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Abstract— In this work an experimental parameter iden-
tification and validation for an electrochemical lithium-i on
battery model is illustrated. The model was presented in [2]
where, aimed at estimating the battery State Of Charge (SOC),
the model was also averaged and an extended Kalman filter
based on the average model was designed. The identification
procedure is based on experimental data collected from a 6.8
Ah lithium-ion battery during charge and discharge processes.
Experimental data are then compared with battery model
output for validation purpose. A procedure for SOC calculation
is also shown at the end of the article.
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GLOSSARY

Symbol Name Unit

ie electrolyte current density A cm−2

is solid current density A cm−2

φe electrolyte potential V
φs solid potential V
ce electrolyte concentration mol cm−3

cs solid concentration mol cm−3

cse solid concentration at electrolyte interface mol cm−3

jLi Butler-Volmer current density A cm−3

θn normalized solid concentration at anode -
θp normalized solid concentration at cathode -
U open circuit voltage V
Un anode open circuit voltage V
Up cathode open circuit voltage V
η overpotential V
F Faraday’s number C mol−1

I battery current A
R gas constant J K−1 mol−1

T temperature K

TABLE I

L ITHIUM -ION MODEL NOMENCLATURE.

I. I NTRODUCTION

Lithium-ion batteries play an important role in the area
of hybrid vehicle design, scale-up, optimization and control
issues of Hybrid-Electrical Vehicles (HEV) as a high-rate
transient power source. When batteries operate in a relative
limited range of State Of Charge (SOC), high efficiency,
slow aging and no damaging are expected. As consequence,
the SOC estimation and regulation is one of the important
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and challenging tasks for hybrid and electrical vehicle power
source control.

Several techniques have been proposed for the SOC es-
timation, reaching an accuracy of about2% [7], [8]. In
order to improve this accuracy, SOC estimation based on
electrochemical models has been investigated in [1], [2], [4],
[11]. These models are generally preferred to the equivalent
circuit, or to other kinds of simplified models, thanks to their
ability to predict the physical cells limitations, which have
a relevant effect in the automotive application, where the
battery suffers very often the stress of very high transient
loads [10].

In [1] and [2] the authors of the present work have revised
a full order electrochemical model in order to obtain an
average model suitable for a feasible solid concentration
estimation. The average model reduces the battery model
complexity and predicts the solid concentration profile during
charge and discharge making possible to realize a real-time
on-board SOC estimation with an Extended Kalman Filter
(EKF).

In this work, parameter identification and validation of the
reduced order model to be used for the EKF estimation of
the SOC are presented. The experimental setup used for the
data collection is composed of a 6.8 Ah lithium-ion battery,
an electronic load of the 3600 series from the Prodigit, a DC
voltage generator and a simple voltage-current measurement
circuit. Sensor measurements have been collected using a 16-
bit ADC from National Instruments. A series of experiments
has been conducted on the battery, covering both full charge
and discharge according to different power request profiles.
The measured current and voltage signals have been utilized
respectively as reference input and output in the model
identification procedure.

The paper is organized as follows. In section II, the model
reduction technique is presented, while in section III and IV
the experimental setup and the identification procedure are
illustrated in detail. In section V results of validation tests
are shown, in order to validate the identified model.

II. BATTERY CELL MODEL

The battery is composed of three main parts: the negative
electrode, the separator and the positive electrode. Referring
to a battery with porous electrode, each of them consists
of a solid matrix inside an electrolyte solution, while the
separator is electrolyte solution itself.

The separator is a solid or liquid solution with high
concentration of lithium ion. It conducts the ion but it actsas
an electronic insulator. At the negative electrode (generally



Fig. 1. Schematic macroscopic (x-direction) cell model with coupled
microscopic (r-direction) solid diffusion model.

composed of LixC6), the solid active material particles of
lithium diffuse to the electrolyte-solid interface where the
chemical reaction occurs, transferring the lithium ions tothe
solution and the electrons to the collector [10]. The produced
electrolyte material flows through the solution to the positive
electrode, where, at the interface of the solid material, it
reacts and inserts into the metal oxide solid particles.

It’s generally accepted that a microscopic description of
the battery is intractable, due to the complexity of the
interfaces [12]. So, in order to mathematically model the
battery, both macroscopic and microscopic physics have to
be considered.

