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Estimating the Power Capability of Li-ion Batteries
Using Informationally Partitioned Estimators

Shankar Mohan, Student Member, IEEE, Youngki Kim, Member, IEEE,
and Anna G. Stefanopoulou, Fellow, IEEE

Abstract— Enforcing constraints on the maximum deliverable
power is essential to protect lithium-ion batteries and to maximize
resource utilization. This paper describes an algorithm to address
the estimation of power capability of battery systems accounting
for thermal and electrical constraints. The algorithm is based
on model inversion to compute the limiting currents and, hence,
power capability. The adequacy of model inversion significantly
depends on the accuracy of model states and parameters. Herein,
these are estimated by designing cascading estimators whose
structure is determined by quantifying the relative estimability
of states and parameters. The parameterized battery model
and the estimation algorithms are integrated with a power
management system in a model of a series hybrid electric vehicle
to demonstrate their effectiveness.

Index Terms— Battery management, hybrid electric vehicle,
lithium-ion (Li-ion) batteries, principal component
analysis (PCA), state and parameter estimation.

I. INTRODUCTION

L ITHIUM-ION (Li-ion) batteries have high energy/power
density and broad operating temperature ranges, making

them ideal components of electrified vehicles [1], [2]. The
performance and the longevity of these batteries hinge on
constraining their operation, such that their terminal voltage,
and internal and surface temperatures are regulated within
prescribed ranges [3], [4]. With these batteries acting as
power sources, an effective way to respect operating con-
straints is through the active regulation of powerflow—a task
performed by a supervisory controller in electrified vehicles
(refer to Fig. 1).

The power capability of a battery is the constant power
that can be provided by or drawn over a finite window of
time without violating operating constraints [5]. Methods to
estimate power capability have been widely explored in the lit-
erature. Plett [5], Verbrugge and Koch [6], Anderson et al. [7],
and Xiong et al. [8], using a representative equivalent-circuit
model, computed the maximum admissible battery charge

Manuscript received March 20, 2015; revised August 20, 2015; accepted
November 5, 2015. Manuscript received in final form November 29, 2015.
This work was supported by the Automotive Research Center through the
U.S. Army Tank Automotive Research, Development and Engineering Center,
Warren, MI, USA, under Grant W56HZV-04-2-0001. Recommended by
Associate Editor S. Varigonda.

S. Mohan is with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48109 USA
(e-mail: elemsn@umich.edu).

Y. Kim and A. G. Stefanopoulou are with the Department of Mechanical
Engineering, University of Michigan, Ann Arbor, MI 48109 USA (e-mail:
youngki@umich.edu; annastef@umich.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCST.2015.2504847

and discharge power ensuring that the battery’s termi-
nal voltage and State-of-Charge (SOC) remain constrained.
Smith et al. [9] and Perez et al. [10] used a more physics-
based electrochemical model to impose direct constraints on
SOC and Li-ion concentration.

There is another constraint that significantly influences the
rate of battery degradation of Li-ion batteries: temperature.
It is well understood that operating batteries in elevated tem-
peratures increases the potential for adverse side reactions and
results in accelerated degradation [3]; however, it has not been
factored-in when computing the power capability. This paper
aims to address this lacuna by using reduced-order models to
represent the electrical and thermal dynamics of the battery.

The electrical and thermal behaviors of Li-ion batteries
depend on their current state and operating conditions.
Since most power capability estimation techniques rely on
model inversion, accurate information of the local dynamic
behavior and estimates of internal states are desired. Thus,
state–parameter estimation has been considered as an
important aspect in the problem of power capability
estimation [6]–[8], [11]. Broadly, the most common methods
employed can be classified as being based on dual [11] or
joint estimation [7], [8]. Dual estimation is often preferred,
for it promises to minimize the influence of poor a priori
knowledge of the values of parameters and poor quality of
measurements on state estimates. In this paper, we propose
another augmented-state–parameter-space (aSPs) partitioning
technique based on a notion of relative estimability.
A significance metric computed from a principal component
analysis (PCA) on the Fisher information matrix (FIM), similar
to the ones defined in [12]–[15] for offline parameter identi-
fication, is used to measure relative estimability. The aSPs
is partitioned based on these significance metrics to aggregate
elements, which have a similar influence on the system output.
Finally, each partition is endowed with an estimator, in this
instance an extended Kalman Filter (EKF).

The contribution of this paper is threefold as follows.
1) A simple and effective method to determine thermally

and electrically constrained power capability of Li-ion
batteries.

2) A quantitative metric—termed significance metric—is
introduced to assess the estimability of states and para-
meters of the electrothermal battery model based on
the FIM.

3) Partitioned estimators for online state–parameter
identification are designed based on the significance
metrics.

1063-6536 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Schematic of power and battery management systems in an SHEV simulation framework. The focus of this paper is on the battery management
system (gray shaded box).

This paper is organized as follows. Section II describes the
electrical and thermal dynamic models of the battery used
in this paper. Section III details a method to estimate the
power capability of a battery accounting for electrical and
thermal constraints. Section IV proposes a quantitative metric
based on the PCA to partition the augmented-state-space in
designing estimators. Section V presents the control of a series
hybrid electric vehicle (SHEV) as an example application of
the presented techniques. Finally, Section VI concludes this
paper with a summary of contributions and with a discussion
on possible extensions.

