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Iterative Learning Control for Soft Landing of
Electromechanical Valve Actuator in Camless

Engines
Wolfgang Hoffmann, Katherine Peterson, and Anna G. Stefanopoulou

Abstract—Variable valve timing allows improvements of
internal combustion engines and can be achieved by camless
actuation technology. In this paper we consider an electro-
mechanical valve (EMV) actuator. One of the main problems in
the EMV actuator is the noise and wear associated with high
contact velocities during the closing and opening of the valve.
The contact velocity of the actuator parts can be reduced by
designing a tracking controller that consists of a linear feedback
and a nonsquare iterative learning controller (ILC). With the ILC
methodology we update the feedforward signal of the feedback
controller every cycle based on the error between the actual valve
position and the desired position. The methodology is reviewed
and both simulation and experimental results are presented. We
explore the disturbance rejection capability of the control scheme
by simulating conditions with an unknown force acting on the
valve similar to the ones present during varying engine load.

Index Terms—Decoupling, electromechanical systems, engine
control, iterative learning control, singular values.

I. INTRODUCTION

V ARIOUS studies have shown that optimization of the
valve timing of an automotive internal combustion engine

results in high fuel efficiency, low emissions and improved
torque performance. Because of the potential benefits many
automotive engine manufacturers and research laboratories
are developing mechanisms that can provide the valve event
variability. A promising mechanism is the electromechan-
ical valve (EMV) actuator shown in Fig. 1. It relies on two
electromagnets that catch and hold an armature that moves
with a damped oscillation between two extreme positions
under the forcing of two springs [8]. The control signal to the
electromechanical actuator is the voltage applied to either one
of the coils of the two electromagnets. The control objective
is to ensure accurate valve opening and closing with small
contact velocity of all the moving parts. The small contact
velocity ( m/s), also known as “soft landing,” is a
very important consideration because high contact velocities
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Fig. 1. Electromagnetic actuator of the valve

correlate with noise and component wear [11]. The opening
and the closing of the valves have to be achieved within a very
small time travel interval ( ms), otherwise engine op-
eration at high speed will deteriorate. These two requirements
are obviously conflicting. Other control difficulties arise from
1) the nonlinear characteristics of the actuator; 2) the limited
range of actuation and control input saturation; and 3) unknown
and varying gas flow forces acting on the valves.

To address the problem, we design a tracking controller for the
valve position . The desired valve opening and closing events
are generated from the engine management system. The desired
trajectory is designed to be a smooth continuation of the free
valve motion. The closed-loop system comprises of a fast inner
loop controller and a cycle-to-cycle outer loop controller. In the
inner loop, the lower coil voltage is equal to a preset constant
voltage for large armature-coil gaps, and is the output of a
linear feedback stabilizing controller otherwise. The feedback is
active only during the last portion of the armature travel because
the magnetic force is weak during large gaps. On the other hand,
the preset voltage to the coils during large gaps allows the
flux to build up and prepares a powerful electromagnetic field for
whenthe feedback isswitchedon.The linear feedbackstabilizing
controller thatdrives thearmature toa referenceconstantposition
is designed based on linearization and discretization of the plant
at an the contact point. It is important here to note that the plant is
unstable at any equilibrium close to the contact point.

Inorder to improve the transientbehaviorof the inner loopcon-
troller,anoutercontroller isdesignedthatcalculates thereference

armature position used by the feedback controller as well as
the voltage . Both signals are updated between consecutive
cycles (full armature travel) based on the error between the de-
sired position and the actual position by using an iterative
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learning control (ILC) methodology [1], [17]. As a consequence,
the corresponding learning algorithm has to calculate more input
values than error values. We first present how the ILC approach
accounts for a general nonsquare system by introducing decou-
pling learning algorithms. Then, we parameterize the learning al-
gorithm for the special case based on a linearized model of the
plant.