The equations used in this paper describe the battery
system with four quantities, i.e. solid and electrolyte con-
centrations (cs, ce) and solid and electrolyte potentials (φs,
φe)( see [5], [10]).
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where the overpotentialη is obtained as

η = φs − φe − U(cse) (6)

where U(cse) is the open circuit potential, which is an
empirical correlation function of the solid concentrations and
the coefficientj0 calculated as

j0 = k0(ce)
αa(cs,max − cse)

αa(cse)
αc . (7)

The cell potential is computed as

V = φs(x = L) − φs(x = 0) −
Rf

A
I (8)

whereRf is the film resistance on the electrodes surface and
A is the collectors surface. More details on the model and
its parameters can be found in [2], [10], [13].

A model simplification can be achieved by neglecting
the solid concentration distribution along the electrode and
considering the material diffusion inside a representative
solid material particle for each electrode. This simplification
introduces an average value for the solid concentration which
can be related with the definition of battery state of charge.
Furthermore, by assuming high concentration of electrolyte
material in the solution, the electrolyte concentrationce can
be considered constant and its average value can be used in
the model.

Although these simplifications result in a heavy loss of
information, they can be useful in control and estimation
applications as we demonstrate next. In accordance with
the mean solid concentration, the spatial dependence of the
Butler-Volmer current is ignored and a constant valuej̄Li is
considered which satisfies the spacial integral (for the anode
or the cathode)

∫ δn

0

jLi(x)dx =
I

A
= j̄Li

n δn (9)

whereδn is the anode thickness. This averaging procedure
is equivalent to considering a representative solid material
particle somewhere along the anode and the cathode [1].

The partial differential equation (4), describes the solid
phase concentration along the radius of active particle, but
the macroscopic model requires only the concentration at the
electrolyte interface.

By using the finite difference method for the spatial
variabler, it is possible to express the spherical PDE into
a set of ordinary differential equations (ODE), dividing the
sphere radius inMr−1 slices, each of size∆r = Rs

Mr−1
and

rewriting boundary conditions [9]. The new system presents
Mr − 1 statescs = (cs1

, cs2
, ....csMr−1

)T , representing
radially distributed concentrations at finite element node
points1, ..., Mr − 1

ċs = Acs + Bj̄Li. (10)

whereA is a constant tri-diagonal matrix, function of the
diffusion coefficientDs. The output of the system is the
value of the solid concentration at the sphere radius, that
can be rewritten as

c̄se = csMr−1
− Dj̄Li. (11)

whereD is function of diffusion coefficientDs and active
surface areaas. Two sets of ODEs, one for the anode and one
for the cathode are then obtained. The positive and negative
electrode dynamical systems differ at the constant values and
at the input sign.

The initial values of̄cse when the battery is fully charged
is defined asc̄100%

se,x and when fully discharged as̄c0%
se,x,



with x = p, n for the positive and negative electrode. It is
convenient to define the normalized concentration, also know
as stoichiometry,θx = c̄se,x/cse,max,x, with x = p, n for the
positive and negative electrode.

The battery voltage (8), using (6) and using the average
values at the anode and the cathode, can be rewritten as

V (t) = (η̄p − η̄n) +
(

φ̄e,p − φ̄e,n

)

+ (Up(θp) − Un(θn)) −
Rf

A
I.

(12)

Using the microscopic current average values and imposing
the boundary conditions and the continuity at the interfaces,
the solutions of equations (1) - (4) can be found. The results
can be found in [2] and [1] and are not reported here for
brevity.

Using (5) it is possible to express the overpotentials
difference as function of average current densities and solid
concentrations as follows

η̄p − η̄n =
RT

αaF
ln

ξp +
√

ξ2
p + 1

ξn +
√

ξ2
n + 1

(13)

where

ξp =
j̄Li
p

2asj0p

and ξn =
j̄Li
n

2asj0n

. (14)

The approximate solution for the electrolyte potential at
interface with the collectors leads to

φ̄e,p−φ̄e,n = φe(L)−φe(0) = −
I

2Akeff
(δn + 2δsep + δp) .

(15)
Finally, the battery voltage (12) can be rewritten as a

function of current demand and average solid concentration

V (t) =
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(16)

whereKr = 1

2Akeff (δn + 2δsep + δp) + Rf is a term that
take into account both internal and collector film resistances.

