs of interest 

Driving cycle  fuel 
economy 

Acceleration 
performance

Silent watch fuel 
consumption 

Injection timing Injection timing Temperature 

Frontal area Frontal area Humidity ratio 

Rolling resistance Boost pressure Membrane thickness

Transmission 
efficiencies

Transmission 
efficiencies

 Compression ratio  

SURROGATE MODELING 

After having identified the most important parameters 
and decreased the dimensionality of the problem we 
sampled the design space and created surrogate 
models for use in the optimization under uncertainty 
process.

We used the optimal symmetric Latin hypercube (OSLH) 
sampling technique to sample the design space. It is an 
efficient space-filling sampling method for constructing 
high-quality metamodels with very few samples [19]. We 
then adopted a local polynomial fitting technique, using 
the cross-validated moving least squares (CVMLS) 
method, to create the surrogate models of the high-
fidelity simulation models [20]. 

RELIABILITY-BASED DESIGN OPTIMIZATION 

Optimization is concerned with achieving the best 
outcome of a given objective while satisfying certain 
restrictions. It has been observed that the deterministic 
optimum design does not necessarily have high 
reliability. To ensure that the optimum design is also 
reliable, the optimization formulation must include 
reliability constraints.

Classical reliability-based design optimization (RBDO) 
methods follow the so-called double-loop approach. It 
employs two nested optimization loops; the design 
optimization loop (outer) and the reliability assessment 
loop (inner). The latter is needed for the evaluation of 
each probabilistic constraint. There are two different 
methods for the reliability assessment; the Reliability 
Index Approach (RIA) [21] and the Performance 
Measure Approach (PMA) [22, 23]. Although either 
approach can be used, PMA is in general more efficient, 
especially for high-reliability problems [23]. 

The double-loop RBDO formulation is usually 
computationally inefficient due to the nested optimization 
loops. For this reason, two new classes of RBDO 
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formulations have been recently proposed. The first 
class decouples the RBDO process into a sequence of a 
deterministic design optimization followed by a set of 
reliability assessment loops [24, 25]. The series of 
deterministic and reliability loops is repeated until 
convergence. The second class of RBDO methods 
converts the problem into an equivalent, single-loop 
deterministic optimization [26], leading therefore, to 
significant efficiency improvements.

The RBDO problem in this study is expressed as 

maximize fuel economy 
with respect to random engine design variables 

given random vehicle and engine design parameters 
such that the reliability of satisfying the performance 

constraints is greater than some  threshold value 
This problem can be solved using any appropriate 
RBDO method to yield optimal design that corresponds 
to a certain reliability level specified by the designer. 
Here we use a recently developed, highly efficient 
single-loop RBDO method [26]. Recall that reliability R is
defined as

R = 1 – Pf,

where Pf is probability of failure. In other words, we 
demand that the probability of violating a performance 
constraint (due to the uncertainties) is less than a 
specified threshold value. 

In our RBDO problem we have 4 random design 
variables (the engine design variables) and 4 random 
parameters. We use the means of the random variables 
as optimization variables of the problem and assume 
constant standard deviations. Also, we use the optimal 
values obtained previously using deterministic 
optimization for the hydraulic system quantities. The 
distribution types and ranges of the design variables and 
parameters are listed in Tables 6 and 7, respectively. 

Table 6: Random design variables of the RBDO problem 

Random variable Lower 
bound

Upper 
bound

Distribution 
information

Displacement [L] 6 9 N( ,0.025)

Compression ratio [-] 12 17 N( ,0.1)

Boost pressure [bar] 1.87 2.55 N( ,0.1)

Wastegate activation 
speed [RPM] 

1000 1600 N( ,50)

Table 7: Random parameters of the RBDO problem 

Random parameter Distribution information

Injection timing [oATDC] N(350,1) 

Frontal area [m2] N(7.5,0.75) 

Transmission efficiencies [-] N(0.94,0.02) 

Differential and rolling resistance 
scaling  parameters [-] 

N(1,0.1)

PERFORMANCE RELIABILITY ASSESSMENT 

The RBDO problem is solved for several reliability levels 
for satisfying the performance constraints to quantify 
tradeoffs with fuel economy. Table 8 summarizes the 
results. 

Table 8: Fuel economy and engine design for different 
reliability levels 

8.78.27.97.67.16.86.5Displacement [L]

2.222.252.272.302.342.372.40Boost pressure [bar]

16.6716.7016.7216.7516.7916.8216.85Compression ratio [-]

1200120012001200120012001200Wastegate activation 
speed [RPM]

6.186.296.356.446.546.626.69Fuel economy [mpg]

99.999.899.799.398.296.493.3Reliability [%]

It can be seen that the engine size increases, while 
compression ratio, and boost pressure decrease with 
increasing level of desired reliability of performance, 
which is, of course, detrimental to fuel economy. Looking 
at the two extremes of the obtained Pareto set (see 
Figure 9), we can observe that an improvement of 6.6% 
performance reliability (from 93.3% to 99.9%) induces a 
7.6% fuel economy reduction (from 6.69 mpg to 6.18 
mpg).  It can also be seen that the Pareto curve is highly 
nonlinear: we must sacrifice slightly less optimality to 
improve performance reliability from 93.3% to 99.3% 
than from 99.3% to 99.9%.
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6.6

6.7

6.8

93% 94% 95% 96% 97% 98% 99% 100%
Reliability
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Figure 9: Quantification of tradeoffs between fuel 
economy and performance reliability 
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SUMMARY AND CONCLUDING REMARKS 

In this article we first obtained a deterministic optimal 
design of a hydraulic-hybrid powertrain to maximize fuel 
economy of a medium dual-use truck with a fuel cell 
APU subject to performance constraints. Realizing that 
the optimal design may be unreliable due to 
uncertainties not taken into account in the modeling and 
optimization processes, we then proceeded with 
identifying uncertainties in the engine, fuel cell, driveline 
and vehicle design or operating parameters, and 
determining their statistical significance. Finally, we 
performed a reliability-based design optimization 
parametric study to quantify the tradeoffs between 
maximizing fuel economy and reliability of satisfying 
performance constraints. 

The major conclusions drawn are the following: 

 Taking uncertainties into account has a great 
impact on design decisions. Different optimal 
engine designs for the hydraulic-hybrid 
powertrain of this case study are obtained for 
different reliability targets.

 The parametric reliability-based design 
optimization study showed that a substantial 
amount of optimality (i.e., fuel efficiency) must 
be sacrificed to increase the reliability of 
satisfying performance constraints. 

 The optimality vs. reliability trade-off in our 
example is highly nonlinear. The amount of 
optimality that needs to be sacrificed as we 
approach very high reliability levels increases in 
an exponential fashion. 

 Expert opinion should be sought to identify and 
quantify all sources of uncertainty. The number 
of uncertainties can be as large as necessary 
since moderate size Monte Carlo simulations 
can be used to perform sensitivity analysis on 
the results, determine the statistically significant 
uncertainties, and decrease the problem size.
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