II. CONTROL-ORIENTED BATTERY MODEL

One of the objectives of this paper is to develop online
estimation and control algorithms. To that end, simple control-
oriented models are employed to capture the electrical
and thermal behaviors of Li-ion batteries. In particular, an
equivalent-circuit model for the electrical dynamics [16] and
the reduced-order model developed in [17] for the thermal
dynamics are adopted.

A. Electrical Dynamics

A two-state equivalent-circuit model is considered to predict
terminal voltage, as shown in Fig. 2. The electrical dynamic
behavior of the battery with the total capacity Qb in discrete-
time domain is described by[

zk+1
V1,k+1

]
= AE

[
zk

V1,k

]
+ BE Ib,k (1a)

Vt,k = Voc(zk)− V1,k − Rs,k Ib,k (1b)

where system matrices AE and BE are expressed by

AE =
[

1 0

0 e
−�t

R1,k C1,k

]

BE =
⎡
⎢⎣

−�t

Qb

R1,k

(
1 − e

−�t
R1,k C1,k

)
⎤
⎥⎦.

Fig. 2. Schematic of an electrothermal model for cylindrical batteries
consisting of an equivalent-circuit model and 1-D thermal model.

The battery SOC, z, and polarization voltage, V1, are states,
i.e., xE = [z, V1]′, Ib is the current, and Vt and Voc are
the terminal voltage and open circuit voltage of the battery,
respectively. The series resistance, Rs , and the polarization
resistance/capacitance, (R1,C1), are the parameters to be
estimated, i.e., θE = [Rs , R1,C1]′. The subscript E denotes
the electrical system to differentiate from the thermal system
later. The sampling period in a battery management system
is denoted by �t . Refer to Appendix A for a list of nominal
values of the parameters of the model when the cell under
consideration is an A123 26650 LFP cell.

B. Thermal Dynamics

To predict core and surface temperatures of the battery,
Tc and Ts , respectively, a reduced-order model developed
in [17] is adopted and reproduced below for convenience[

T̄k+1
γ̄k+1

]
= AT

[
T̄k

γ̄k

]
+ BT

[
q̇k

T∞,k

]
(2a)

[
Tc,k

Ts,k

]
= CT

[
T̄k

γ̄k

]
+ DTT∞,k (2b)
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where T̄ is the averaged temperature and γ̄ is the averaged
temperature gradient. The above model was derived from the
simple 1-D heat equation assuming uniform heat generation
across the radius of the cylindrical cell and a quadratic form
for the temperature distribution along the radial direction.
Ambient temperature and the rate of heat generation are
denoted by T∞ and q̇ , respectively. The subscript T denotes the
thermal system. Matrices of the thermal system are given by

AT

=

⎡
⎢⎢⎣

hr2+ 24ktr − 48αh�t

r(24kt+ rh)

−15αh�t

24kt+ rh
−320αh�t

r2(24kt + rh)

hr3+ 24ktr2−120α�t (rh+ 4kt )

r2(24kt + rh)

⎤
⎥⎥⎦

BT � [BT1 BT2 ] =

⎡
⎢⎢⎣
α�t

kt Vb

48αh�t

r(24kt + rh)

0
320αh�t

r2(24kt + rh)

⎤
⎥⎥⎦

CT �
[

CT1

CT2

]
=

⎡
⎢⎢⎣

24kt − 3rh

24kt + rh
−120rkt + 15r2h

8(24kt + rh)
24kt

24kt + rh

15rkt

48kt + 2rh

⎤
⎥⎥⎦

DT �
[

DT1

DT2

]
=

⎡
⎢⎢⎣

4rh

24kt + rh
rh

24kt + rh

⎤
⎥⎥⎦

where r , kt , and α are the radius, thermal conductivity,
and thermal diffusivity of the battery, respectively; typically,
these parameters are not significantly affected by operating
temperature. However, the convection coefficient, h, is highly
influenced by cooling or heating condition, and hence, it
is chosen to be a parameter to be estimated. States and
parameters of the thermal dynamics for the online estimation
are xT = [T̄ , γ̄ ]′ and θT = h, respectively. Refer to
Appendix VI for a list of nominal values of the parameters
of the model when the cell under consideration is an
A123 26650 LFP cell.

The heat generation rate, q̇, is determined by the electrical
dynamics as

q̇k = I 2
b,k Rs,k + V 2

1,k

R1,k
− Ib,k T̄k

�Sk

F
(3)

where F is Faraday’s constant, 96 485.3365 C/mol;
�S denotes the entropy change of the battery and is
related to a certain amount of energy that needs to be
reversibly absorbed or released to balance the whole reaction
inside the battery.

III. POWER CAPABILITY ESTIMATION

In determining power capability, the following factors are
considered.

1) The thermal and electrical dynamics of a Li-ion battery
are intrinsically coupled.

2) The internal resistance and the rate of change of internal
resistance with respect to temperature decrease with
increasing temperature.

3) For a galvanostatic operation, any arbitrary increase in
battery temperature causes reduced internal losses, and
subsequently generates less heat.

4) Over a short time horizon, changes in temperature and
SOC are assumed to be bounded.

