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Abstract 
Modern heavy-duty vehicles are equipped with a compres- 
sion braking mechanism that augments their braking capabil- 
ity and reduces the wear of the conventional friction brakes. 
In this paper we consider a vehicle speed control problem 
using a continuously variable compression braking mecha- 
nism. The variability of the compression brake is achieved 
through the control of the brake valve of the vehicle's tur- 
bocharged diesel engine. An adaptive controller is designed 
to ensure good speed tracking performance in brake-by-wire, 
or vehicle-following, driving scenarios even during large vari- 
ations in mass and road grade. Our approach is to first con- 
sider the model without compression brake actuator dynamics 
and derive a Model Reference Adaptive Controller using the 
Speed-Gradient procedure. Then, the actuator dynamics are 
included in the design via the use of the backstepping pro- 
cedure. The backstepping controller is implemented with a 
simplified numerical differentiator-based approximation. 

1 Introduction 
In Intelligent Vehicle Highway Systems (IVHS), the major 
goals are to increase highway capacity and to enhance driv- 
ing safety by automatic longitudinal and lateral control of ve- 
hicles [1]-[3]. Modern Heavy Duty Vehicles (HDV) operate 
very close to the speed, acceleration and headway range of 
passenger vehicles. At the same time, their mass and inertia 
are much larger. Hence powerful acceleratioddeceleration ac- 
tuation is needed to enable the driver to safely merge, follow 
and react to traffic flow changes. 

To improve the braking performance of the HDVs, additional 
braking mechanisms, such as a compression brake, are fre- 
quently used. In the compression braking mode the conven- 
tional gas exchange process of the turbocharged diesel en- 
gine that powers the HDV is altered and the engine is trans- 
formed into a compressor that absorbs kinetic energy from 
the crankshaft. During compression braking mode the fuel in- 
jection and combustion are inhibited. The kinetic energy is 
dissipated through the work done by the pistons to compress 
the air charge. The compressed air is consequently released 
in the exhaust manifold through a secondary opening of the 
exhaust valve at the end of the compression stroke. We call 
the secondary opening of the exhaust valve as Brake Valve 
Opening (BVO). Due to geometric constraints, the valve lift 
profile is considerably different for the exhaust and the brake 
events, as shown in Figure 1. In conventional compression 
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braking mechanisms, BVO is fixed with respect to the crank 
angle degrees resulting in on-off retarding mechanisms [4]. 
Selective activation of the BVO of a number of cylinders can 
provide discretely variable retarding power as in [5]. The re- 
tarding mechanism we consider here allows continuously vari- 
able retarding power through control of BVO [6].  The timing 
of BVO (specified in crank angle degrees) is the input signal 
to the compression braking mechanism and is physically lim- 
ited to the range Vcb,min = 620 to Vcb ,mu = 680 degrees after 
Top Dead Center (TDC) (see Figure 1). 

Figure 1: Lift profiles for exhaust, intake and brake events. 

The variable compression brake increases the overall decel- 
erating capability of the vehicle and can be used as the sole 
decelerating actuator without the assistance of friction brakes 
during non-aggressive maneuvers. Consequently, the applica- 
tion and intensity of the friction brakes can be reduced result- 
ing in a significant decrease in the vehicle maintenance costs. 

Thus, in this paper we concentrate on the longitudinal speed 
control problem using only variable compression braking. We 
consider braking control for a Class-8 HDV during operation 
on a descending grade with the objective to achieve vehicle 
speed tracking despite unknown road conditions. To ensure 
good speed tracking even during large variations in vehicle 
mass (payload) and road grade, an adaptive controller is de- 
veloped. 

The first results on adaptive longitudinal control design for 
HDV are presented in [7, 81, where the authors develop 
an adaptive controller for a HDV with conventional friction 
brakes using the direct adaptation of PIQ controller gains. In 
this paper, we derive a Model Reference Adaptive Controller 
in terms of system parameter estimates. The updates for the 
estimates are generated using the Speed-Gradient technique 
[9]. Our control design approach is to first consider the model 
without compression brake actuator dynamics. Then the ac- 
tuator dynamics are accounted for in the controller through 
the use of a backstepping procedure. The backstepping con- 
troller is implemented using a numerical differentiator based 
approximation. 

To model the effect of the novel braking actuator, namely vari- 
able compression brake, on the engine and vehicle operation, 
a detailed crank angle based engine model has been developed 
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in [ 101. The control design in this paper is based on a reduced- 
order nonlinear approximation of the crankangle-based model 
developed in [ 1 11. 