III. E XPERIMENTAL SET-UP

The battery utilized in the experimental set-up is a 37 V -
6.8 Ah polymer lithium-ion battery from SAFT composed of
a series of ten MP176065 cells. The battery pack is equipped
with minimum protection circuit, in order to not have non-
linear behavior caused from cell balancing electronic rather
than from the battery itself. The only limitation present is
on maximum current demand, limited to 5 A by an internal
amperometric fuse. The experiments has been done with
lower current demands. In order to collect the battery ex-
perimental data during the charge and the discharge, a series
of electronic devices has been utilized. The experimental set-
up is composed of an electronic load from the 3600 series of
Prodigit, a DC voltage generator and a voltage-current sensor
coupled to a 16-bit ADC from National Instruments. Figure
2 shows the connection schematics between the battery, load

Fig. 2. Experimental set-up: (A) Electronic load, (B) Voltage generator,
(C) ADC, (D) Battery and (E) Current and voltage sensor.

and generator, coupled with the voltage/current sensor. The
DC voltage generator utilized for the battery charge is a
42 V - 20 A device, able to charge the battery as slow as
requested for lithium-ion battery safety concerns and cells
balancing. Finally the data has been collected using a 16-
bit, 32 channels A/D converter from National Instruments,
able to sample the current and voltage signals coming from
simple sensors connected to the battery up to 1 MHz. The
sampling time has been chosen in a range from 0.1 s to 0.025
s in order avoid oversampling during slow rate experiments
or conversely undesired aliasing during faster load dynamics.

IV. M ODEL IDENTIFICATION PROCEDURE

The reduced order model depends on less parameters with
respect to the full order one, but this number is still too
high to identify the model using all of them as unknowns.
Some of the parameters capture geometrical features and
some chemical features which can be split into physical and
design specific (i.e depend on the particular cell design). In
order to reduce the number of parameter to be identified and
maintain a good degree of accuracy for model fitting, some
values has been taken from literature [10] and some from
the cell manufacturer.

The parameters to identify are the maximum positive
and negative solid concentrationcs,max,p and cs,max,n, the
positive and negative solid phase diffusion coefficientDs,p

and Ds,n, the positive and negative active surface area per
electrodeas,p andas,n, the electrode surfaceA, the total cell
film resistanceKr and the current coefficientk0 for a total
of nine parameters. In addition to these nine parameters it
is necessary to know the initial solid concentration valuesin
both electrodes. The discharge and the charge experiments
have been conducted with the battery respectively fully
charged and fully discharged in order to obtain an estimate
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Fig. 3. Empirical open circuit potential correlations for negative and
positive electrodes.

for the initial concentration. Literature [4] values provide
an initial estimate for the fully charged stoichiometry. These
values have been adopted and then refined to fit experimental
data.

In order to obtain the correlation between solid concentra-
tion inside the electrodes and their open circuit potential, the
following procedure has been adopted: from the battery data
sheet it is possible to know that the negative electrode active
material is composed of graphite (LiC6) so the empirical
correlation found in [3] can be utilized, while the positive
consists of an unknown mixture of LiCoO2 with other metal
oxides. In this case, the specific empirical correlation for
Up(θp) has been established by discharging the cell at a very
low constant rate and subtractingUn(θn) from the measured
open circuit voltage.

Figure 3 shows the empirical correlation found for both
electrodes. The other battery constants are shown in Table
V. The parameter identification procedure has been designed
as follows: A set of experimental data has been chosen for
the parametric identification routine, comprising charge and
discharge process, with constant and pulse current profile,in
order to capture both slow and fast dynamics of the battery
behavior. In detail, a set of four charges (1 A, 2 A and 3 A
at constant current and 4 A with pulse current demand) and
four discharges (2 A, 3.5 A and 5 A at constant current and
6 A pulse current demand) have been utilized for parameter
identification. Note here that the identification procedureon
a single profile leads to a very good fit, but the obtained
parameters are tied to the specific experiment and do not fit
well other experiments. In order to avoid this local minimum
problems and obtain a set of parameters matching different
operational points, a global identification procedure has been
conducted utilizing all the selected data at the same time. The
identification procedure consist in finding the minimum of
the following index cost:

min
par

J =
∑

i

∫

(VM,i(Ii, par) − VREC,i)
2 (17)

whereVREC,i is the i-th experimental battery voltage mea-
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Fig. 4. Battery measurement versus battery model during identification
test experiment. Upper plot shows discharge experiments, while bottom plot
shows charge experiments.

surement corresponding to thei-th current demand profile
Ii, VM,i(Ii, par) is the model predicted voltage andpar is
the vector of parameters to identify. In order to obtain a
guess starting point for the parameter set, a rough estimation
of their values has been obtained coupling literature with
battery nominal performances. The minimization procedure
has been conducted using Matlab/Simulink, with a gradient
free function minimization algorithm specifically suited for
non-linear scalar function. The single experiment maximum
error tolerance has been fixed around±0.5 V corresponding
to a maximum error of±0.05 V per cell. The minimization
function is then kept running until all individual errors are
under fixed threshold and the voltage profile is correctly
followed by the model.