The above statements are valid insofar as the battery tem-
perature does not exceed the threshold temperature at which
thermal runaway is initiated. Since thermal dynamics are much
slower than electrical dynamics, in determining the power
capability, the thermal and electrical constraint problems are
addressed separately.

To calculate the power capability of the battery, an algebraic
propagation (AP) method is applied with information about
states and parameters from the state–parameter estimators
developed in Section IV. The AP method computes a constant
input, which leads to that none of constraints are violated
in N future steps. To apply the AP method to the electrical
system, the output of system (1) needs to be linearized and
is expressed as

[
zk+1

V1,k+1

]
= AE (R1,k,C1,k)

[
zk

V1,k

]
+BE (R1,k,C1,k)Ib,k (4a)

[
zk

Vt,k

]
= CE

[
zk

V1,k

]
+DE Ib,k + EE (4b)

where matrices CE , DE , and EE are defined as

CE �
[

CE1

CE2

]
=

⎡
⎢⎣

1 0

∂Voc(z)

∂z

∣∣∣∣
z=zk

−1

⎤
⎥⎦

DE �
[

DE1

DE2

]
=

[
0

−Rs,k

]

EE �
[

EE1

EE2

]
=

⎡
⎢⎣

0

Voc(zk)− ∂Voc(z)

∂z

∣∣∣∣
z=zk

zk

⎤
⎥⎦.

The maximum permissible currents accounting for electrical
constraints, such as SOC and voltage limits, SOCmin, SOCmax,
Vmin, and Vmax, are determined, respectively, as in (5a)–(5d),
as shown at the bottom of the next page. Each of those
equations, in sequence, helps compute the value of constant
current that will drive SOC to lower limit, SOC to upper
limit, terminal voltage to lower limit, and terminal voltage to
upper limit, at the end of an N-step prediction window. The
derivation of each subequation in (5) follows the same steps;
thus, for simplicity, the derivation of (5a) is provided in the
following. At any instant k, the N-step ahead prediction of the
various states assuming a constant current, Ib, is given by

[
zk+N

V1,k+N

]
= AN

E

[
zk

V1,k

]
+

(
N−1∑
i=1

Ai
E BE

)
Ib. (6)

If the value of SOC at the end of N samples is equal to
SOCmin, then the value of continuous discharge charge current
(I SOCmin

b,max,k) that drives the SOC to lower boundary is computed
by enforcing the terminal constraint on (6)

SOCmin = CE1

[
zk+N

V1,k+N

]
+ I SOCmin

b,max,kDE1 + EE1 .
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Now, substituting (6) into the above and collecting terms,
(5a) is derived.

For the battery thermal system, the representation in (2) is
rewritten as the following equations:

[
T̄k+1
γk+1

]
= AT (hk)

[
T̄k

γk

]
+ BT1(hk)μk + ξ1,k (7a)

Tc,k = CT1(hk)

[
T̄k

γk

]
+ ξ2,k (7b)

where

μk = I 2
b,k Rs,k − Ib,k T̄k

�Sk

F
(8a)

ξ1,k = BT1(hk)

⎡
⎣ V 2

1,k

R1,k
T∞,k

⎤
⎦ (8b)

ξ2,k = DT1(hk)T∞,k . (8c)

When the prediction period is short, the battery SOC and the
temperature do not change significantly over the prediction
horizon. Thus, it is reasonable to assume that the entropy
change and the internal resistance are constant over the pre-
diction horizon, i.e., Rs, j |k ≈ Rs,k and �Sj |k ≈ �Sk for
j = k, k + 1, . . . , k + N . In addition, the ambient temperature
and the convection coefficient do not change rapidly and,
hence, are assumed to be constant, i.e., T∞, j |k ≈ T∞,k

and h j |k ≈ hk for j = k, k + 1, . . . , k + N . Finally, an
estimate of heat generation by the polarization voltage over the
prediction horizon is obtained through model iteration using
the maximum permissible current at the previous sampling
time

ξ̄1,k = max{ξ1,k, ξ1,k+N }. (9)

These approximations make it easy to handle the nonlinearity
in the expression of a heat generation rate using a quadratic
term I 2

b,k and a bilinear term Ib,k T̄k .
Then, the maximum of the input μq

max,k , q ∈ {dch, chg},
which is described by considering the maximum core tem-
perature Tc,max, is determined as in (10a) and (10b), as
shown at the bottom of this page. Superscripts dch and chg
represent battery discharge and charge, respectively. By subst-
ituting (10) into (8a), the maximum permissible currents
during battery discharge and charge are determined,
respectively, by the following equations:

I Tmax
b,max,k =

T̄k�Sk
F +

√(
T̄k�Sk

F

)2 + 4Rs,kμ
dch
max,k

2Rs,k
(11a)

I Tmax
b,min,k =

T̄k�Sk
F −

√(
T̄k�Sk

F

)2 + 4Rs,kμ
chg
max,k

2Rs,k
. (11b)

Maximum discharge and charge currents accounting for all
constraints are calculated with

Ib,max,k = min
{

I SOCmin
b,max,k, I Vmin

b,max,k, I Tmax
b,max,k

}
(12a)

Ib,min,k = max
{

I SOCmax
b,min,k , I Vmax

b,min,k, I Tmax
b,min,k

}
. (12b)