Our first results on a square ILC that only adjusts the reference
position are reported in [5]. The extension to nonsquare ILC
in [4] gives good simulation results and show that the landing ve-
locity of the valve is decreasing faster from cycle to cycle if
is manipulated by the learning controller. Similarly to our work,
the authors in [13] and [14] use stability and convergence con-
dition for repetitive control to the learning (repetitive learning)
control problem and achieve small and repeatable contact ve-
locity (average of 0.06 m/s) with a 42-V power supply. However,
the actuator has very soft springs that result in a long travel
interval (8.0 ms). Note here that a classical repetitive controller
is not adequate for this problem since the initial conditions flux,
position, and velocity are to be reset at the beginning of each trial
(reset after landing and switched to a previously defined “hold”
voltage). Also, it is not known before hand when a new opening
process will start. The initiation of the valve motion depends on
the engine management system through the crankshaft and the
driver demand signals, so the reference signal is not periodic.

The authors in [2] mention the use of adaptive control but
do not specify which error they used in their cycle adaptation.
Finally, theauthors in [12] reported theuseofadaptationbasedon
the momentum at the middle position only. In general, one-point
adaptation entails high sensitivity and low repeatability, espe-
cially because of variability due to combustion and noise. Our
iterative algorithm forms a weighted error between the desired
and the actual valve position sampled every 0.1 ms. The weights
are selected using singular value decomposition to achieve fast
cycle-to-cycle learning and convergence to the optimum feedfor-
ward control signal without large unnecessary corrections that
can reduce the system repeatability [4]. Moreover, an ILC does
not require an explicit feedforward controller, which parameters
are adapted. Investigations regarding the feedforward controller
structure and its output range capability in creating a signal
that will achieve soft landing can be simplified. In ILC, the
commanded reference input is generated directly. As stated in
[10], “ILC derives the output of the best possible inverse of the
system dynamics.” Also, ILC calculates the feedforward signal
off-line, whereas, adaptive techniques usually work online, so
less computation power is needed.

We show here that soft landing (below 0.05 m/s) can be
achieved even under the influence of a varying external force
acting on the valve . The profile of the used in the
simulations is similar to the one observed in a firing camless
engine reported in [15]. In the simulations presented here, the
peak force increases 2 N every ten cycles (iterations) to emulate
a varying engine load. Experimental results show good tracking
performance and a significant reduction of the impact velocity
(0.04 m/s) during valve landing after 35 cycles. The average
travel interval is 3.9 ms.

This paper is organized as follows. The EMV actuator
model and analysis at different equilibria are briefly presented

in Sections II and III, respectively. The controller objectives
and structure are presented in Section IV. The linear feedback
controller design and simulations are shown in Section V.
Section VI shows the development of the learning controller.
Closed-loop simulations are shown in Section VII, exper-
imental results are shown in Section VIII and concluding
remarks are presented in Section IX.

II. PRELIMINARIES AND MODEL

In the sequel, continuous-time variables and their associated
signals are denoted by . Their discrete counterparts are de-
noted by . The variable at an equilibrium point (e.p.) is de-
noted by , and the deviation between the signal and e.p. is
denoted by . The discrete signal of theth
cycle is denoted by . And finally, bold face font style,
and , is used for vectors and matrices.

A brief description of the model of the EMV actuator is pre-
sented. For detailed analysis and validation of the model see [15].
Theactuatorconsistsofamechanicalandanelectromagneticsub-
system that can be described by the following variables. The de-
sired and actual armature position is denoted byand and the
upper/lower position limit by , where is the
armature thickness [all in meters (m)]. The armature velocity is
denoted by in (m/s), the voltage applied to the upper/lower coil
by in volts (V), the current in the upper/lower coil by in
amps (A), the flux of the upper/lower coil by in nanometers
peramp (Nm/A).Themagnetic force is denoted by in and
the valve force due to pressure in Newtons (N).

The mechanical subsystem can be modeled as a
spring–mass–damper system including the external mag-
netic forces of the upper and of the lower electromagnet
and the forces acting on the valve due to the pressure difference
between the cylinder and the intake/exhaust runners. A
force balance yields

(1)

where kg is the mass of the moving parts,
kg/s is the friction coefficient, and kg/s is the
spring constant.

The electromagnetic system of the upper and the lower coils
is modeled by a resistance/reluctance–circuit

(2)

(3)

with in being the coil resistance.
The coil currents are modeled with a nonlinear func-

tion of the armature gaps ( and and
the flux

with
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Fig. 2. Block diagram of the EMV actuator model without representation of the upper coil.