V. SIMULATION RESULTS

After the identification procedure the reduced order model
exhibits a good voltage prediction, with a mean error about
of 0.2 V and a maximum error under the chosen threshold.
The resulting parameters values are listed in Table III. Figure
4 shows the obtained voltage prediction under charge and
discharge at different rates, during the model identification
process. The solid lines represent the model output, while the
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Fig. 5. Battery measurement versus battery model during identification
test experiment, under pulse current discharge.

marks represent experimental data. The simulations show a
good agreement under all conditions and particularly god
results away from the initiation and the termination of the
experiments. During the initiation and the termination phase
of its experiments, the internal battery protection circuitry is
activated, hence it cause nonlinear phenomena which are not
modeled.

Figure 5 shows the identification procedure results on a
pulse operation discharge. For visualization reason, onlythe
first 150 s of the simulation are shown, but results are rep-
resentative of the entire test. The fast transients are followed
without errors, showing good dynamic performances.

Finally the model has been validated on a different data
set, not utilized for identification purpose. The current de-
mand profile used for validation purpose is a series of ten
Hybrid Pulse Power Characterization profiles (HPPC), as
indicated in the FreedomCar manual [6]. Each HPPC profile
lasts 60 s with reference current demand increases of 0.5 A
(starting from 0.5 A up to 5.5 A), and is followed by 15min
relaxation period. Figure 6 shows the complete simulation,
while Figure 7 zoom only in a selection of the signal, in
order to best illustrate the result. The battery measurement
has been under sampled in order to improve readability of
the figure.

Finally, in order to provide a SOC computation method,
let us define the state of charge of the battery, with a good
approximation, as linearly varying withθ between the two
reference values at0% and100%

SOC(t) =
θx − θ0%

x

θ100%
x − θ0%

x

. (18)

with x = p, n for the positive and negative electrode. The
SOC is then calculated using positive stoichiometry, because
the model is more sensitive to positive solid concentration
in respect to negative. Reference values forθ100%

p and θ0%
p

have been taken from literature, and then refined to fit
experimental data.
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Fig. 6. Battery measurement versus battery model during validation test
experiment, under repeated HPPC current demand profile.
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Fig. 7. Detail on selections of validation test experiment.

Figure 8 shows the estimated SOC for the validation
experiment during one of the HPPC transient, in comparison
with the SOC obtained from classic integrator definition. Itis
possible to notice how the proposed SOC estimation is able
to take into account the concentration dynamics during fast
transient, while the classic definition, based only on coulomb
counting does not take into account the battery concentration
dynamics.

VI. CONCLUSION

Identification of a battery model for SOC prediction has
been performed. The results are illustrated and discussed,
comparing the model outputs with the battery measurements.
The battery model has been then validated using several set
of data and a good performance of the identified model in
predicting the experiment results is reached. Finally, a SOC
estimation method has been presented and illustrated and its
results confronted with classic integrator SOC computation.



Parameter Negative electrode Separator Positive electrode

Thickness (cm) δn = 50 × 10−4 (b) δsep = 20 × 10−4 (a) δp = 36.4 × 10−4 (b)
Particle radiusRs (cm) 1 × 10−4 (a) - 1 × 10−4 (a)
Active material volume fractionεs 0.580 (a) - 0.500 (a)
Electrolyte phase volume fraction (porosity)εe 0.332 (b) 0.5 (b) 0.330 (b)
Charge transfers coefficientsαa, αc 0.5,0.5 (b) - 0.5, 0.5 (b)
Initial stoichiometryx0,y0 0.7 (b) - 0.32 (b)

TABLE II

BATTERY PARAMETERS. (a) from battery datasheet, (b) from literature
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Fig. 8. Battery estimated SOC during an HPPC profile transient.

Name Symbol and Value

Max negative solid concentration
(mol cm−3) cs,max,n = 3.175 × 10−2

Max positive solid concentration
(mol cm−3) cs,max,p = 2.59 × 10−2

Solid phase neg. diffusion coefficient
(cm2 s−1) Ds,n = 1.27 × 10−12

Solid phase pos. diffusion coefficient
(cm2 s−1) Ds,p = 8.09 × 10−12

Negative active surface area per electrode
(cm2cm−3) as,n = 9.655 × 104

Positive active surface area per electrode
(cm2cm−3) as,p = 2.425 × 104

Electrode plate Area
cm2 A = 8000
Total resistance (internal and external)
Ωcm2 Kr = 128
Current density coefficient k0 = 1.918 × 103

TABLE III

PARAMETERS IDENTIFIED.
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