Finally, the power capability {Pb,max,k, Pb,min,k} is computed
by the product of the maximum allowable current and terminal
voltage after N future sample steps expressed as

Pb,max,k = Ib,max,k · V dch
t,k+N |k (13a)

Pb,min,k = Ib,min,k · V chg
t,k+N |k (13b)

I SOCmin
b,max,k =

(
N−1∑
i=0

CE1Ai
E BE + DE1

)−1 (
SOCmin − CE1AN

E

[
zk

V1,k

]
− EE1

)
(5a)

I SOCmax
b,min,k =

(
N−1∑
i=0

CE1Ai
E BE + DE1

)−1 (
SOCmax − CE1 AN

E

[
zk

V1,k

]
− EE1

)
(5b)

I Vmin
b,max,k =

(
N−1∑
i=0

CE2Ai
E BE + DE2

)−1 (
Vmin − CE2AN

E

[
zk

V1,k

]
− EE2

)
(5c)

I Vmax
b,min,k =

(
N−1∑
i=0

CE2Ai
E BE + DE2

)−1 (
Vmax − CE2 AN

E

[
zk

V1,k

]
− EE2

)
(5d)

μdch
max,k =

(
N−1∑
i=0

CT Ai
T BT

)−1 (
Tc,max − CT AN

T

[
T̄k

γk

]
−

N−1∑
i=0

CT Ai
T ξ̄

dch
1,k − ξ2,k

)
(10a)

μ
chg
max,k =

(
N−1∑
i=0

CT Ai
T BT

)−1 (
Tc,max − CT AN

T

[
T̄k

γk

]
−

N−1∑
i=0

CT Ai
T ξ̄

chg
1,k − ξ2,k

)
(10b)
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where the predicted terminal voltage V q
k+N |k , q ∈ {dch, chg}

is calculated with

V dch
t,k+N |k = Voc

(
zk − Ib,max,k N�t

Qb

)
− Ib,max,k Rs,k

− e
−N�t

R1,k C1,k V1,k − Ib,max,k R1,k

(
1 − e

−N�t
R1,k C1,k

)

V chg
t,k+N |k = Voc

(
zk − Ib,min,k N�t

Qb

)
− Ib,min,k Rs,k

− e
−N�t

R1,k C1,k V1,k − Ib,min,k R1,k

(
1 − e

−N�t
R1,k C1,k

)
.

IV. STATE AND PARAMETER ESTIMATION

The power capability of a battery, as described in
Section III, relies on the accurate description of the battery’s
electrothermal dynamics. The challenge of estimating model
states and parameters in the context of power capability
estimation has been extensively studied; broadly, the most
common methods employed can be classified as being based
on dual [11] or joint estimation [7], [8].

In this section, the problem of state–parameter estimation is
addressed by describing a method to partition the aSPs for dual
estimation. The partitioning is inspired by spectral techniques
that have, thus, far been used for offline parameterization of
models, and the resulting partitions are worked upon by a
cascading estimator. To that end, this section is structured as
follows. Section IV-A describes the partitioning technique in
general. Section IV-B specializes the method to the problem
of state–parameter estimation for the electrothermal model and
describes the overall structure of the estimator.

A. Partitioning of the Augmented-State-Space

Joint estimation in the aSPs is generally computationally
intensive and is less preferred to dual estimation, because the
latter is believed to reduce the influence of poor a priori
knowledge of initial parameters and poor measurements on
state estimates [11], [18], [19]. In a typical implementation
of a dual estimator, the aSPs is partitioned into two groups
consisting of states and parameters, respectively. In this paper,
based on the notion of observability/estimability, an alternate
criterion to partition the aSPs is suggested. The proposed
partitioning technique is a direct extension of standard offline
parameter estimation techniques [12], [20].

Consider a general dynamic system whose evolution is
described by the following equations:

xk+1 = f (xk, θk, uk) (14a)

yk = g(xk, θk, uk) (14b)

where f, g ∈ C1(Rnx ×R
n p ×R

nu ). Suppose it is of interest to
estimate the states, x , and the parameters, θ , in the presence
of exogenous inputs, u; the aSPs description for the estimator
is defined as follows:

x̃k+1 = f (x̃k, uk) (15a)

yk = g(x̃k, uk) (15b)

where x̃ = [x, θ ]′ ∈ R
nx +n p . The parameters, θ , are assumed

time-invariant or slow-varying, over a short window of data

of length N samples. State–parameter estimation problems
can generally be recast as one of finding the initial condition
of states and parameters in the form of a least squares
estimation (LSE) problem [21]

θ̃ = arg min
θ̃

‖Y − Ŷ (θ̃ ,U)‖2 (16)

where θ̃ = [x0, θ ]′; x0 is the initial condition of states, θ
is the parameter of the dynamical system, U is the vector
of inputs U = [u1, . . . , uN ]′, Y is the vector of measure-
ments Y = [y1, . . . , yN ]′, and Ŷ is the output of the model
Ŷ (θ̃) = [ŷ1(θ̃), . . . , ŷN (θ̃ )]′. In the following discussion, the
FIM is used as a tool to asses the estimability of parameters θ̃ .1

The FIM, F, is typically constructed by stacking a sequence
of sensitivity coefficients. In the context of the LSE problem
in (16), F = H′H where

H( ˆ̃θ,Y,U)

= [diag(Y )]−1

⎡
⎢⎢⎢⎢⎢⎢⎣

∂y1(θ̃,U)

∂θ̃1
. . .

