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Abstract - A fuzzy logic controller for ship path 
control in restricted waters is developed and 
evaluated. The controller uses inputs of heading, 
yaw rate, and lateral offset from the nominal 
track. A Kalman filter is used to produce the 
input state variables from noisy measurements. 
The controller produces a commainded rudder 
angle. Input variable fuzzificrrtion, fuzzy 
associative memory rules, and output set 
defuzzification are described. The controller is 
benchmarked against a conventional Linear 
Quadratic Gaussian (LQG) optimal controller and 
Kalman filter control system. An initial startup 
transient and regulator control performance with 
an external hydrodynamic disturbance are 
evaluated. The fuzzy controller yields 
competitive performance. 

I. INTRODUCTION 

The maneuvering of a ship along a prescribed path in 
restricted waters is important from operational, safety, and 
environmental viewpoints. A ship is subjected to short-term, 
essentially zero-mean disturbances Que to passing ships, 
current and wind variations, and bank and bottom changes. It 
is also subjected to more long-term, ]non-zero-mean 
disturbances due to steady current and wind, second-oder wave 
forces, and banks. The dynamic characteristics of the ship 
change significantly with depth under keel, draft, trim, speed, 
and nearness to banks. The effects of the bank and bottom 

boundaries can be viewed either as changes in the dynamic 
characteristics of the ship or as external force and moment 
disturbances. Uncertainty exists about the nonlinear 
mathematical model of the ship in these varying conditions. 

Earlier we studied the use of conventional Linear 
Quadratic Gaussian (LQG) optimal controllers, Minimum 
Variance adaptive controllers, and multivariable integral 
controllers for ship path control [1,2,3]. More recently, 
Papoulias and Healey [4,5] have investigated the use of 
multivariable sliding mode control for the path control of 
surface ships. This approach shows promise for robust 
control of nonlinear systems with modeling uncertainty. 

Recent Sea Grant long-range planning emphasized the 
investigation of developments in Artificial Intelligence (AI) 
for possible application to the marine field. Of these, fuzzy 
logic control offers an effective alternative for the control of 
nonlinear systems where the model is not well known [6,7,8]. 
This paper describes the initial efforts to investigate the 
effectiveness of fuzzy logic for ship path control. In the 
future, we will investigate the use of neural networks in 
combination with fuzzy logic control to provide an element of 
learning and adaptivity in the control. 

This is the result of work sponsored by the Michigan Sea Grant College 
Program, project number W, under grant number NA36RG0506 from 
the National Oceanic and Atmospheric Administration (NOM), U. S. 
Department of Commerce, and funds from the State of Michigan. The U. S. 
Government is authorized to produce and distribute reprints for 
governmental purposes notwithstanding any copyright notation appearing 
hereon. 
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11. SYSTEM MODEL 

The system model is the typical ship maneuvering 
coordinate system fixed at the center of gravity of the vessel 
as shown in Fig. 1. The five states are heading angle y, yaw 
rate r = dyrldt, side slip angle p, lateral offset of the vessel 
from the nominal path q, and rudder angle 6. A fmt-order 

gear. The vessel can be subjected to an external yaw moment 
N and external lateral force Y due to a passing ship or other 
hydrodynamic influence. The non- dimensionalized linear 
state equations are as follows [I]: 

1 
model with a commanded rudder angle 6, models the steering ‘Z 

t z 
- l l  

distance from nominal track 
Fig 1 Ship Maneuvering Coordinate System 

In. CONVENTIONAL LQG CONTROLLER 

B! = [”, Y’IT The performance of the fuzzy logic controller will be 
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The specific vessel used here is the 150,000 deadweight 
ton, 290m x 47.5m x 16.0m (LxBxT) tanker Tokyo Muru 
which was studied extensively by Fugino [9]. We used this 
vessel in our earlier work. We have shown that, for best 
overall performance, conventional LQG controllers should be 
designed for the least course stable water depth to ship draft 
ratio El] which for this vessel is H/T = 1.89. The coefficients 
of the equations of motion at this water depth and a Froude 
Number of 0. 116 or 12 knots are as follows: 

f22 = -1.7657 n1 - 477.68 

f23 = 5.7359 722 = -5.0043 
f25 = -0.88074 
f32- 0.17199 731 = 21.141 
f33 = -0.52766 732 = -28.233 
f35 = -0.15607 
l/Tr = 4.6980 

