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Abstract— The regulation of fuel consumption and emissions
around the world is based on standard drive (SD) cycles. Several
autonomous or simple eco-driving methods of smoother driving
and smaller acceleration and braking can violate the ± 2 MPH
speed deviation regulation from the SD and hence they are
currently not counted towards the vehicle fuel economy, even
though they are acceptable from a traffic pattern perspective,
namely following a vehicle at a safe and reasonable gap. This
paper develops and suggests a prototypical vehicle velocity
versus time trajectory that supersedes each SD cycle since the
SD cycle is the vehicle trace from following a vehicle with the
prototypical velocity trace. The prototypical velocity trace is
named from now on as the Hypothetical Lead (HL) vehicle
cycle. In essence, the HL cycle recreates the traffic conditions
followed by the drivers of the standard drive cycles. Finally, the
paper concludes with a demonstration of using the HL cycle
for assessing the fuel economy benefits of autonomous following
in relation to standard test cycles and limits on the following
distances to ensure that the different drive traces follow the
same prototypical traffic conditions in a reasonable and safe
way for real world applications.

I. INTRODUCTION

Autonomous vehicles have been the focus of researchers
for several decades and there are several ideas in the literature
regarding technologies that can be utilized to implement
automated driving. While a lot of research has been focused
on the safety aspect of autonomous driving with technologies
to prevent collisions, lane departure or blind spot crashes,
autonomous technologies also can be used for decreasing
fuel consumption of vehicles. Implementation of advanced
vehicle following strategies to optimize engine performance
and fuel economy for autonomous vehicles could change the
way a light-duty autonomous vehicle negotiates traffic as
compared to a human negotiating the same traffic conditions.
Unfortunately, the current certification of vehicle fuel effi-
ciency cannot account for such efficiency benefits so there is
a lot of interest in devising a methodology that will quantify
the benefits with minimum deviation from the existing rules
[1].

Presently the US Environmental Protection Agency (EPA)
and other regulatory agencies around the world use pre-
specified velocity versus time traces called standard drive
(SD) cycles to approximate how a driver navigates through
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Fig. 1. Schematic describes the development of the hypothetical lead (HL)
vehicle and the sections of the paper with an example of the HL trace used
to evaluate the fuel consumption of a particular following strategy.

different road types and traffic conditions as shown schemat-
ically in the upper section of Fig. 1. Only a ± 2 miles
per hour (MPH) deviation is allowed by the EPA from the
standard velocity trace for a valid test [2]. Despite their
limitations in capturing every possible driving style or traffic,
the standard drive cycles are good approximations of a set
of everyday driving conditions and are used to compare the
fuel consumption of various vehicles.

Given the importance of the SD cycles in the regulatory
framework, many autonomous longitudinal driving studies
concentrate on intelligent following of a lead vehicle that
traces the SD cycles [3]. This would in theory increase the
fuel efficiency of the vehicle but it has been also shown that
it can cause higher fuel consumption under following condi-
tions with very small deviation from the SD cycles. Hence,
the current trend of evaluating fuel consumption reduction
in autonomous driving by following a SD is re-examined
and a new methodology is proposed. This paper suggests a
new procedure to objectively compare a human driver to an
autonomous vehicle and quantify the fuel economy benefits
of using autonomous driving technologies.

In previous work, [4] achieved 0.5% − 10% reduction
in CO2 emissions through Adaptive Cruise Control (ACC)
acting between speeds of 18mph and 100 mph in velocity
profiles based on expert-rules derived by observing real-
world pilots. While, [5] used an optimization algorithm
that computed the appropriate acceleration based on traffic
conditions so as to improve fuel economy. They were able
to show a 8.8% reduction in fuel consumption. In [6] an
optimization algorithm was developed to reduce deviations in
velocity and thus accelerations by having a velocity preview.
Fuel consumption reductions of up to 33% in a vehicle
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powered by a standard SI engine was shown in simulations
over the FTP-75 drive cycle. However, in changing the SD
the distance between the optimized cycle and SD was very
large, exceeding 300m in some cases and overshooting the
SD in some cases as well. To avoid distances that are so
large that other vehicles could cut-in or too short to be safe
rendering real-world implementation impractical one has to
impose constraints in the following scenario.