∂y1(θ̃ ,U)

∂θ̃nx +n p

...
. . .

...

∂yN (θ̃,U)

∂θ̃1
. . .

∂yN (θ̃,U)

∂θ̃nx +n p

⎤
⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣
θ̃= ˆ̃θ

×[ diag( ˆ̃θ )] (17)

ˆ̃θ is the best a priori estimate of θ̃ , and it has been
assumed that measurement uncertainty, if any, is additive white
Gaussian with unit variance. Observe that the Jacobian is
left multiplied by a diagonal matrix of measurements from
the model, and is multiplied from the right by a diagonal
matrix of the values of the various parameters. The Jacobian
matrix is thus scaled to normalize entries and remove any units
associated with entries.2

The FIM provides useful information about the estimation
problem—the rank of F presents the number of estimable
parameters, an ill-conditioned F indicates that some parame-
ters are not robustly estimable, the inverse of F is termed the
covariance matrix and is related to the variance of estimates
as derived by the best unbiased estimator (the Cramér–Rao
bound). The information matrix has been used for yet another
purpose—to infer the relative significance of estimating para-
meters from the provided data. This form of analysis, typically
reserved for offline parameterization, has been discussed in the
literature (refer to [12]–[15] and references therein); studies on
offline estimability typically culminate in a method to partition
the set of parameters to be estimated, θ̃ , into groups. Herein,
a similar partitioning technique is utilized to design the online
estimator.

A quantitative metric to assist in ranking parameters based
on their relative significance on the measurement and, hence,
their estimability from the measurement can be defined using
PCA [20], [23] on FIM. In the following discussion, for

1For the relation between FIM and local nonlinear observability, refer
to [22].

2Viewed differently, one could say that the various parameters—each a
random variable—are scaled to create new random variables and the Jacobian
is with respect to the new random variables.
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Algorithm 1 Cascading Estimation Algorithm (SISO)

simplicity of expressions, it is assumed that the F has distinct
eigenvalues. Let r = nx + n p and � = {λ1, . . . , λr } be
the ordered set (increasing) of eigenvalues of the F, and
{E1, . . . , Er } be the set of eigenvectors arranged to match the
corresponding eigenvalue. The principal components of H and
the eigenvectors of F are ordered as follows—∀i, j ∈ Nr ,
if i < j , E j explains the variation in the data better
than Ei . The relative significance of principal components
is a reflection of the corresponding directions along which
there is a larger variation. A measure of the significance of
the i th parameter, θ̃i , is given by

ηi =
∑r

k=1 |λk · (Ek)i |∑r
k=1 |λk | (18)

where (Ek)i denotes the i th row of Ek . Note that 0 ≤ ηi ≤ 1
and reflects the difficulty of estimating the i th parameter by
itself; if ηi > η j , the i th parameter is more estimable than
the j th parameter. Let � be the set of all the elements
of the aSP that are to be estimated, and ζ is the critical
threshold about which the parameters are partitioned. For
notational convenience, it is assumed that ζ ∈ [0, 1]. Then,
two vectorized groups G1 and G2 can be defined as follows:

G1 = vec({θ̃i ∈ � | ζ ≤ ηi ≤ 1}) (19a)

G2 = vec(�\{θ̃i ∈ � | ζ ≤ ηi ≤ 1}) (19b)

The online estimation problem at every update instant k is
depicted in Algorithm 1. At each update instance, estimates
of the value taken by elements in the aSP are updated in a
sequence with groups consisting of more significant elements
being updated earlier than groups with less significant ele-
ments. In Algorithm 1, θ̃k−1 is the estimate of every element
of aSP using the information available until instance k − 1;
a priori estimates of θ̃k are derived from θ̃k−1 using the
dynamics in (15). This is followed by initializing the values
of elements in G j using the a priori estimates of θ̃k . The
value of members of each group is subsequently updated using
measurement information of inputs and outputs (U and Y )
and a priori estimates; this is achieved using estimator ψi

associated with group Gi . The ψi s in the algorithm are
estimators designed specific to group Gi s and are chosen, such
that the extent to which measurements influence the updates
decreases as the group number increases. At each instant k,
as such, the following equality holds:

e2
k ≤ e1

k

Algorithm 2 Ranking States/Parameters

where e1
k is the output prediction error having updated

G1 and G2 is the total output prediction error after all
states and parameters have been updated. The availability of
individually tunable parameters for each group is an additional
degree of freedom that the designer can utilize to address
the problem that typically attributed to joint estimation; by
detuning the estimators associated with G2, the impact of
measurement noise on the less observable states/parameters
can be reduced.

Remark 1: As elements in each group have comparable
influence on the measured output, in our experience, tuning
individual estimators is simpler than when the cascading
structure was not adopted.

B. State–Parameter Estimation of the Electrothermal Model

Section IV-A presented the architecture of the estimator
considered in this paper—the aSPs was partitioned based
on metrics derived from the FIM of the initial condition
estimation problem. This section addresses the problem of
state–parameter estimation of the electrothermal model.