The mechanical and electromagnetic subsystems are linked by
the magnetic force equations of the two electromagnets

with

The distances mm, mm, and mm
and the parameters Vs/A, Vs/A, and

mm are calibrated based on data in [15].
To summarize, the plant has two inputs, upper voltage

and lower voltage , respectively. The plant output is the
armature position . The four elements of the state vector
are position , velocity , lower flux , and the upper
flux .

Thus, the state–space description of the model is given by

(4)

(5)

(6)

(7)

A block diagram representation of above equations is shown
in Fig. 2. The upper coil is not included because of symmetry.
Due to the symmetry between the opening and the closing
problem, we will concentrate on the opening phase from now
on. The model is implemented in Matlab/Simulink.

III. A NALYSIS

The equilibrium points are obtained by solving the
state-space equations for , , , ,
and constant inputs. The assumption and
yields a stable equilibrium point at and an un-
stable equilibrium point at . Fig. 3 shows the
spring force and the magnetic force for constant flux values

Fig. 3. Force diagram.

during small armature-coil gaps. The equilibrium gap is defined
at the intersections of the magnetic force with the spring force
when we assume zero valve force . The slopes of the
two forces are such that a small perturbation will cause the
armature to accelerate toward the contact point, or to accelerate
toward the stable equilibrium (near the middle position). Fast
control of the flux is then required to stabilize the armature.
The electromagnetic system dynamics is, however, slow due
to the large coil inductance imposing a stringent bandwidth
constraint to the control loop.

Apart from the bandwidth limitations, the electromagnetic
system has limited control authority. It can be shown that the
system cannot be driven into the unstable equilibrium point if

mm due to voltage saturation at V
(Fig. 4). Note also that the magnetic force of the upper coil
is approximately zero in equilibrium points mm.

The analysis of the plant is continued by linearizing the
state–space equations around one of the above examined
unstable equilibrium points. Since the magnetic force of the
upper coil is negligible for the unstable equilibrium close
to the lower coil, the input and (6) do not have to be
considered in the following linearization. The state vector
reduces to .
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Fig. 4. Voltage in the unstable equilibrium points for various positions. The
dotted line corresponds to the maximum voltage of the available source. For
Y = Y � h, the gap is closed.

Fig. 5. Zeros and poles loci of the linearized discrete plant in the equilibrium
pointsY 2 [0, 1, 2, 3, 4, 5] � 0:1 mm. The sample time is chosen to be
T = 0:1 ms.

Defining as the deviation from the
nominal equilibrium point a linear state–space de-
scription

(8)

is derived by linearization of the model equations. The values
and units of the elements of , , and are given below

and

The three poles and two zeros of the corresponding discrete
transfer–function depend on the equilibrium point. Their loca-
tions in the plane are shown in Fig. 5. The linearized and dis-
cretized plant is unstable and nonminimum phase in all the con-
sidered equilibrium points.

IV. CONTROLLER STRUCTURE

Variable valve timing is used to optimize the engine operation
with respect to emissions, fuel economy, and drivability. The en-

gine management system typically generates the commands for
the initiation of the valve motion (opening or closing) based on
the driver’s torque demand and other vehicle variables. These
commands are not typically periodic during engine acceleration
and decelerating conditions which precludes the use of repeti-
tive control. On the other hand, the states of the valve actuator
are known and defined at the initiation of motion that suggests
the use of ILC for this application.

The “valve travel interval” is defined as the time interval
from the beginning of the valve motion to the contact timing,
where m. The corresponding velocity

is defined as the contact (or impact) velocity . The
EMCV control system is required to achieve the following two
objectives.

• It should reduce the armature-coil and valve-cylinder contact
velocities. High contact velocity results in noise and compo-
nent wear. Engine manufacturers are designing camshafts to
achieve a low contact velocity m/s.

• It should ensure a small and consistent valve travel interval
ms This requirement ensures that the actuator

can open and close the engine valves even during high
crankangle speed.
These two objectives are conflicting and, thus, difficult to

achieve. Moreover, we need to achieve them independently of
unknown forces acting on the valve due to the gas flow. During
valve opening events, the gas flow forces can be positive or neg-
ative depending on the upstream and downstream valve pressure
conditions. To achieve the above two conflicting requirements
and avoid use of excessive power and actuation saturation, we
design a controller that acts only at the last phase of the valve
motion (for feasible equilibrium points). We call the time

when mm based on the discussion in
Section II. The controller achieves tracking of a reference tra-
jectory with a small travel interval and contact velocity that
is a smooth continuation of the initial valve motion
with

(9)

where and are the position and velocity of the valve
motion during the feedback controller activation.