.~ 

benchmarked against the performance of a Linear Quadratic 
Gaussian (LQG) optimal controller and Kalman filter. The 
ophmal controller is defined by the quadratic cost function, 

Where a44 = 772.463 
a55 = 131.332 
b l l  = 131.332 

Using the design logic of Bryson and Ho [lo] these weights 
assume 5 degrees of rudder would be applied when the lateral 
offset is 10.43 m or about 22% of the 47.5 m ship beam The 
resulting optimal control gain matrix becomes: 

Cx = [5.5421, 2.6601, 6.3894, 2.4252, -0.8498IT 

The system measurements are the heading, yaw rate, and 
lateral offset from the nominal path. These are given by, 

Z - H X + Y  (3) 

Where 

The measurement white noise components have power 
spectral density matrix R with non-zero diagonal components 
‘11 = 1.298~10-~,  ‘22 = 2.860~10-~,  and ‘44 = 4.559~10-7. 
The side slip angle p is not measured. We have shown using 
relative observability that the system is fully observable 
without p. This precludes the need for Doppler sonar 111. 
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The design external hydrodynamic disturbance is for 8 
passing ship as shown in Fig. 2. The R M S  values of these 
disturbances between non-dimensional time (ship lengths) 
-2.0 and 1.4 m 8.798~10-~ and 21.178~10~ for N and Y, 
respectively. Assuming a correlation time of 1 for each 
disturbance, the design external disturbance power spectral 
density matrix Q has diagonal components 411 = 1.548xlO-* 

and 422 = 8.970~10-8. The resulting Kaliman filter gain 
matrix is as follows: 

4.6883 0.9507 0.0035 
20.9479 109.7887 -0.4755 

K =  2.7730 9.0086 -8.6‘349 
1.2389 -0.7579 4.1:275 i o.oo00 0 . m  0 . m  I 

o.ooQ1 

This LQG controller is similar to those studied in our earlier 
work except that here we have not used shaping filters to 
model the external disturbances. This approach will allow the 
same Kalman filter to be used with both controllers and will 
provide a valid comparison between the two controllers. 

%lu.- 
“l. ..._ n - 

Iv. FUZZY LOGIC CONTROLLER 

Conventional control design requires a mathematical 
model of the physical system. Generating the model may 
often be difficult as in the case of a model for a ship path 
controller where robust control of a nonlinear system is 
required. In contrast, fuzzy logic controllers are modelless. In 
fuzzy logic control design, the designer need only establish 
linguistically (perhaps from expert knowledge) how the 
control output should vary with the input. Further, 
traditional nonlinear features such as deadbands and limiters 
can be included. 

In many cases, the simplicity of the fuzzy logic 
controller results in a faster and more accurate response than a 
traditional controller. The simplicity also has the advantage 
of translating to a lower design cost. The best candidates for 
fuzzy control are systems where the dynamic behavior is 
complicated yet the dynamics are of low ordeir. 

The fuzzy logic ship path controller receives three crisp 
numerical inputs: heading angle y,  yaw rate r, and lateral 
offset q from the Kalman filter. It categorizes these inputs 
qualitatively (fuzzification); determines each input’s quantita- 
tive value (by assigning degrees of membership); applies 
antecedent-consequent logic rules corresponding to the input 
set combinations (firing rules); determines a qualitative output 
for each active rule and determines the degree to which the rule 
is fired (correlation-minimum inference procedure); and lastly 
determines one crisp output for commandedl rudder angle 6, 
(defuzzification). 