Fundamental to the application of the cascading algorithm
in Algorithm 1 is the availability of the significance metric η.
In offline parameterization problems, the entire trajectory of
the inputs and outputs is completely known, and the ranking
algorithm can be set up as described in Section IV-A;
however, for online estimation problems, particularly for non-
linear estimation, when the employed estimator works with
a limited data set, the parameter significance ranking has to
be performed dynamically using a window of data. How-
ever, since a Battery Management System (BMS) platform,
in general, does not have sufficient computational power,
the expected influence of parameters is computed offline by
generating a meaningful set of data as described.

The average significance of each element in the aSPs over
which the estimator operates is computed by utilizing standard
drive cycles. For each drive cycle, the model of the integrated
SHEV presented in [24] is used to generate the trajectory of
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Fig. 3. Tracing the significance of each state/parameter in the (a) thermal aSP
while measuring surface temperature alone (b) electrical aSP when measuring
terminal voltage, along the UAC drive-cycle.

battery currents. The generated current profile is, in turn, fed
to the battery pack model, and the resulting output voltage
and the trajectories of the internal states and parameters are
recorded similar to [25]. Considering the minimum number of
samples required to estimate n parameters from data, 2n + 1,
as suggested in [26], the information matrix is computed
along the trajectory of the states, and the associated signif-
icance of each element of aSPs is computed, as described in
Algorithm 2. The significance metrics, computed at each
instance based on a receding history, are then averaged to
compute the significance metric over the entire drive cycle.

Fig. 3(a) and (b) presents the evolution of the significance
metric associated with each element of the aSPs, for both the
thermal and electrical subsystems. The metrics are evaluated
over a rolling data set obtained from driving the heavy-duty
vehicle model to follow the urban assault cycle (UAC) [24].
The first subplot of both figures traces the values of the
significance metrics, while the second subplot provides an
indication of the relative ranking of the significance metrics at
every time instant; it should be noted that in the second plot,

higher the relative rank, the more significant the parameter.
From Fig. 3(a), it is observed that the average temperature

gradient, γ̄ , has the least influence on the surface
temperature Ts . The surface temperature is structurally more
influenced by the averaged temperature than by the thermal
gradient as can be observed from system matrix CT2 (2).
In addition, the influence of perturbation of h on the surface
temperature is dominated by the ratio of thermal conductivity
to radius; that is, when the battery with low thermal conductiv-
ity has small radius, it is expected that a change in convection
coefficient does not lead to any discernable change in the
surface temperature.

Unlike Fig. 3(a), Fig. 3(b) exhibits a slightly erratic pattern;
however, the key traits are fairly predictable. As the influence
of the parameters of the single R–C pair manifests themselves
through the trajectory of the polarization voltage, it is expected
that these parameters are not any more estimable than V1.
The contribution of V1 to the terminal voltage is usually
smaller than that of the series resistance and the open-circuit
voltage in terms of magnitude. This behavior arises from the
current in hybrid vehicles being typically charge sustaining.
Thus, on an average, Rs—the most significant parameter to
compute the power capability [27]—is the most estimable
parameter and the average significance metric mirrors our
expectations of estimability of states and parameters. Note that
when the current is identically zero, the series resistance is not
estimable; in producing Fig. 3, it was assumed that the pack
is always excited with some current.

Remark 2: It is worth reiterating that the aSP of the elec-
trical and thermal models of the battery is, in this paper,
partitioned based on average significance metrics. This choice
was made by observing that the relative ranking of the vari-
ous states/parameters—computed using Algorithm 2—remains
fairly constant. This is to be expected when the battery
operates at or above room temperature, and in an HEV
application, wherein the SOC deviates about a nominal (not by
much). However, for a generic nonlinear system, if the solution
trajectory was such that the local behavior at any two instances
was sufficiently different, then the number of partitions and
their members will have to be dynamically adjusted.

Remark 3: The parameters of the equivalent-circuit model
that are considered for online estimation has one glaring
omission—battery capacity; an accurate estimate of the cell’s
capacity is assumed. The cell’s measurable capacity is a func-
tion of temperature and the magnitude of power fed/drawn;
an inaccurate estimate constitutes a structural uncertainty in
the dynamics of the electrical subsystem. A discussion on the
impact of this uncertainty on the quality of estimates and the
structure of the estimator is deferred until a subsequent work.

V. POWER MANAGEMENT IN A HYBRID

ELECTRIC VEHICLE

This section investigates the performance of the proposed
power capability estimator and its influence on the power
management in a heavy-duty SHEV. The SHEV is simulated
in the cosimulation framework in which the battery elec-
trothermal model and the online adaptive estimators are fully
integrated to the vehicle model.
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TABLE I

SIGNIFICANCE OF STATES AND PARAMETER TO OUTPUTS OVER DIFFERENT INPUT PROFILES BASED ON PCA

Fig. 4. Schematic of state–parameter estimators with cascading structure.

The HEV simulator is developed using a forward-looking
approach, as shown in Fig. 1. The driver, which takes the
desired and actual vehicle velocities as inputs and provides
propulsion or braking power demands, is modeled as a PI con-
troller. Powertrain components, such as the engine/generator,
motor, and battery, are modeled with quasi-static maps.