Fig. 6 shows the controller structure. The armature is assumed
to be held by the upper electromagnet in the position and
then to be released by disconnecting the upper voltage source at

. As the armature approaches the defined position,
the actuator input signal is switched from to the
output of an observer-based feedback controller. The feedback
controller is absolutely necessary here because the open-loop
actuator dynamics is unstable. Note here that the ILC is a feed-
forward controller that gets recomputed every cycle and thus
cannot alter the open-loop system stability.

In order to improve the transient behavior of the “plant with
feedback,” a feedforward controller changes its inputs
and . The new inputs are calculated by an ILC and up-
dated between consecutive cycles (full armature travel)and

. The ILC is processing the error between the desired posi-
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Fig. 6. Controller structure with the inner feedback controller and the outer
iterative learning controller.

tion and the actual position . Detailed information
about the learning controller is given in Section VI. The Section
V discusses the design of the feedback controller.

V. STABILIZING FEEDBACK CONTROLLER

The armature is assumed to be held by the upper electro-
magnet in the position and then to be released by dis-
connecting the upper voltage source at . As the armature
approaches the defined position , the plant input signal
is switched from a constant previous value to the feedback
controller signal. is used to preset the state close to
the equilibrium point value .

As feedback controller we use a linear-quadratic state-feed-
back regulator with observer, designed based on a linearization
of the plant at the contact point . The output
feedback is designed to stabilize the unstable armature posi-
tion dynamics based on the linear quadratic regulator (LQR)
methodology. Tuning of the LQR controller gains is a chal-
lenging task due to the design requirements of fast transition
and zero-overshoot. Note here that any overshoot in the arma-
ture response will cause excessive contact velocity and poten-
tial bouncing. Beyond the poor performance, bouncing results in
discontinuous response which might inhibit the ILC controller
from learning and improving the transient system behavior. Ad-
ditional precaution should be applied when tuning the LQR
gains in order to avoid input voltage saturation. After several
design iterations the state weight matrix,, is selected to be the
identity and the actuator weight,, is one and .

The observer poles are set four times faster than the resulting
poles of the closed loop system: ,

. The controller input is never disconnected from
the plant in order to reduce observer error. This is a critical fea-
ture of our controller. Small velocity and flux estimation error
are necessary before the feedback controller activation. Recall
that the desired valve trajectory in (9) is implemented using the
filtered valve position and estimated velocity . Finally,

Fig. 7. Position of the armature with (solid) and without (dashed) feedback
controller.

Fig. 8. Observed states (solid) tend to the states (dotted). Transient errors are
small att , when the controller is switched on.

a discrete version of the controller is obtained by emulating the
resulting controller functions using Tustin’s method.

In Fig. 7 the dashed line shows the armature travel for the
open-loop system (damped oscillation). The solid line corre-
sponds to the armature travel with the observer-based feedback
controller. The detail of the armature travel just before the con-
tact with the lower coil is shown in Fig. 9 (for ). Detailed
comparison between the observed and the actual states can be
seen in Fig. 8. The feedback controller is stabilizing the armature
close to the contact point but the transient behavior is rather poor.

VI. TRACKING ITERATIVE LEARNING CONTROLLER

In order to achieve better tracking of the desired position, the
cyclic character of the process is exploited by use of the ILC in-
troduced in Section IV. In the next two sections, we review the
learning control methodology and introduce a class of decou-
pling learning algorithms.

