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a b s t r a c t

Previously, a hybrid powertrain management strategy was developed that controls the power sources
based on frequency content, mitigating aggressive engine transients. This article presents a hardware-in-
the-loop validation of this strategy, with a real engine and battery integrated into a diesel hybrid electric
vehicle simulation, thereby allowing for a realistic evaluation of fuel economy, soot emissions, and battery life.
Considering an aggressive drive cycle and a state-of-charge regulation strategy as a benchmark, the frequency-
based strategy yields 5.9% increase in fuel economy, 62.7% decrease in soot emissions, and 23% reduction in
effective Amp-hours processed, which should yield an increase in battery life.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Vehicle powertrain hybridization is one of the promising path-
ways for improved fuel economy and reduced tailpipe emissions,
where energy storage devices, such as hydraulic or pneumatic
accumulators or batteries, are used in conjunction with internal
combustion engines. Various topologies for hybridization have been
explored; e.g., series (Filipi & Kim, 2010; Jalil, Kheir, & Salman, 1997),
parallel (Liu, Hagena, Peng, & Filipi, 2008; Yang, Qi, Guo, Wang, & Wei,
2012), and power split (or series–parallel) (Li & Kar, 2011; Liu & Peng,
2008). They all demonstrated improvements in fuel economy and
some showed reduction in emissions.

Hybrid powertrain technology has already been successfully
deployed on some passenger vehicles (Lave & MacLean, 2002). Heavy-
duty military vehicles could benefit from this technology, as well. Even
though they have significantly different performance requirements
and driving patterns than those of the passenger vehicles,
the goals of reducing fuel consumption and emissions are still the
same. Minimizing soot emissions is extremely desirable within the
military context to reduce the vehicle visual signature and increase
survivability. Further requirements such as silent watch, increased
mobility, enhanced functionality for on-board power, and improved

export-power capabilities make hybrid electric configurations more
attractive than other hybrid architectures. Among various hybrid
electric configurations, the series configuration has drawn interest
due to greater flexibility in vehicle design when it comes to
considerations such as the V-shaped hull design to maximize the
survivability of the crew during blast events (Ramasamy, Hill,
Hepper, Bull, & Clasper, 2009). Therefore, with the specific military
application in mind, the focus of this article is on the series hybrid
electric architecture.

The performance of a hybrid powertrain in terms of reducing
both fuel consumption and emissions critically depends on
the power management strategy; that is, the supervisory control
algorithm that determines how the total power demanded by the
driver will be shared between the engine and, for example, the
battery. Many power management strategies for series hybrid
electric vehicles have been proposed to fully exploit their potential
for minimizing fuel consumption, emissions, and/or battery health
(Caratozzolo, Serra, & Riera, 2003; Di Cairano, Liang, Kolmanovsky,
Kuang, & Phillips, 2012; Jalil et al., 1997; Kim & Filipi, 2007; Kim,
Lee, & Filipi, 2012; Konev, Lezhnev, & Kolmanovsky, 2006; Li &
Feng, 2012; Michel et al., 2013; Pisu & Rizzoni, 2005; Serrao, Onori,
Sciarretta, Guezennec, & Rizzoni, 2011, 2013).

Among many strategies proposed, Konev et al. and Di Cairano
et al. highlight the importance of a smooth engine operation,
where smoothness is characterized by the rate of change in power.
Depending on the engine specifications, different rate of change
thresholds can be used to define the smooth operation threshold.
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Smooth operation is important for two reasons: (1) it allows the
engine to operate close to the steady-state conditions where the
operation is optimal in terms of pointwise powertrain efficiency;
and (2) reducing aggressive transients also reduces soot emissions.
To achieve such smooth operation, Konev et al. and Di Cairano
et al. propose methods to smoothen the power demand that is
required from the engine. In their work, Konev et al. and Di
Cairano et al. focus on the benefits of this strategy from the engine
perspective only and within the context of passenger vehicles with
spark-ignition engines. Serrao et al. developed a power manage-
ment strategy accounting for tailpipe emissions such as NOx in
Serrao et al. (2013); however, soot emissions – a significant factor
in military vehicles – were not considered. Therefore, the impact
of this strategy within the context of military vehicles with diesel
engines is still an open-research question. Furthermore, the
impact of engine power smoothing strategy on the battery opera-
tion and battery health has yet to be studied. Michel et al.
accounted for the battery thermal behavior in the equivalent
consumption minimization strategy in Michel et al. (2013) where
battery health was indirectly considered based on knowledge that
capacity fade can be accelerated at high temperatures; however,
the battery life estimation was not conducted. Thus, this article is
aimed to investigate the effects of a power-smoothing strategy in a
series hybrid electric military vehicle with a diesel engine. The
effects are addressed from the perspective of both the engine and
the battery.