In addition to speed tracking we are also able, under addi- 
tional persistence of excitation type conditions, to estimate the 
unknown parameters, namely vehicle mass and road grade. 
These estimates can be used for other purposes in Advanced 
Vehicle Control Systems (AVCS). As we will show, the con- 
vergence of the estimates is ensured when the desired speed 
value changes in a step-wise or other periodic fashion. This is 
typically guaranteed in urban driving cycles. If the excitation 
does not occur during normal driving, it has to be introduced 
artificially. 

The paper is organized as follows. In Sections 2 and 3 we 
review the models for longitudinal vehicle speed and com- 
pression brake actuator dynamics and we formally state the 
control problem. Sensitivity of the input-output response due 
to variations in mass and road grade is shown in Section 4. 
The observed sensitivity serves as a motivation for us to pur- 
sue the adaptive control approach. In Section 5 we develop a 
Model Reference Adaptive Controller (MRAC) assuming in- 
stantaneous actuator response. In Section 6, we extend the 
control design to the case with the actuator dynamics. The 
controller performance is demonstrated through simulations 
in Section 7. 

2 Vehicle Dynamics Model 
Consider the vehicle operation during a driving maneuver on 
a descending grade with p degrees inclination (p = 0 corre- 
sponds to no inclination, fi < 0 corresponds to a descending 
grade). It is assumed that during the descent, the engine is not 
fueled and is operated in the compression braking mode. 

A lumped parameter model approximation is used to describe 
the vehicle longitudinal dynamics during compression brak- 
ing. For fixed gear operation the engine crankshaft rotational 
speed, W, is expressed by: 

(1) 
where, 

w is the engine rotational speed, (radsec), related to the ve- 
hicle speed value v = org,(m/sec) 

is the total gear ratio, where rm is the wheel di- 
ameter, gt is the transmission gear ratio, gfd is the final drive 
gear ratio (assumed to be known constants) 

J, = mri + Je is the total vehicle inertia reflected to the en- 
gine shaft (unknown constant, depends on the vehicle loading 
conditions), where J, is the engine crankshaft inertia 
m is the mass of the vehicle (unknown constant, depends on 

the mass of payload), (kg) 
Fqdr = Cqrg2w2 is the quadratic resistive force (primarily, 

force due to aerodynamic resistance, but we also include fric- 
tion resistive terms) 

-t Cf is the quadratic resistive coefficient, where 
Cd is the aerodynamic drag coefficient, p is ambient air- 
density, A is the frontal area of the vehicle, Cf  is the friction 

Jt 8 = Tcb -4- rg (Fp - Fqdr) 

rs = gcs fd 

C, = 

coefficient (assumed to be known constants) 
Fp(m, p) is the force due to road grade (p) (assumed to be 

an unknown constant) and the rolling resistance of the roadb): 
Fp(m,p) = -pgmcosp-mgsinp 

Tcb is the shaft torque applied by the engine to the driveshaft 
(supposed to be negative during compression braking). 

The speed control problem is to ensure that the engine rota- 
tional speed o tracks the desired reference speed o d ( t )  as the 
vehicle proceeds the descending grade: o + o d ( t ) .  This en- 
sures that v + v d ( t )  as long as the gear ratio remains constant. 

Remark 1: We assume the existence of a higher level super- 
visory controller which selects transmission gear ratio, g,, if 
a frequent saturation of BVO timing is detected. Specifically, 
if the limits of the compression braking torque are frequently 
reached, a different transmission gear ratio can be selected. 
With an appropriate gear selection one can effectively “size” 
the power due to gravity that is reflected on the engine shaft, 
see (1). The control scheme we develop below can be easily 
extended to include gear ratio optimization and selection. 

Remark 2: We assume that the desired vehicle speed W d ( t )  is 
derived from the driver’s brake pedal position through a Cali- 
bration map. These calibration maps are typically developed 
by skilled drivers and can be used in a brake-by-wire mode. In 
Automated Highway Systems (AHS) the value of a d ( ? )  may 
be generated from a lead vehicle. 