A. ILC

Let the input and output sequences of a system beand
, respectively. To formulate ILC in a compact way, we

need to define the following mapping by defining the operator
as , introducing the vectors

... and ...
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Fig. 9. PositionsY; Y and lower voltageU for cyclesk = 1; 3; 5; 20.

where and . The purpose of the ILC is to find
some vector with the property , the vector is
some desired output vector. If more than one solution exists,
is supposed to have the smallest–Norm of all the solutions.
In order to solve this problem, the cyclic characteristic of the
process is exploited. Let the cycles be numbered with. In the
first cycle, the input vector is applied to the system. This
vector and the corresponding output vector are used to gen-
erate an improved input vector for the next cycle, and so
forth. Thus, a linear formulation of the ILC algorithm reads as

(10)

where the matrices and weight the
previous input and the previous error ,
respectively. They have to be chosen in a way that the sequence

converges in the sense of the–norm to

(11)

B. Decoupling Learning Controllers

The class of decoupling learning controllers is now derived
by linearizing the discrete processat the equilibrium point,
yielding a matrix with the property

. The entries of will be discussed later. In the following,
we assume , as we need this case later. To derive the
decoupling learning controller, we apply the SVD to the matrix

, yielding , where and
are orthonormal matrices. General information about svd can be
found in [3]. The matrix has the singular values

in its main diagonal, all other
entries are zero. The largest singular valueis the –norm of

. Let for simplicity, , where is a square matrix
with all the nonzero singular values of in its diagonal.

We define decoupling learning algorithms by setting
and , where is a diagonal

matrix with the entries , and is
a diagonal matrix with the entries on its main

diagonal. Using (10) for analysis the linear model equation
instead of , we get

(12)

Using above equations, we can write (12) in the form

Defining the transformed vectors and
, we get

...

...

.. .

(13)

with . The above choice of and obviously
yields decoupling of the learning law (12). Thus, to determine
the convergence properties of the learning controller only the
scalar equations

(14)

(15)

have to be studied instead of a matrix equation. Equation (15)
converges for to . That means all components
of the input vector that do not affect the valve position (pointing
into the null-space of the linearized plant) are learned to be zero.
Solving the recursive (14) yields

(16)

which converges to

for

Generally, the the ’s of and , respectively,
must be chosen to ensure that the convergence condition

holds true. Examples for decoupling laws
are in [7], where they choose the transposed system matrix

. In other words, the ’s are
(implicitly) chosen to be ( must hold to
ensure convergence). Another example of decoupling learning
law can be found in [9], where a pseudoinverse approach

yields for .
We have chosen [the same as ]

because in the EMV actuator application, this yields good sim-
ulation results. The learning velocity is faster than in the trans-
posed matrix approach. Compared with the pseudoinverse ap-
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proach, high values of (in the case of small singular
values) are also avoided. The elements of are chosen
to be and .
This choice ensures zero output error. In addition, of all input
vectors that cause zero error, the ones with the smallest norm
are learned.

To summarize, in this paper, (14) and (15) are parameterized
by and

. This choice results in

and, therefore

(17)

Thus, the zero input directions are learned to zero. For all
other input directions the convergence speed is determined by

. On the other hand, the steady-state is propor-
tional to . Therefore, output components, that require lower
input signals are learned faster than components requiring
higher input signals. This is a useful feature regarding input
saturations or nonminimum phase systems. In the general case
and returning to the original coordinates, we get

(18)

which involves the pseudoinverse of the matrix .

C. EMV Input–Output Mapping

In the EMCV actuator problem every cyclethe ILC will
shape values of the preset voltage and the
reference trajectory values that are applied as a refer-
ence command to the observer-based closed-loop system when
it becomes active . We employ the lowercase
notation, i.e., variables are defined as the deviation between the
signal and equilibrium point.

The input vector of Section VI-A comprises in this paper
of a sequence of the lower voltage and a sequence of the
reference position

...

...

Thus, values of the lower voltage and values of the
desired position will be learned. As far as the plant output is
concerned, the position is considered after switching on the
feedback controller, therefore

defines the vector introduced in Section VI-A. The measure-
ments that the ILC will use to learn in the next iteration depend
on 1) the response of the electromagnetic system due to the ini-
tial condition after the application of the preset voltage and 2)
the output response of the observer-based closed-loop EMCV
actuator. Specifically, two effects contribute to.

• The output of the closed-loop system due to the voltage
that has been applied to the lower electromagnet before
switching on the observer-based feedback. This voltage
causes a certain value of the lower flux (state variable)
at the moment of switching.