In the simulator, power distribution is managed using a
receding horizon controller whose instantaneous objective is to
optimally minimize a weighted cost function: fuel consump-
tion, SOC deviation, and power rate of the engine/generator.
Details of the controller and its implementation are not of
immediate relevance to the contents of this paper and, hence,
have not been included; they can be found in [24].

Extending the presentation in Section IV, Algorithm 2 is
iterated over three different standard heavy-duty vehicles’
drive cycles. Table I tabulates the computed expected
relative influence for the thermal and electrical subsystems
over these drive cycles. The mean significance of each
state/parameter ∗ is denoted by η̄∗. From a cursory glance
at the numerical estimates of expected significance, one notes
a self-evident partitioning of the aSPs, and Table II collates
the relevant groups for both subsystems [using ζ = 0.1
in (19) for both the electrical and thermal subsystems]. With
these partitions, independent estimators are designed for each
group, as shown in Fig. 4. Note that the states/parameters of
the electrical systems are estimated solely based on terminal
voltage, but those of the thermal systems are influenced by
estimates of the electrical systems through (3). To reflect this
dependence, estimates of the electrical subsystem are updated
prior to those of the thermal subsystem. The estimator of
choice is the EKF summarized briefly in Appendix B.

TABLE II

STATE, PARAMETER, INPUT, AND OUTPUT OF ELECTRICAL AND

THERMAL SYSTEMS FOR STATE–PARAMETER ESTIMATION

A. Estimator Tuning

The average significance metric, as presented in Section IV,
enables one to determine quantitatively the relative extent to
which variation in the measured data can be explained by each
element of the augmented-state-space. Viewed differently, the
inverse of the significance metric is roughly indicative of the
relative variance of the estimates of the states and parameters
obtained from the provided data; the EKFs used in this paper
are tuned with this information. Matrices Q and R, which
correspond to the process and measurement noise covariance
matrices, respectively, are set as follows.

Recall that the average significance metric of
parameter ∗, η̄∗, was computed from the eigenvalues of
the FIM and that the FIM matrix was computed from the
scaled Jacobian. Scaling the Jacobian can be interpreted as
scaling the parameters. To compute the expected variance of
each parameter, the inverse of the significance metric has to
be multiplied by the square of the scaling factor—the nominal
value of the parameter.
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TABLE III

NOMINAL VALUES AND DERIVATIVE MATRICES

Thus, the Q matrix for every estimator employed is defined
as follows:

QE1 = diag([1/η̄z, 1/η̄V1, 1/η̄Rs ]) · NE1

QE2 = diag([1/η̄C1, 1/η̄R1]) · NE2

QT1 = diag([1/η̄T̄ ]) · NT1

QT2 = diag([1/η̄γ̄ , 1/η̄h]) · NT2

where η̄∗ is the mean significance metric of state ∗ presented in
Table I and the matrix on the right of each expression, N, is a
diagonal matrix comprised of the square of the nominal value
of the corresponding parameter ∗nom. Table III collates the
nominal values of various parameters and the derived nominal
matrices.

The values of η̄∗’s are computed from the scaled version
of the Jacobian, H [refer to (17)].3 The listed Q matri-
ces correspond to the electrical (subscript E) and thermal
(subscript T ) subsystems, respectively, and the numeral sub-
script corresponds to the group number. With the Q matrices
defined as above, the values of the corresponding R matrices
are tuned to minimize the mean error in individual estimates
of states and parameters. The matrix R is tuned by scaling
appropriately sized identity matrices, and the mean error
threshold is chosen to be 5%. In this particular application,
the values of the corresponding R matrices are the following:

RE1 = 104, RE2 = 104

RT1 = 10−4, RT2 = 103.

B. Results and Discussion

The battery current and the terminal voltage, which
are inputs to the EKF-based estimator for the electrical
system ψE ·, are shown in Fig. 5. To simulate realistic noise
conditions, the current and the voltage are contaminated
with artificial Gaussian noises, i.e., σI = 3 × 10−3 and
σV = 1 × 10−3. The results of state–parameter estimation for
the electrical system are shown in Fig. 6(a)–(e), indicating
that the estimator ψE · can simultaneously estimate SOC,4

polarization voltage, series resistance, polarization resistance,
and capacitance. It is observed that states and parameters

3When a random variable is scaled, its variance is also quadratically scaled;
the right diagonal matrices for Q are in place to normalize the entries of the
corresponding states.

4The battery SOC from the plant model is measured using Coulomb
counting.

Fig. 5. Input data to the estimators ψE · over the UAC. (a) Current.
(b) Terminal voltage.

Fig. 6. Performance of the estimator for the electrical system ψE .
(a) SOC. (b) Polarization voltage. (c) Series resistance. (d) Polarization
resistance. (e) Polarization capacitance.

in G1 are estimated accurately and their convergence rates
are relatively fast compared with those in G2. In particular,
polarization resistance R1 has the lowest estimation quality,
which corresponds to the result that R1 has the smallest
significance metric among states and parameters.

Fig. 7 shows the battery surface temperature and the ambient
temperature, which are used as inputs to the EKF-based
estimator for the thermal system ψT ·; similar to electrical
system, Gaussian noises are artificially added to the surface
and ambient temperatures, i.e., σTs = σT∞ = 1.57 × 10−3.
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Fig. 7. Input data to the estimator ψT over the UAC. (a) Surface temperature.
(b) Ambient temperature.