3 Brake Actuator Dynamics 
In [ 101 we have developed a detailed crank angle based engine 
model that describes the engine dynamics during compres- 
sion braking and transition between fueling and compression 
braking modes. This high-order dynamic model captures the 
manifold and cylinder emptying/filling dynamics and the tur- 
bocharger rotational dynamics. In [ 111 we show that the high- 
order model can be approximated by a lower-order model. 
Namely, the compression brake torque on the crankshaft, Tcb, 

is calculated using the following first order differential equa- 
tion: 

(2)  

where h c b  is approximated with a linear function of the en- 
gine speed, h c b  = yo + y1o . The value of h c b  is implicitly 
limited by upper and lower limits on the engine speed. The 
feasible values of h c b  are within the range = hcb(”in) 

to &+,mu = h . c b ( o m a ) .  The steady-state braking torque, Tst, 
is a nonlinear function of the engine speed o and the BVO 
timing Vcb: 

Tcb = -Acb(Tcb - &t)t), 

G . t ( o , v c b )  = c r o + a l o + a 2 v c b + a s v c b W + C 1 4 0 2 .  (3) 

The fact that hcb depends on o is due to the turbocharger 
and manifold filling dynamics that become faster as the en- 
gine speed increases. We assume that the BVO timing can be 
controlled instantaneously or considerably faster then the en- 
gine dynamics in (2). Engine manufacturers are intensively 
pursuing the development of appropriate hardware [6].  Con- 
sequently, we assume for now that the system (2), (3) repre- 
sents the dominant compression brake actuator dynamics. The 
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BVO timing limits translate into limits on the braking torque 

The controller is designed directly in terms of torque K r ,  while 
the corresponding value of the BVO timing V,-b is obtained by 
inverting the static torque regression (3). 

K,r ,min(U)  = K t ( v ' c b , m a r , O ) *  &r,mux(O) = K.r (Vcb ,min ,O) .  

4 Sensitivity Analysis 
A sensitivity analysis and an evaluation of the model varia- 
tions and uncertainties across operating regimes allows us to 
assess the difficulties in the control design. In particular, vari- 
ations in the vehicle mass greatly affect the vehicle dynam- 
ics. The mass for the system can vary as much as 400 percent 
from a configuration of being a tractor only, to a configuration 
of being a tractor and one or more trailers. Figure 2 demon- 
strates the differences in the linearized open loop system fre- 
quency response for different values of the vehicle mass. Sim- 
ilar trends can be ascertained for the road grade and gear ratio 
variations. Clearly, adaptation is needed to ensure that the ve- 
hicle response remains the same irrespective of these parame- 
ter variations. 
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Figure 2: Frequency response of the transfer function from AVcb to 
Am for various values of the vehicle mass and gear ratio. This plot 
is from [lo] where additional dynamics were introduced by a BVO 
hydraulic mechanism (not treated here). 

5 Model Reference Adaptive Controller 
In this section we develop a Model Reference Adaptive Con- 
troller (MRAC) which ensures the vehicle speed tracking dur- 
ing braking irrespective of variations in vehicle mass and road 
grade. The design of the controller algorithm is first done for 
the case without the actuator dynamics. In Section 6 we ex- 
tend the controller algorithm to account for the actuator dy- 
namics. 

Let us assume that the mass m of the vehicle (which depends 
on the mass of payload) is an unknown constant. This implies 
that the total vehicle inertia J,(m) is an unknown constant as 
long as the gear ratio remains fixed. Moreover, assume that 
the road grade p (i.e. the hill inclination angle) is an unknown 
constant, which implies that the force Fp(m,P) due to road 
grade (P) and the rolling resistance of the road 01) is an un- 
known constant as well. Then the vehicle model (1) in the 

parametric form is 

~ i , = e ; ~ ( ~ - ~ ; c , ~ ~ + e ~ ) ,  (4) 

where U is the shaft torque Tcb ,  and 81, 82 are unknown pa- 
rameters. In particular, 81 = Jr > 0, 8 2  = rgFp. 

Remark: Note that the sign of 81 which is the total vehicle 
inertia is always positive. This property is critical to being 
able to develop a MRAC design. 

To design MRAC we introduce a reference model that cap- 
tures the desired closed-loop behavior. Specifically, 

cbm = -ham +hod, ( 5 )  

where ~ d ( t )  is the desired vehicle speed and h > 0 controls 
the speed of response, whereby larger values of h correspond 
to faster responses. 

Denoting the tracking error by e = o - O m ,  we obtain: 

= e; ( - r $ u ~ 2  + e2) + - had. (6) 

Using the certainty equivalence principle, if 81, 82 were 
known we would define the feedback law as follows: 

(7) 

If 81, 8 2  were known, this controller would guarantee e ( t )  + 
0. Since the parameters are unknown, we replace them by 
their estimates, in the control law (7): 

(8) 

U = rg3c,0~ - e2 + elh(o - a d ) .  