Unfortunately, there is a trade-off between the following
distance and the fuel consumed as shown in Fig. 2 which
shows the cases where vehicles were trailing a vehicle
executing the FTP-72 drive trace for different time headways.
This entire simulation will be discussed in detail later, but it
is worth noticing the vehicle following case with following
distance equal to 1.8 car lengths per 10 MPH matched the
fuel consumption of its lead vehicle but increased for larger
headways creating a confusion on what should be considered
as the baseline. If the SD is the baseline itself, then a lead
velocity trace must be determined for the automated driving
vehicle to follow.

This paper develops a hypothetical lead (HL) velocity
trace from the standard drive cycles to simulate the lead
traffic conditions that can be followed by automated driving
algorithms to compare the differences between human and
automated following. Beyond the EPA testing procedures,
this method can also be used to simulate various autonomous
technologies and optimization algorithms and evaluate the
benefits of using one over the other. Figure 1 provides an
overview of the paper and the rationale for the analysis. Sec-
tion II reviews the development of the standard drive cycles.
Section III analyzes vehicle following models while Section
IV describes the development of the hypothetical lead vehicle
from the inverted equations of a vehicle following model.
Section V provides a simple example to evaluate the fuel
consumption reduction via the hypothetical lead vehicle.

II. BACKGROUND ON CURRENT EPA FUEL
ECONOMY TEST PROCEDURES

Current certification tests for fuel economy as carried
out by the U.S. Environmental Protection Agency involve
running all vehicles through standard drive cycles on a
chassis dyanamometer [2] . The first drive cycle, the Federal
Test Procedure (FTP-72) was developed by authorities in
Los Angeles (LA) in 1971 trying to reduce smog in their
city. They concluded that the morning drive to work was the
biggest contributor to the city’s smog. They approximated the
morning drive to work of an average LA driver by specifying
a route with a combination of different road speeds and
traffic conditions. Six drivers drove the trace, in the same car,
with five producing remarkably similar results. The actual
trace closest to the mean of all traces was taken with minor
modifications to its length as the standard drive cycle [10].
The rationale was to find a vehicle velocity trace that a driver
executes while navigating through traffic. It was assumed that
to navigate through the given traffic scenario, the FTP-72
velocity profile would have to be adopted for all vehicles and
individual vehicle capabilities would not change the velocity
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Fig. 2. Comparison of fuel economy results predicted through the ALPHA
model for 2013 Ford Escape with a 1.6L Ecoboost engine. Parameter T is
the time headway that a follower vehicle maintains from the lead vehicle.
Smaller headway indicates more aggressive following. Aggressiveness in
following distances significantly changes the fuel consumption. Standard
FTP gives 28.3MPG on the chosen vehicle that is 4.5m long.

profile if driven by an average human. Similar methods
were used to develop other drive cycles such as Higway
Fuel Economy Test (HFET) where drivers were instructed
to follow traffic, i.e. pass as many vehicles as passed them
[11]. It must be kept in mind that human drivers generated all
velocity traces that were finally set as standard drive cycles.

III. VEHICLE FOLLOWING MODEL
IMPLEMENTATION

In traffic simulation research, several car following models
have been developed to predict the speed of the trailing
vehicle in the single lane case. Lefévre et al [12] compared
various parametric approaches that differently predicted the
speed of vehicle in a vehicle following mode for a given
traffic condition. Of all the parametric approaches, the mean
average error and the root mean squared error was found to
be the least for the Intelligent Driver Model (IDM). Hence,
the IDM was selected as the vehicle following model for
this paper. It uses a combination of safe time headway and
comfortable braking distance to compute the desired distance
from the lead vehicle and then the actual distance and speed
to find the acceleration.

The model used in this paper to evaluate fuel consumption
over a drive-cycle is the Advanced Light-Duty Powertrain
and Hybrid Analysis Tool (ALPHA) model developed at the
US Environmental Protection Agency [14]. Any drive cycle
in 1Hz resolution can be loaded into the program and the
tool incorporates a driver model that is able to track the
velocity. The vehicle used is a 2013 Ford Escape with a
1.6L EcoBoost engine [15].