Towards this end, a frequency-domain power distribution
(FDPD) strategy is considered that has been proposed by Kim,
Lee, et al. (2012). The FDPD strategy manages power flow by
splitting power demand into low and high frequency components
through low-pass filtering incorporated with load-leveling. Model-
based simulations have shown the method to be capable of
achieving: (1) reduced battery electric loads, (2) smooth engine
transients; and (3) less fuel consumption. However, a method to
tune the FDPD has not yet been proposed. Furthermore, the
simulation-based validations were performed with static maps
to represent the engine and its emissions. The true transient
performance of FDPD with real hardware has not yet been studied.

With this motivation in mind, this article makes two original
contributions to this body of literature. First, it provides a design
methodology to tune the frequency-based supervisory controller.
Control parameters are systematically optimized through a model-
based two-stage optimization process. Second, the FDPD strategy is
evaluated experimentally through a networked simulation setup
with a real engine and battery in the loop. This hardware-in-the-
loop simulation allows not only for a more realistic evaluation of the
fuel economy benefits of the controller compared to the purely
model based evaluations in the literature, but also for an assessment
of its soot emissions benefits for the first time. In addition, the
battery life is estimated using a weighted Amp-hour (Ah) processed
model (Onori, Spagnol, Marano, Guezennec, & Rizzoni, 2012; Serrao,
Onori, Rizzoni, & Guezennec, 2009) to account for thermal effects. A
thermostatic control strategy is also considered as a baseline power
management strategy, and the FDPD is compared to the baseline
strategy in terms of performance. This article is based upon the
preliminary work reported in Kim, Ersal, Salvi, Stefanopoulou, and
Filipi (2012) and extends it by putting a real battery in the loop in
addition to the engine and by providing emissions measurements, as
well. A more detailed estimation of the battery life is also included.

The rest of this article is organized as follows. Section 2 gives an
overview of the power management strategies considered in this
article and also proposes a method to tune the FDPD strategy.
Section 3 presents the vehicle system considered as a case study
and optimized control parameters. Hardware-in-the-loop setup
and experimental results are presented and discussed in Section 4,
and conclusions are drawn in Section 5.

2. Overview of power management strategies

The primary task of a power management strategy (PMS)
is determining the power flow between the vehicle, engine and
battery to minimize a cost function such as fuel consumption and
emissions. Specifically, a series hybrid configuration can take
advantage of the decoupling of the engine from the wheels to
operate the engine at the optimal conditions. However, the
decrease in total system efficiency due to inherent multiple energy
conversions, and other constraints such as battery voltage and
current limitations make the power management problem a
challenging task. Therefore, the design of power management
strategy is important to improve fuel economy while reducing
engine emissions and to ensure safe battery operations.

2.1. Thermostatic battery state-of-charge (SOC) control

Thermostatic SOC control, a heuristic control technique,
has been widely employed for series hybrid electric vehicles
(Caratozzolo et al., 2003; Lee et al., 2011; Li & Feng, 2012). This
strategy is advantageous because of its ease of implementation,
the effectiveness of SOC regulation, and improved fuel economy.
Thus, the thermostatic SOC control is considered as a baseline
strategy in this study.

Fig. 1 summarizes the principle of the thermostatic SOC control.
As long as current SOC is higher than the target SOC, the engine
provides zero power. The engine starts charging the battery with
the predetermined power level when SOC drops to the target SOC.
A dead band is implemented to prevent frequent engine on/off's.
When the power demand for vehicle propulsion is higher than the
battery discharging power limit, the engine operates in power
assisting mode.

However, the thermostatic SOC control has several drawbacks.
Since the engine is commanded to provide power demand above
threshold level, the engine operation changes suddenly and
aggressively from zero power demand. This behavior considerably
deteriorates tailpipe emissions (Hagena, Assanis, & Filipi, 2011)
and also prevents the engine from following the optimal operation
line (Di Cairano et al., 2012). Moreover, the heavy-duty diesel
engine cannot follow the aggressive command because of its large
inertia and turbo-charger lag. This is a problem because the
battery has to provide the remainder of the power demand,
resulting in more electrochemical–mechanical stresses in the
battery (Lee, Kim, Stefanopoulou, & Filipi, 2011). Finally, in terms
of improving the fuel economy, this strategy cannot avoid multiple
power conversions since it prefers using the battery power to the
engine/generator power.