• The output of the closed-loop system due to its input
after switching.
Linearizing the mapping betweenand yields the matrix

of Section VI-B. Let this matrix be composed of two matrices
and defined by

(19)

In order to derive , the value of the lower flux at the
moment of switching must be determined. This is done using
a simplification of the linearized model in Fig. 2, precisely by
neglecting the influence of the position on the lower flux.
Neglecting the variability of the reluctance on the armature gap
allows us estimate easily . The assumed constant value of
the reluctance is chosen to be the averaged reluctance value
observed during the valve traveling before . Assuming a
constant reluctance yields a simple resistance–reluctance circuit
with the transfer function with

. is the impulse response of the
discrete version of this transferfunction using a zero-order hold.
Thus, the lower flux at the switching instant is given by

(20)

A linear model describing the influence of the state on the
plant output is

(21)

where is determined by simulation. Equations (19)
and (20) yield

(22)

The matrix is a typical convolution matrix of the input-
output observer-based closed-loop EMCV actuator behavior. Its
entries are the elements of the impulse response sequence of the
linearized discretized closed-loop system.

VII. SIMULATION RESULTS

Simulation results for the case of zero gas flow force are pre-
sented first in Fig. 9. These results are similar to the one shownd
in our previous work [5] where the preset voltage was not mod-
ified by the ILC. In Fig. 9 (bottom plot) one can observe a small
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Fig. 10. Travel interval and contact velocity during learning in the case without
F . The desired trajectory hasV = �0:023 (m=s) and�t = 3:25 ms.

Fig. 11. Desired (dashed) and achieved (solid) impact velocity and travel time
for positiveF and negativeF .

drop in the preset voltage just before the activation of the feed-
back loop. Fig. 10 demonstrates the achieved contact velocity
and the associated travel interval for each cycle.

Fig. 11 shows that the impact velocity and the travel interval
in the case where there is an unknown varying valve force ap-
plied in the valve. This force is the result of the difference be-
tween the upstream and downstream pressure on the poppet
valve. Experimental data in [15] show that a realistic valve force
during valve opening will have its absolute maximum value
at the beginning of the valve motion and it decreases
to zero as the valve reaches its minimum value .
In the simulations shown in Fig. 11, we increase the absolute
maximum value by 2 N every ten cycles to allow gradual
learning. We consider conditions where the gas force opposes
the valve opening motion (positive ) and vice versa (negative

). The positive gas force corresponds to conditions observed
during exhaust valve opening against high cylinder pressure.
Negative gas force corresponds to conditions during a late in-
take valve opening (for zero valve overlap). The achieved impact
velocities are well bellow the desired value 0.1 m/s. Note here
that the impact velocity for the positive is gradually reduced
despite the increasing positive peak gas forces. This is accompa-
nied with an associated increase in the travel interval shown in

Fig. 12. PositionY; Y , lower voltageU and disturbanceF during learning.
Each subplot shows the cyclesk = 92; 94; 96; 98; 100.

the bottom plot. Due to the increasing peak gas force, the feed-
back switches on later ( increases) and the switching velocity
value decreases. Both these effects result in a varying valve
desired trajectory . The impact velocity and travel interval
of the desired valve trajectory are shown in Fig. 11 together with
the achieved one. Note here that a long travel interval is allow-
able during the valve opening phase because the flow is insen-
sitive to the valve lift during large lift values .

Figs. 12 and 13 show the detailed valve trajectory, coil
voltage, and gas force during several selected cycles. The gas
force applied in the valve is shown in the bottom plot in both
figures. In particular, Fig. 12 emulates conditions where the
gas force opposes the valve opening motion, whereas, Fig. 13
demonstrates the negative gas force case.

In the case of negative , the values of are learned
to lower values than in the case of , see Fig. 9 (bottom).
This results in a lower magnetic force , which compensates
the effect of , see (1). In the case of a large opposing gas
force, the preset voltage value needs to be adjusted to higher
values to ensure that the valve fully opens and the lower coil
catches the armature. Iterative adjustment of the preset voltage
values using the above explained learning algorithm provides
the efficiency and robustness needed.