While IDM does show the smallest error with actual traffic
data compared to other parametric approaches, there are
still some driving characteristics of humans that cannot be
captured by the model. Humans change their driving pattern
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depending on the traffic conditions. In our case, it is assumed
that each standard driving trace is created for a certain traffic
pattern and hence changing the parameters for each trace
would capture this effect. Humans have other signals apart
from the speed of the front vehicle such as brake lights and
perception of lead driver’s intentions which allow them to
react early. Additionally they have a perception threshold
and only significant changes in speed are determined by the
follower vehicle delaying their reaction. Early perception
would cause the following driver to act before the IDM
would predict and the perception threshold would cause the
driver to act after the IDM predicts a response. From the
experimental work done by Lefévre it can assumed that IDM
misses the overshoots and undershoots but is a reasonable
approximation of what the driver would do. The RMS
error was shown to be about 0.25m/s for a 1 s prediction
horizon. In actual dyanomometer testing, for the FTP-72
an RMS error of 0.2m/s was seen between the ALPHA
model velocity and the actual velocity trace driven by an
experienced driver. This indicates an acceptable error margin
being given by the IDM equations.

Vehicle following using eco-driving strategies are being
encouraged amongst drivers across the world, to help them
improve fuel economy while driving in their daily lives.
These tips include maintaining an even driving pace, accel-
erating moderately from 2000 to 2500 RPM and anticipating
traffic flow to avoid sudden starts and stops. A conservative
estimate of eco-driving benefits calculates a reduction of 33
million metric tons of CO2 annually from being emitted into
the atmosphere [9]. It is reasonable to assume that vehicles
with autonomous technologies would implement such driving
strategies to reduce fuel consumption and emissions.

The aforementioned IDM, described below was used to
follow a vehicle executing a drive cycle.

dactual(i) = sL(i)− sF (i) (1)

r(i) = vL(i)− vF (i) (2)

ddes(i) = dmin + T × vL(i)−
vL(i)× r(i)

2×
√
amax × bcomf

(3)

aF (i+ 1) = amax(1− (
vL(i)

vmax
)4 − (

ddes(i)

dactual
)2) (4)

bmax ≤ aF (i+ 1) ≤ amax (5)

Where the subscript L denotes the lead and F the follower.
Parameter d is the gap, s the displacement, v the velocity, a
the acceleration, b the braking and r is the relative velocity.
The value of each parameter (T , amax, bcomf and dmin)
depends on the velocity time trace of different drive cycles.
Each standard drive cycle is said to represent a particular
type of road with the expected traffic conditions and hence
the speed, acceleration and braking.

To generate Fig 2, the standard drive cycle, in this case
FTP-72, is the lead vehicle. The FTP-72 involves maximum
acceleration and deceleration of 1.5ms−2 and −1.5ms−2

TABLE I
PARAMETER DEFINITIONS

Parameter
Name

Parameter Definition FTP-72

ddes Desired Gap (m) Calculated
dmin Minimum Gap at 0 velocity (m) 2
T Time Headway (s) 0.9
vL Lead vehicle speed (m/s) Calculated
vF Follower vehicle speed (m/s) Calculated
vmax Maximum vehicle speed (m/s) 45
r Relative speed of lead and follower vehicle

(m/s)
Calculated

amax Maximum acceleration (m/s2) 3.0
bcomf Comfortable deceleration (m/s2) 1.5
aF Acceleration of follower vehicle (m/s2) Calculated
bmax Maximum deceleration (m/s2) 3.0

respectively. Since drivers don’t tend to push the car to the
limit the maximum acceleration (amax) was chosen to be
double the maximum acceleration seen in the drive cycle.
The comfortable braking (bcomf ) was kept the same as the
maximum braking of standard drive cycles and the maximum
braking in IDM, double of that. The minimum distance was
kept at 2m. An important assumption of the selected model
is that the reaction time and attention span of the driver are
merged to 1 s and used as the time step for the iterations.
Prior work [7] shows that this is reasonable. The parameters
values for the FTP-72 case are given in Table 1.

The time headway (T ) can be varied to find the optimal
gap that should be maintained from the vehicle in front. The
gap can be increased or decreased by appropriately tuning
T . The eco-driving strategies are implemented while keeping
in mind that that the gap between the lead vehicle and the
follower vehicle has to be long enough to ensure a safe
braking distance but at the same time not too long such that
other vehicles can cut in and cause the autonomous vehicle
to brake thus negating the objective of maintaining an even
driving pace.