1.0

SOC

Engine Power

Max.
Power

Threshold
Power

0
Target
SOC

Dead
band

Max Power
SOC

Fig. 1. The schematic of thermostatic SOC control.

Y. Kim et al. / Control Engineering Practice 29 (2014) 277–286278



2.2. Frequency domain power distribution strategy

The separation of power demand in frequency domain provides
control inputs to each power source tailored according to speed of
response. Unlike the turbo-charged diesel engine, the battery can
absorb and provide high frequency power demands without delay
in response. Therefore, by splitting the total power demand into low
frequency and high frequency components, each power source can
be utilized more effectively. The low frequency components capture
the smooth trajectory of the power demand, whereas the high
frequency components cover the small amplitude but aggressive
and transient power demand. The smooth power demand transi-
tions can help reduce engine emissions, whereas the reduced
amplitude of the electric load is beneficial to mitigate electrical
stress on the battery which will be discussed in Section 4.

Fig. 2 shows the structure of the proposed strategy consisting
of: (1) FDPD module; (2) SOC regulation module; and (3) mode
decision module. The FDPD module for the hybrid electric vehicle
(HEV) mode determines the engine/generator power demand by
splitting the total power demand into low and high frequency
components. The power demand Pdmd;1 is determined as follows:

Algorithm 1.

if Pth;1rPdmd;0rPth;2 then
Pdmd;1 ¼ Pdmd;0þΔPdmd

else if Pdmd;04Pth;2 then
Pdmd;1 ¼ Pth;2þΔPdmd

else
Pdmd;1 ¼ΔPdmd

end

where Pdmd;0 and Pdmd;1 are power demand for vehicle propulsion
and total power demand respectively. Parameters Pth1 and Pth2 are
threshold power levels for HEV mode incorporated with load-
leveling, and τLF is the time constant of a low-pass filter. Then, the
power demand Pdmd;2 is filtered using a first order low-pass filter:

τLF
dPdmd;2

dt
þPdmd;2 ¼ Pdmd;1: ð1Þ

A first order filter is used in this study since a first-order filter
outperforms higher order filters in terms of fuel economy and
engine smoothness as suggested by Kim, Lee, et al. (2012).

The feedback power demand ΔPdmd for the battery SOC
regulation is determined through the proportional-integral (PI)
controller given by

ΔPdmd ¼ kPΔSOCþkI

Z
ΔSOC dt; ð2Þ

where ΔSOC is the difference between the current and reference
SOC values; kP and kI are proportional and integral control gains
respectively.

The mode decision module determines driving modes. The
modes change between an electric-vehicle (EV) mode, a hybrid

electric vehicle (HEV) mode and a performance vehicle (PV) mode
according to the following:

Algorithm 2.

if Pdmd;2rPth;1 then
Pdmd;3 ¼ 0: EV mode

else
if Pdmd;2ZPdmd;0�Pbatt;max then

Pdmd;3 ¼ Pdmd;2: HEV mode
else

Pdmd;3 ¼minðPeng;max; Pdmd;0�Pbatt;maxÞ: PV mode
end

end

where Peng;max and Pbatt;max are the maximum available engine
power and battery discharging power, respectively. Consequently,
the performance of FDPD strategy is determined by five control
parameters; namely, τLF , Pth1, Pth2, kP , and kI. These five parameters
are determined through a model-based two-stage optimization
process as described next.

2.3. Model-based control parameter optimization

In this section, the formulation of the optimization of control
parameters for the thermostatic and FDPD strategies using a
model-based simulation is presented. A hybrid vehicle is a
complicated system that includes both energy conversion and
energy storage among various power/energy sources. Since
numerical round-off, interpolation inaccuracy, and discrete events
in the vehicle simulation lead to discontinuity and computational
noise in the objective function (Assanis et al., 1999; Gao &
Porandla, 2005), gradient-based optimization algorithms are not
frequently used. Thus, a two-stage optimization framework was
used in this study to take advantage of both derivative-free
(global) and gradient-based (local) optimization algorithms. First,
a non-gradient based optimization algorithm searches for the
global minimum over a bounded domain. Then, the set is used
as an initial point for a gradient-based algorithm with fast
convergence. The DIviding RECTangles (DIRECT) algorithm is used
for the global optimization, wherein the feasible region of design
variables is divided into n-dimensional hyper-cubes and hyper-
rectangles and the objective function is evaluated at the center of
the hyper-cubes and hyper-rectangles. This algorithm has several
advantages (Jones, Perttunen, & Stuckman, 1993): (1) it searches
for global and local optima; (2) parameter tuning is not required;
(3) both equality and inequality constraints can be easily handled;
(4) it is robust for nonlinear problems. For the subsequent local
optimization algorithm, Sequential Quadratic Programming (SQP)
is used. Both DIRECT and SQP are implemented in MATLAB
through the gclsolve.m code by Holmstrom (1989) and the built-
in MATLAB function fmincon, respectively.