U = r;cao2 - 62  - 61h(w - Od). 

The parameters 61, 6 2  will be adjusted by the adaptation law. 
The error model is given by: 

t = -he + q l h ( o  - Od)(ol - el) + e 3 e 2  - G 2 ) .  (9) 

The update laws are obtained using the Speed Gradient 
methodology [9].  This is a general technique for controlling 
nonlinear systems through an appropriate selection and min- 
imization of a goal function. The controller is designed to 
provide the decrease of the goal function along the trajecto- 
ries of the system. The goal function Q is selected to address 
the speed tracking objective, namely Q(e)  = $e2 2 0. Note 
that Q(e)  > 0 if e # 0 because 81 > 0. Then, 

Q = 81et=  - h e l e 2 + e h ( o - o d ) ( e l  - 6 1 ) + e ( ~ 2 - 6 2 ) ,  

and in accordance with the SG approach, we calculate the 
derivative of Q with respect to 61 and 62  (the gradient of the 
"speed" ) and define the following adaptation laws: 

61 =-Y1V61Q=yleh(o-Wd) ,  y1 >o.  (10) 

6 2  = -y2ve2Q = y2e, y2 > 0. (1 1) 

The stability results can be proved using the following Lya- 
punov function: 

V(e , e )  = Q(e)+0.5y, '8:+0.5y,- 'e~ 2 0, (12) 
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where 6 = [& 6 2  I T ,  and 8i = 8i - 6i, i = 1,2. Calculating 
the time derivative of V ,  using the adaptation laws (lo)-( 1 l) ,  
we obtain 

V = Q - y ; l ~ ~ &  - y i 1 e 2 &  = -hele2 5 0. 

The last inequality means that V(e( t ) ,G( t ) )  is a non-increasing 
function of time. It implies boundedness of V ( e ( t ) , e ( t ) >  and 
Q ( e ( t ) )  that, in turn, means boundedness of e (? ) ,  6 ( t )  (thanks 
to radial unboundedness of Q ( e ) ) .  Moreover, using the Bar- 
balat’s lemma, we can prove that e ( t )  + 0 (i.e. w -+ “ ) .  
Coupled with om + ad, this implies that o + W d ( t ) ,  i.e. the 
speed tracking goal is achieved. 

Remark: In the actual implementation of (lo)-( 11) we em- 
ploy the feasible range projection whereby the updates are 
stopped if the parameter estimates attempt to leave the region 
where the parameters are known to physically lie in. This 
is done to improve parameter estimate transient behavior and 
also to ensure that the estimates always lie within a physically 
reasonable range. 

Notice that the time derivative of the Lyapunov function de- 
pends only on e( t )  and does not depend on e ( t ) ,  i.e. the so- 
lution e ( t ) , e ( t )  is stable but not asymptotically stable (with 
respect to the whole state vector); In order to guarantee 
the convergence of the estimates el(?), &(t) to their true 
values 81, 82, we need to require that the vector function 
R = [l h(o - wd)]’ is persistently excited [13]. Practi- 
cally, the persistent excitation condition can be satisfied if the 
value od varies significantly (e.g., includes at least 2 sinu- 
soids: one of the two sinusoids can be a constant function, 
i.e. a sinusoid with zero frequency, the other one should 
have a non-zero frequency). In this case, we can guaran- 
tee the &identifying propecies of our control algorithm, i.e. 
fim,+AIl = 81, fim,,,82 = 02. This implies that the esti- 
mates of the vehicle mass m and road grade p will tend to 
their true values. The simulation results which demonstrate 
the parameter convergence are shown in Section 7. 

6 Controller Design Including Brake Actuator Dynamics 
In this section, we extend the design to include the brake ac- 
tuator dynamics (2). The system with the actuator dynamics 
is given by: 

JrCb = Tcb Tg(-C&W2 + Fp) (13) 

c b  = - h c b ( T b  - Kr),  (14)  

where T,t is now considered as a control input and h,b is a 
function of engine speed O. 

The higher order controller that takes the dynamics in (2) into 
account is designed using a backstepping approach [12]. In 
accordance with this iterative procedure we have to consider 
Tcb as a virtual input of the first-order system (13) and design 
a stabilizing control law a(e, e l , & )  and the update laws for 
61, 6 2  for (13) as the first step. This has been done in the 
previous Section and 

a(e,61,62) = ‘:Caw2 - 6 2  - 6lh(o - wd). (15) 

The error between Tcb and a is denoted by z: 
A &  

z = Tb - a(e,81,82).  