A time headway of 0.9 s for the FTP drive cycle would
achieve the desired gap between the lead and the follower
vehicle such that it is safe, does not allow cut-ins and is good
for traffic flow. However, the given velocity trace violated the
±2MPH for less than 2 s regulation on 15 occasions and still
showed a worse fuel economy than the FTP-72 drive cycle as
shown in Fig 2. Close following made the follower vehicle
speed vary significantly as it tried to keep up with the lead
vehicle and maintain a safe distance. The RMS error between
the standard drive cycle and the following velocity trace was
0.4ms−1. Increasing the time headway to 1.7 s produced a
velocity trace that matched closely with the standard cycle,
did not violate the regulations, showed an RMS error of
0.2ms−1 and a fuel consumption that matched the FTP-72.
However, in this case the following distances were larger (1.8
car-lengths), and would allow cut-ins. Increasing the time
headway further reduced fuel consumption and for T = 3.9 s
a 4% increase in MPG could be seen however, the following
distances were very large and the RMS error was 1.2ms−1.

For the case where vehicles are made to follow the FTP-
72 drive cycle, it was shown that for T = 0.9 s, fuel
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consumption was more than the lead FTP-72. Conversely
for larger following distances lower fuel consumption is
observed. An autonomously driven vehicle should be able to
negotiate this trade off and achieve an optimal fuel economy.
Through this example we have seen that in an attempt to
decrease fuel consumption the regulations for speed are
violated. Hence we need to determine another methodology
that can evaluate the reduction in fuel consumption by use
of self-driving algorithms that deviate in navigation through
traffic from humans.

IV. HYPOTHETICAL LEAD VEHICLE PROFILE
A systematic evaluation technique has to be developed that

can objectively determine the fuel economy benefits of self-
driven cars. To do this we could turn back to the rationale
of the original standard drive cycles. These cycles were
developed as an approximation of how an average human
driver would navigate through different road and traffic
conditions. The same thinking can also be used for evaluating
autonomous driving capabilities. Since the standard drive
cycles were humans navigating through traffic conditions,
to find autonomous driving benefits we should compare it to
how a controller based off an optimization algorithm would
navigate through the same traffic conditions.

To recreate the traffic conditions for the standard drive
cycles, this paper inverted the IDM equations. By inverting
the equations the velocity trace of the lead vehicle being
followed by the driver driving the standard drive cycles could
be found. It is important to note that the driver of the standard
drive trace would not just be following a single vehicle in a
single lane but rather reacting to lane changes, stop lights,
stop signs etc. The standard drive cycles are a simplified
trace and the recreated traffic conditions are simplified single
lane hypothetical lead vehicle velocity traces. Hence, the
lead vehicle is essentially a hypothetical velocity trace that
drivers of the standard drive traces followed to produce their
respective drive cycles.

Since we are trying to determine the velocity profile of
the lead vehicle from the follower vehicle data. The follower
speed vF and acceleration aF are already known. The actual
gap between the lead and follower can be defined by equation
6, where sL(i − 1) and sF (i − 1) are known but r(i) is
unknown.

dactual(i) = sL(i− 1)− sF (i− 1) + r(i) (6)

Then by rearranging equation 4 we get equation 7, where
ddes(i) and dactual(i) are unknown. Since the vehicles do not
crash the desired and actual distance between the vehicles is
always positive.

ddes(i)

dactual(i)
=

√
1− aF (i+ 1))

amax
−
(
vF (i))

vmax

)4

(7)

Finally rearranging equation 3 gives equation 8, where r(i)
and ddes(i) unknown.

r(i) = (dmin+T × vF (i)−ddes(i))
2×

√
amaxbcomf

vF (i)
(8)

Hence there are 3 equations and 3 unknowns. Substituting
equations 6 and 7 into equation 8 produces equation 9 from
which the relative velocity r(i) can be determined

r(i) =
[dmin + TF (i)− (sL(i− 1)− sF (i− 1))]

vF (i)

2
√

amaxbcomf

+

√
1− aF (i+1))

amax
−
(

vF (i))
vmax

)4
×

2
√
amaxbcomf

vF (i)

√
1− aF (i+ 1))

amax
−
(
vF (i))

vmax

)4

(9)

From the relative velocity the velocity of the lead vehicle
can be found from equation 2. The initial conditions are
assumed to be vF (0) = vL(0) = aF (0) = sL(0) = 0 and
sF (0) = −dmin = −2.