A. Fuzzifcation 

The first response of the fuzzy controller is to assign each 
of the three numerical inputs (heading angle yr, yaw rate r, and 
lateral offset q) to a linguistically described input variable 
fuzzy set. These fuzzy sets are defined as follows: 

heading angle w (degrees) 
LN = -90.00 to -28.00 SP = + 0.00 to +17.00 
MN = -40.00 to -10.00 MP = +10.00 to +40.00 
SN .e -17.00 to 0.00 LP = +28.00 to +90.00 
ZE = - 5.00 to + 5.00 

where LN = large negative, MN = medium negative, 
SN = small negative, ZE = zero, SP I small positive, 
MP = medium positive, and LP = large positive 

. yaw rate r (degrees/sec) 
LN = -0.20 or less SP = 0.00 to +0.25 
SN = -0.25 to 0.00 
ZE = -0.10 to +0.10 

Lp = +0.20 and larger 

lateral offset q (dimensionless on ship length) 
LN = -0.2 or less SP = 0.0 to +0.4 
SN = -0.4 to 0.0 
2% = -0.1 to +o. 1 

LP = +0.2 and larger 

Similarly, the output variable commanded rudder angle Sc 
(degrees) linguistically defined fuzzy sets are as follows: 

LN = -35.0 to -15.0 SP = 0.0 to +20.0 
SN = -20.0 to 0.0 LP = +15.0 to +35.0 
ZE = - 5.0 to + 5.0 
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The number of fuzzy sets for each input or output 
variable is somewhat arbitrary, reflecting the ease of design. 
The literature [6,7] advises that the increase in accuracy that 
might be obtained from having many fuzzy sets may be 
negligible and unwarrented computationally. Three sets for 
any of the input variables seemed too little in this case; nine 
seemed too many. Consideration was given to the numerical 
range of possible values. Thus the heading angle w has seven 
sets, while the other variables have five. 

B.  Assigning Degrees of Membership 

The fuzzy controller assigns to each of the three inputs a 
degree of membership within each linguistic fuzzy set. Note 
that often the degree of membership is zero, since the most 
fuzzy sets to which an input can belong and have a non-zero 
degree of membership is two. The degree of membership will 
depend on the fuzzy set's membership function. The input 
fuzzy set membership functions are defined in Figs. 3,4,  and 
5 for w, r, and q9 respectively. They are symmetrical about 
the input variable value 0. 

The following guidelines were used to prepare the 
m e ~ r s h i p  functions: the membership function for each ZE 
fuzzy set has zero as its center; membership functions for 
fuzzy sets nearer equilibrium (O,O,O) conditions are narrower 
than those farther from equilibrium (this results in finer 
control near equilibrium); the degrees of membership in 
complementary fuzzy sets add to unity. 

Eig. 3 Membership functions for heading angle yl 

C. Fuzzy Associative Memory Rules 

The fuzzy ship path controller correlates each group of 
fuzzy input sets to an output fuzzy set through a Fuzzy 

0 

1 

P 
4 O 8  

f O 6  2 0.4 
0 

1 0.2 

0 
0 

0.1 0.2 0.3 0.4 0.5 0.8 
y m  r (Weeslsecond) 

Fig. 4 M e " i I i p  fusctiOas for yaw rate r 

0.2 0.4 0.6 0.8 
Lateral o(hiec Eta (dimenJonleas) 

1 

Fig. 5 Membership functions for laten1 offset q 

Associate Memory (FAM) Rule, A FAM rule is a logical 
if-then statement such as if these three antecedent components 
(group of fuzzy input sets) occur, then this consequence (fuzzy 
output set) should be used. The fuzzy ship path controller 
uses 175 rules, corresponding to 7 x 5 ~ 5  different combinations 
of the three input fuzzy sets. Matrices of rules are given in 
Fig 6. Note that symmetry requires the designer to prepare 
only 88 rules, with symmerry determining the remaining 87 
rules. The 175 rules were written using general maneuvering 
algorithms which contained the expertise that might otherwise 
be provided by an expert ship operator. 

The controller applies ('ftres') the antecedent-consequent 
rules to every group of three input linguistic fuzzy sets and 
outputs a commanded rudder angle 6, linguistic fuzzy set for 
each group. For example, for the crisp input vector (w, r, q) 
of (0, 0.15, 0.05), the controller yields fuzzy set degree of 
membership values of 1.0 in ZE for w, 1.0 in SP for r, and 
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L 

i 
i 

Fig. 6 Catsal d e s  for q input fuzzy sets LP’, SP, and ZE 

0.5 in ZE and 0.5 in SP for q. This results in two rules 
firing: {ZE, SP, ZE} yields 6, fuzzy set SP and {?E, SP, 
SP} yields 6, fuzzy set LP. 