To account for this error, we augment the Lyapunov function 
(12) with the term 0 . 5 ~ ~  : 

Va(e,z,& ,&) = V(e,81,62) + 0 . 5 ~ ~ .  (16) 

The time-derivative of Vu along the trajectories of the closed- 
loop system (13), (14) ,  (15), (lo),( 11) is given by 

Va = e1et-y;1G161 -yi10262+z(TCb-&) = 

= -81he2+Z(e-hcb(&- &,)-&) (17) 

Therefore, to guarantee negative definiteness of Va we need to 
choose T,, to make the last term of (17) to be equal to -kz, 
where k > 0 is a controller gain. This is achieved with the 
following control law: 

T,, = T‘b+h;;(-kz-e+&) (18) 

where & = (2Cq<)Cb - h(o - cod)& - 6 2  + 6lhCbd. 

Since z = Tcb - a, 

z, = ( I - k h , - b ) T , b - h ~ ’ ( e - k a - & )  (19) 

Note that (18) (or (19)) depend on several quantities that we 
do not measure directly. In particular, we do not measure the 
shaft torque Tcb. To deal with this issue, we use an open-loop 
observer, 

f c b  = -hcb(pcb - Gr), 
and use the estimate fcb in place of Tcb. 

Remark: In order to guarantee that e ( t )  -+ 0, z ( t )  + 0 with 
the observer, the gain k in (18) (or (19)) has to be selected 
so that k > hcb,max/4. Indeed, define = fct, - Gb. Then, 

Val = Vu + 
t c b  = -hcbecb, and K ,  = Tcb + ecb -k h,-d (-kz - e -t &). Let 

Calculating the derivative of Val 

vu1 = -he2 - kZ2 + Zhcbecb - hCb& = 
= -he2 - (k  - hcb/4)Z2 -hcb(ecb - 0.5 . Z ) 2 ,  

we obtain that Val is negative definite with respect to e and z 

Note that ( 1  8 )  also depends on the time derivative of CO which 
is not measured (unless there is an accelerometer on-board). 
Therefore, to make the above controller implementable, we 
have to introduce an approximation of the derivative operator 
(so called “dirty derivative” [8], which is given by a transfer 
function h, T > 0) for a. Then the control law (19) is 
modified as follows: 

if k > h-cb,ma.x(0)/4 2 hcb(0) /4 .  

z, = 

6 = 

Of = z(o-wwf). (20) 

( 1  - khzl ) fcb  - h,-b (e  - k a  - &) 

(2cqr: )0f  - ~ ( w  - wd)dl -  6 2  + 6lh~bd 

f c b  = - h c b ( f c b  

With the approximation of the derivative, only semi-global 
practical stability results can be guaranteed, see the general 
procedure for deriving such results in [ 141. 
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7 Simulation Results 

To illustrate the operation of the adaptive controller we have 
designed, we consider the response to a desired vehicle speed 
profile wd, given by a step-wise periodic function that may 
be encountered in typical urban driving scenarios. Initially, 
large parameter errors result in a poor tracking performance. 
The tracking improves as the adaptation proceeds. During this 
particular periodic excitation in cod the vehicle mass and road 
grade estimates tend to their true values in 45 sec as shown in 
Figure 5. From Figure 4 we note that Vcb saturates during the 
transients (the saturation limits are indicated by dash-dotted 
lines). To provide some compensation for saturation we use 
an approach from [15]. The idea is to replace wd by Odf  

where Li)d,f = - h f ( W d , f  - cod) + r ,  where hf is large and r is 
selected to preserve the value of Va when saturation occurs and 
it is zero if there is no saturation. Unlike in [15], the scheme 
is here applied to an adaptive system. In particular, the satura- 
tion compensation scheme is active during the last downward 
step in cod (see Figure 3) and one can observe that the virtual 
reference W ~ , J  slows down to enable the system to catch up 
with it. The controller scheme including the reference modi- 
fication performed well for all the driving scenarios we tested 
through simulations. The analysis of the closed-loop stability 
properties for this more complex application is left for future 
work. 
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Figure 5: Convergence of vehicle mass and road grade parameter 
estimates. The true values are given by the dash-dotted 
lines, the estimates by the solid lines. 
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