The equations can be applied to any naturalistic drive cycle
to produce the hypothetical lead drive traces. Specifically this
process was carried out for five standard drive cycles, FTP-
72, HWFET, LA92, US06 and SC03, to determine the traffic
conditions being followed by the driver of these traces. The
parameter values are given in Table II. For this paper the
following gap was kept at T = 0.9 s, which gives a 1 car-
length/10 MPH intervehicle distance. This can be reduced to
simulate closer following.

TABLE II
PARAMETER VALUE

Parameter Name FTP-72 US06 LA92 SC03 HFET
dmin(m) 2 2 2 2 2

T (s) 0.9 0.9 0.9 0.9 0.9
vmax(m/s) 45 45 45 45 45
amax(m/s2) 3.0 6.0 4.0 6.0 3.0
bcomf (m/s2) 1.5 2.5 1.5 2.5 1.5
bmax(m/s2) 3.0 6.0 4.0 4.0 3.0

V. USE OF THE HYPOTHETICAL LEAD VEHICLE

This sections provides a simple example to show how the
lead vehicle can be used to compare the fuel economy of a
vehicle driven by a human driver to one driven by electronic
controllers. Due to the IDM inversion for a T = 0.9 s the
standard drive cycles will be identical to a human driver trail-
ing the hypothetical lead vehicle. For the autonomous case,
various technologies can be simulated by trailing this lead
vehicle. The controller’s objective would be to reduce fuel
consumption by optimizing any of the vehicle’s parts from
the engine to the powertrain to a simple velocity smoothing
algorithm that would result in less fuel consumption. The
optimization algorithm to be used can be simulated to trail
the hypothetical lead and produce the velocity trace that the
autonomous vehicle would drive.

The control objective in this example is to reduce the fuel
consumption through trace smoothing, or the reduction of
accelerations and decelerations. The first step to achieve trace
smoothing is by using IDM. The time headway was taken
to be higher than the 0.9 s at 1.25 s. All other parameter
values were kept the same. The second step involved trying
to compute an even smoother trace by using the low pass
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Fig. 3. Lead vehicle computed by analytically inverting the equations of
the intelligent driver model is shown for a part of the US06 drive cycle
along with the S-Golay filtered trace

Savitzky-Golay filter [13]. The entire distance over time
trace was filtered to produce a smoother drive cycle. The
filter is used in signal processing to smooth the signal and
remove noise such that a derivative without artificial peaks
can be found. In our case by smoothing out the distance over
time trace the derivative i.e. the velocity peaks are reduced.
Thus achieving the eco-driving goals of maintaining an even
driving pace with minimal acceleration and declaration.

The filtered drive cycle following the hypothetical lead is
shown in Fig 3 for the US06 drive cycle. For comparison the
standard drive cycles are also plotted and the smoothed trace
for the filtered drive cycle can be clearly seen. For practical
use of this smoothing method, a preview of almost the entire
drive cycle would be required, which is an unreasonable
assumption. The point of this example is to show how the
lead vehicle can be used to quantify fuel consumption of
different driving patterns.

The fuel economy improvements are achieved by avoid-
ing certain regions of high accelerations and decelerations.
The lead vehicle in these cases provides bounds that the
autonomous vehicle must adhere to while traversing traffic.
Specifically the autonomous vehicle while reducing fuel
consumption has to avoid two scenarios of not following too
closely such that it is unsafe, or following too far behind such
that other vehicles can cut-in forcing a change in velocity
trajectory.