Fig. 8. Performance of the estimator for the thermal system ψT . (a) Averaged
temperature. (b) Averaged thermal gradient. (c) Convection coefficient.

To simulate malfunction of the cooling system, the convection
coefficient is deliberately changed from 20 to 3 W/m2-K
at t = 600 s. This malfunction condition is simulated to assess
not only the performance of the estimator ψT , but also the
effectiveness of the power capability estimation. As shown
in Fig. 8, the estimator is capable of providing accurate
estimates of the states and parameters of the thermal system.

Remark 4: The controller employed by the simulator
aims to minimize fuel consumption while also regulating
battery SOC; the objective function of the controller is
formulated as the weighted sum of fuel consumption and SOC
deviation about 0.5. Since the optimization problem is solved
in receding horizon fashion without any terminal or invariant
set constraints, the SOC at the end of the simulation should

Fig. 9. Performance of the power capability estimation. (a) Power. (b) SOC.
(c) Terminal voltage. (d) Core temperature.

not be expected to be identical to 0.5 despite the general
formulation being labeled charge sustaining. In addition, if
the thermal constraints are active, then the power that can be
drawn and or deposited into the pack decreases, making SOC
regulation more challenging.

The results of power capability estimation are shown in
Figs. 9 and 10, which depict the battery power, SOC, terminal
voltage, and core temperature. Each subplot has the trajectory
of the variable in blue line and the bounds on its value in red
line. As shown in Fig. 9(a), the maximum battery power is
limited by electrical-constrained power capability when the
battery core temperature is lower than the target value of
Tc,max = 45 °C. It is observed that the battery SOC and the
terminal voltage do not violate constraints [Fig. 9(b) and (c)].
However, as the core temperature increases, thermal-
constrained power capability becomes active, and hence, the
battery power is effectively regulated between the maximum
and minimum power limits. To highlight this performance,
specific time periods from 1000 to 1100 s are shown in
Fig. 10. Consequently, the core temperature is well regulated
around the maximum temperature, as shown in Fig. 10(d);
max{T̂c − Tc, 0} = 0.02. Considering that the accuracy of a
thermocouple is usually less than 0.5 °C and that the con-
vection coefficient h is estimated from noisy measurements,
it can be said that the performance of the proposed method is
reasonably satisfactory.

Evidenced by the results from the model-in-the-loop
simulation, it can be concluded that the developed estimation
algorithms, including states, parameters, and power capabil-
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Fig. 10. Performance of the power capability estimation from 1000 to 1100 s.
(a) Power. (b) SOC. (c) Terminal voltage. (d) Core temperature.

ity, are capable of providing accurate information about the
battery. Thus, the safe and reliable operation of the power
management system as well as the battery can be achieved.

VI. CONCLUSION

This paper presents a method to estimate the thermally and
electrically constrained power capability of battery systems
and demonstrates its application to the power management
problem in an SHEV. The dynamics of the electrical and
thermal subsystems are not invariant and, hence, are adapted.
To design estimators/adaptors, the relative estimability of the
states and parameters of the electrical and thermal models was
studied using the PCA. Based on a ranking table derived from
their relative estimability, the elements of the augmented-state-
space model were grouped based on an average significance
metric, and individual estimators were designed for each
group. The results of the model-in-the-loop simulation show
that the proposed estimation algorithms can provide accurate
information about the battery to the power management sys-
tem, and hence, safe and reliable operation of the SHEV can
be achieved. A future work will explore the possibility of
allowing for dynamically altering the number of groups and
their membership based on the local significance of the various
states and parameters.

APPENDIX A
LIST OF PARAMETERS OF THE MODEL

This section lists the nominal values of the parameters in
the models introduced in Section II when the pack under

consideration consists of A123 26650 LFP cells.

APPENDIX B
OVERVIEW OF THE EXTENDED KALMAN FILTER

A brief summary of the EKF methodology used in Section V
is provided in this appendix.

Considering a dynamical system described by

x̃k+1 = f (x̃k, uk)+ vk

yk = g(x̃k, uk)+ wk

with the process and measurement noises, vk and wk ,
respectively, define the following:

Ak−1 = ∂ f

∂ x̃

∣∣∣∣{ x̃ = ˆ̃x+
k−1

u = uk−1

} , Ck = dg

dx̃

∣∣∣∣{ x̃ = ˆ̃x−
k

u = uk

} .

The design of each EKF estimator is given as the following
update processes assuming that the covariances of the process
and measurements noises are defined as Q := E{v ′

kvk} and
R := E{w′

kwk}, respectively.
Time Update for the State Filter:

ˆ̃x−
k = Ak−1 ˆ̃x+

k−1 + Bk−1uk−1

P−
k = Ak−1P+

k−1AT
k−1 + Q.

Measurement Update for the State Filter:

Kk = P−
k Ck

T [
CkP−

k Ck
T + R

]−1

ˆ̃x+
k = ˆ̃x−

k + Kk
[
yk − fuk

( ˆ̃x−
k

)]
P+

k = [I − KkCk]P−
k .
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