VIII. E XPERIMENTAL RESULTS

The ILC is implemented on the EMV actuator using the
experimental configuration shown in Fig. 14. The experiment
consists of the following components: an electromechanical
valve actuator, an eddy current sensor, two pulsewidth-modu-
lated (PWM) drivers, one 200-V power supply, and a Dspace
1103 processing board. The Eddy current sensor is on the rear
of the actuator and measures the displacement of a target disc
that is mounted as an extension of the armature. Thus, the
Eddy current sensor measurement is sampled by the Dspace
processor at 20 kHz. Based on the displacement measurement
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Fig. 13. PositionY; Y , lower voltageU and disturbanceF during learning.
Each subplot shows the cyclesk = 92; 94; 96; 98; 100.

Fig. 14. Experimental setup.

and the control algorithm described above (observer-based
feedback ILC), the Dspace processing board regulates
the PWM frequency to each of the PWM drivers to achieve
the desired performance. The mean noise amplitude in the
measured displacement is 0.09 mm while in the fully open
position (when the target disk is the farthest away from the
Eddy current sensor) and 0.06 mm in the fully closed position.
The measurement noise varies almost linearly between these
two values as the target disk moves between the two extreme
positions.

Due to the limited memory and processing capability of the
Dspace 1103 processing board, the ILC algorithm needs to be

Fig. 15. Desired positionY and measured positionY for cycles
k = 1; 18; 36

Fig. 16. Voltage command for cyclesk = 1; 18; 36:

carefully encoded to enable it to run in real time. Thus, the ma-
trix/vector multiplication required in the ILC algorithm is di-
vided up over several time steps. At each time step, the algo-
rithm carries out a single term by term operation. We imple-
mented the ILC algorithm to update the feedforward commands
through the opening transition of the valve only. The cyclic valve
motion is initiated every 0.8 s.

The tracking performance is demonstrated in Fig. 15 that
shows the desired position and measured position for cy-
cles . Note that the comparison between the mea-
sured and desired position starts just 0.3 mm away from the con-
tact point as indicated by the beginning of the desired position
trajectory .

The voltage command for the three cycles is shown in Fig. 16.
Note that the first part of the voltage command
is modified by the ILC algorithm designed in Section VI-B,
whereas, the last part is defined by the observer-based feed-
back controller designed in Section V. The transition to the
closed-loop voltage command is noticeable at approximately
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Fig. 17. Impact velocity during learning.

3.6 ms, or more precisely, when the position is 0.3 mm away
from the contact point. During the last part of the motion, the
ILC algorithm updates the reference trajectory that
is fed to the closed-loop controller reducing the tracking error
between the desired and measured position.

The average travel interval achieved through out the experi-
ments is ms with maximum ms, minimum

ms, and standard deviation 0.09 ms. The achieved
travel interval is slightly longer than the desired valve travel
interval and the one shown in the simulations of Fig. 17 for
zero gas force. Further experiments and discussions with Ford
and Volvo engineers indicated that the actuator friction coef-
ficient and the actuator mass is higher than the desired one
due to the addition of the target disk for the Eddy current
sensor. This modification decreased the damped frequency of
the spring-mass-damper system and contributed to the longer
travel interval.

Small contact velocities ( m/s) are achieved after 35
iterations as shown in Fig. 17. The contact velocity decreases
monotonically after 15 iterations despite the initial transients in
the ILC controller that cause large contact velocities. Although
we cannot store and, consequently plot, the system performance
for long run periods, we report here that low contact velocity of
0.04 m/s can be maintained.

IX. CONCLUSION

In this paper, we introduce and formulate the control problem
and the requirements for small contact velocity (soft landing)
and travel interval of an EMV actuator used in camless en-
gines. We, then design a feedback and a feedforward iterative
learning controller and demonstrate through simulation good
performance during nominal conditions and uncertain “engine
firing” conditions. The algorithm is implemented on a benchtop
experimental setup. Experimental results show consistent con-
tact velocity of 0.04 m/s and travel interval of 3.9 ms.

The next step is to validate the control design on an exper-
imental engine. Few difficulties will arise during implementa-

tion. In particular, the valve/armature separation, also known
as “valve lash” will require modifications both in the desired
trajectory and the feedback controller design. Nevertheless, the
ILC control methodology designed here has substantial poten-
tial as a practical solution to the soft landing problem in camless
engine valvetrains with far-reaching consequences in future in-
ternal combustion engine design.
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