Fig 4 shows the gap maintained by the following vehicles
to the hypothetical lead as a function of speed. Different
following distances are drawn as solid lines for reference. It
can be seen that the following vehicle associated with the
Savitzky-Golay filter maintains a reasonable gap from the
hypothetical lead. Although the gaps of the filtered drive
cycle are larger than the vehicle of the standard cycle at low
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Fig. 4. Plot comparing the following distances to the hypothetical lead
vehicle for the Standard Drive Cycle and the S-Golay filtered trace

speeds, cut-ins at low speeds are not expected. On the other
hand, at high speeds of over 40 MPH, the following distances
are similar to the standard drive cycles and risk-averse drivers
in other lanes would not cut-in.

Table III shows the miles per gallon (MPG) computed for
the standard and the filtered drive cycles of five different
velocity traces. Clearly the highest fuel economy improve-
ments are observed in LA92 and US06 drive cycles, which
have several stops and starts, that are eliminated to reduce
energy losses. From Fig 5 it can be seen that at 345 s the
standard cycle is able to go to a higher gear and thus reduce
its fueling rate. However, at 375 s the filtered trace maintains
a higher gear and correspondingly has a much lower fueling
rate. Similarly at 495 s the filtered trace, which decelerates
less than the standard cycle is able to maintain a higher
gear and lower fueling rate for a longer time. In Fig 6, the
filtered trace does not decelerate and accelerate as much as
the standard cycle and therefore is able to eliminate energy
losses through braking. This means that the vehicle does
not loose momentum and is able to maintain the desired
speed with use of lesser energy and correspondingly less
fuel. Finally, the highway drive cycle (HFET) shows the least
improvement in fuel economy through trace smoothing and
this is expected as the velocity trace is already quite smooth.

TABLE III
FUEL ECONOMY IMPROVEMENT

Drive Cycle Standard Cycle
MPG

Filtered Cycle
MPG

Percentage
Increase

FTP-72 28 30 7
US06 25 28 12
LA92 26 30 15
SC03 28 30 7

HWFET 39 41 5

VI. FUTURE WORK
While the filtering used here is unreasonable due to the

length of preview needed, it does show significant reduction
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Fig. 5. Plot compares the gears for the standard drive cycle and the filtered
trace. By reducing downshifts, the filtered trace is able to maintain higher
gears for a longer time and hence reduce fuel consumption

in fuel consumption by the use of trace smoothing algorithm
applied to following the hypothetical lead vehicle. This
analysis hence points to an exciting potential of improve-
ment of fuel economy through optimization algorithms. The
optimization need not be restricted to reducing accelerations
but it could also be used to determine optimal engine load
and gear ratios and ensure that the engine traverses a line in
the torque speed curve that is at minimum fuel consumption.
Optimizing for the engine and the powertrain would allow
for greater engine downsizing. There is further potential in
eliminating torque reserves that conventional engines and
powertrains carry as the path is already know and the systems
can function at the point of least fuel consumption.

VII. CONCLUSIONS

The hypothetical lead vehicle provides a good baseline for
comparing automated driving with the vehicle executing an
SD. The rationale of the method developed in this paper is
that given the HL a human followed to produce the SD, how
would an autonomous vehicle with eco-driving capabilities
follow the HL. To judge the fuel consumption reduction
by use of autonomous technologies the autonomous trace
produced through the vehicle following algorithm can be
compared to the SD trace thus giving a straightforward
comparison under the same principles.
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[12] Lefévre, Stéphanie, Chao Sun, Ruzena Bajcsy, and Christian Laugier.
“Comparison of parametric and non-parametric approaches for vehicle
speed prediction.” In American Control Conference (ACC), 2014, pp.
3494-3499. IEEE, 2014.

[13] Bromba, Manfred UA, and Horst Ziegler. “Application hints for
Savitzky-Golay digital smoothing filters.” Analytical Chemistry 53,
no. 11 (1981): 1583-1586.

[14] Lee, Byungho, SoDuk Lee, Jeff Cherry, Anthony Neam, James
Sanchez, and Ed Nam. “Development of Advanced Light-Duty Pow-
ertrain and Hybrid Analysis Tool”. No. 2013-01-0808. SAE Technical
Paper, 2013.

[15] Mark Stuhldreher, Charles Schenk, Jessica Brakora, David Hawkins,
Andrew Moskalik and Paul DeKraker. “Downsized Boosted Engine
Benchmarking and Results”. No. 2015-01-1266. SAE Technical Paper,
2015.

3491