D. Correlation-Minimum Inference Procedure 

The correlation-minimum inference prceedure [61 is used 
to determine the degree to which a rule is fired. Each group 
of three input variable fuzzy sets has itself a corresponding 
degree of membership in an antecedent group. For degrees of 
membership of 1.0 in the Lp heading anglle fuzzy set, 1.0 
in the 2E yaw rate r fuzzy set, and 1.0 in th~e SN late 
q fuzzy set, the degree of membership of the input variables 
taken collectively in the antecedent group {lLP,2E,SN} would 
be 1.0. The degree to which the rule {LP,2ZE,SN;LP} is fired 
would be 1.0. 

ongs to fuzzy set SN with 

for the 6, ou t~u t  f u z ~ y  sets 

controller would clip 

eight clipped or ~ ~ c l i p p e ~  output fuzzy set membership 

angle 8,. 

0 ’  I J 
5 10 15 20 25 30 35 

Can”M Ruddec Ar@e Dek (degrees) 

Fig. 7 Membership functioac for commpnded mdder angle 6, 

To get the final crisp commanded rudder angle 6, from 
the clipped output fuzzy set membership functions, the 
controller perfom the ess cdled defuzzification [61. 
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Here, the controller computes a weighted average of the (up to 
eight) active output fuzzy set membership functions. 
Specifically, for each output fuzzy set membership function 
(clipped or unclipped), the controller determines the area and 
centroid and then calcuiates the centroid of the sum of the 
areas as illustrated in Fig 8. This centroid is the crisp output 
commanded rudder angle &. 

F. Summary of Control Algorithm 

In summary, the controller 
following steps: 

proceeds through the 

1. 

2. 
3. 

4. 

5 .  

6 .  

Determines all possible non-zero fuzzy set memberships 
of w, r, and q. 
Determines all possible active antecedent groups. 
Determines she minimum degree of membership 
associated with each antecedent group. 
Fires the rule corresponding to each antecedent group and 
identifies the output commanded rudder angle 6 ,  
fuzzy set and degree of membership. 
Clips each ouvut commanded rudder angle 5, fuzzy set 
membership function at the minimum degree of 
membership of the three antecedent group compontnts. 
Calculates the centmid of the sum of the output 
c o m m a n a  rudder angle 8, clipped triangle or trapezoid 
membership functions. This centroid is the crisp ousput 
commanded rudder angle t&. 

The Fuzzy Associative Memory Rules establish discrete 
levels of control for particular combinations of input variabbs 
(V,r,q). Expert knowledge or physics can aid in defining 
these rule. The combined prccess of fuzzifxation, d e  

Fig. 8 Output membership function clipping and centroid process 

fuing, correlation-minimum inferencing, and defuzzification 
then have the effect of interpolating these levels of control to 
give a smoothly varying nonlinear control law for the input 
space. In this case, this is in three dimensions. Here the 
resulting control law can be viewed as control surfaces when 
one of the control inputs is set to a constant. Fig. 9 shows 
the global control surface for yaw rate r = 0. Fig. 10 shows a 
magnification of the local region of this control surface for 
yaw rate r - 0 near the desired equilibrium point (v,r,q) = 

(O,O,O). Fig, 10 shows the global control surface for yaw rate 
r = - 0.3. 

1 

Fig. 9 Global cootrd surface for yaw rater - 0 

DeIC i-) 

10 

5 

0 

5 

.lo 

5 

Fig. 10 Locrl regulator contrd surface for yaw mte r - 0 

V. SIMULATION RESULTS 

To provide an initial evaluation of the effectiveness of the 
fuzzy ship path controller, we have simulated the Tokyo Maru 
in two cases: first, an initial startup transient where the vessel 
begins offset one beam from the desired track; and second, a 
passing ship situation where the ships pass beam-to-beam at 
nondimensional time t' = 7. We use the conventional LQG 
controller defined in Section II as a benchmark. 

To evaluate the fuzzy ship path controller, we replace the 
optimal control law 8, = C, with the fuzzy control law 
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Fig. 11 C3lobal costtd avface for yaw ntc: r- -0.3 

6, = f z O .  Both cases are subject to measurement noise and 
the Kalman filter is used to process the noisy measurements 
to produce the state input to the controller. The real value of 
the fwzy controller is its ability to operate in large maneuven 
where the system behavior is nonlinear. In these initial 
comparisons, however, the maneuvers are small (the regulator 
problem) and the classical LQG controller should be in its 
intended operating range. Further, a simulation using the 
linearized equations of motion will be valid. 

A .  One Beam Offset Initial Startup Simulation 

The Tokyo Maru was simulated to begin with the initial 
state xT = (0,0,0,0.16,0) which placed the ship about one 
beam to the right of the nominal path. The resulting lateral 
offset q histories are shown in Fig. 12. The solid line is the 
ship with the fuzzy logic controller; the dashed line is with 
the optimal controller. The ship reaches the nominal path at 
five ship lengths and quickly settles to the path with either 
controller. The fuzzy logic controller performance is 
comparable to that of the optimal controller. The small 
initial oscillation with the optimal controlleir results because 
the rudder fmt produces an excessive yaw rate which yields a 
counter feedback. As the system dynamics integrate further, 
this initial overshoot in yaw rate is eliminated and the vessel 
proceeds with its turn. It should be noted here that LQG 
controllers using shaping filters so that the Kalman filter also 
estimates the external lateral force and moment do not exhibit 
this initial oscillation [I]. 

The associated actual rudder angle 6 histories are shown 
in Fig. 13. The fuzzy logic controller usels less and more 
logically consistent rudder. It responds somewhat more to 
the noisy inputs after the initial startup transient has 
died out. The initial use of correct and then counter rudder is 
evident in the optimal controller response. 

Fig. 12 metal off& (1 with (1 - 0.16 stsrtup 

0 2  r I 
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! 0 
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-0.15 
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Tine (clh" 1 

Fig. 13 Rudder angle 8 with (1 - 0.16 dartup 

B. Passing Ship Simulation 

The Tokyo Mum was simulated to begin with the initial 
equilibrium state aT = (O,O,O,O,O) with another ship passing 
beam-to-beam at nondimensional time t' = 7. The resulting 
extemd hydrodynamic force and yaw moment are shown in 
Fig. 2. These represent fairly small disturbances for this 
particular ship. The resulting lateral offset q histories are 
shown in Fig. 14. Again, the solid line is the ship with the 
fuzzy logic controller; the dashed line is with the optimal 
controller. The fuzzy logic controller responds much better to 
this external disturbance. The resulting excursion from the 
nominal path is less than 3m which is about half that 
experienced with the optimal controller. 
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The associated actual rudder angle 6 histories arc shown 
in Fig. 15. As expected, the fuzzy logic controller utilizes 

to provide the hp"pred lateral offset response. A 
f 8 degrees of starboard rudder is used. The 

optimal controller uses a maximum rudder of only about 6 

0.005 

0 
.o 

-0.005 

- 
?9 
W g -0.01 

r 
0 0 1 5  

J 

-0.02 
0 5 10 15 20 

Tm (dimeneionlasa) 

0.15 r 

Fig. 15 Rudder angle 6 with design passing ohip disturbance 

VI. CONCLUSIONS 

A fuzzy logic surface ship path controller has been 
developed. Its performance has been compared to that of a 
conventional LQG controller. In both cases, a Kalman filter 
was used to process the noisy measurements. In an initial 
offset startup transient the performance was almost identical. 
When the ship is subjected to a passing ship external 
hydrodynamic force and moment disturbance, the fuzzy logic 
controller exhibited superior performance. The nonlinear 
fuzzy logic controller can also handle a much large range of 
meuver s  effectively. The study of its performance in larger 
maneuvers requiring a nonlinear simulation model is 
continuing. 
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