The control parameter optimization can be mathematically
formulated as the following:

Objective : Maximize fuel economy
Subject to jΔvvehjrΔvveh;ref within 1 s

SOCLrSOCrSOCU

SOCend;LrSOCendrSOCend;U

Pð _PengrαÞZβ

where the subscripts ref and end represent the reference and the
end of driving cycles and the subscripts L and U denote the lower
and upper bounds, respectively. The difference between the
desired and actual vehicle speeds is represented by Δvveh and

Low frequency

Pdmd,0

SOCref
SOC I

Pdmd

+ -

+-

Coulomb
Counting

Battery

Pdmd,1

Engine/
Generator

High frequency

Low-pass
Filtering

Pdmd,2 Mode
Decision

Pdmd,3Power
Calculation

SOC
Regulator

FDPD

Fig. 2. The schematic diagram of the FDPD strategy.
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Δvveh;ref is set to 1.6 km/h based on the regulation of US Environ-
mental Protection Agency (EPA).1 The SOC should be bounded
during the vehicle operation and the SOC at the end of the driving
cycle should be sufficiently close to the target SOC. The variable
_Peng is the derivative of engine power demand with respect to
time; thus, the last constraint can be interpreted as a minimum
probability of β for an engine power command rate less than α.
The parameters α and β are set to 40 kW/s and 95% adopted from
Kim, Lee, et al. (2012). For the purpose of accounting for the
remaining battery SOC, two consecutive driving cycles are con-
sidered; the fuel economy is calculated by

fuel economy¼ 1
Ns

∑
Ns

k ¼ 1

R tk þ tcycle
tk

vveh dtR tk þ tcycle
tk

_mf dt
; ð3Þ

where tcycle is the total time of the given driving cycle, vveh is the
velocity of the vehicle and Ns is the total number of tk's that satisfy
the condition: tkэSOCðtkÞ ¼ SOCðtkþtcycleÞ.

The same optimization formulation is used to tune both the
thermostatic SOC and FDPD control strategies.

3. Description of the hardware-in-the-loop study

As a case study, a hybridized Mine Resistant Ambush Protected
All-Terrain Vehicle (M-ATV) is considered to explore the effective-
ness of the FDPD strategy in severe circumstances including
frequent and high power demand. The specifications of the
M-ATV are summarized in Table 1.

A networked hardware-in-the-loop simulation (Ersal et al.,
2011; Ersal, Brudnak, Stein, & Fathy, 2012; Ersal, Gillespie,
Brudnak, Stein, & Fathy, 2013) of this vehicle system is considered
to enable a system integration despite the fact that the compo-
nents resided in different geographic locations. The engine and
battery are the hardware components located in two different
locations, and the remaining components of the vehicle system
(i.e., generator, motors, vehicle dynamics, and driver) are mathe-
matically modeled and simulated in a third location to enable a
future study with a human driver in the loop setup at a location
not collocated with the engine or battery similar to Ersal et al.
(2011). One of the important considerations in such networked
simulation is selecting the location of the coupling point – how to
distribute the models between the sites (Ersal et al., 2013). The
coupling point significantly affects how the system dynamics are
affected by the network dynamics (e.g., delay). To this end, for
the three-site networked setup considered in this work, there are
three options for where the PMS can be placed: with the driver,
battery, or engine. Among these three options, placing the PMS
with the driver is advantageous, because this is the only option
which does not require a third communication channel between
the engine and battery locations. Working with only two commu-
nication channels (between the driver site and the engine site,
and between the driver site and the battery site) decreases the
sensitivity of the simulation to communication delays.

More details about the SHEV model are described in Appendix A.
The overview of the networked system architecture is illustrated
in Fig. 3.

3.1. Engine-in-the-loop setup

A Navistar 6.4 L V8 diesel engine with 260 kW rated power at
3000 rpm and a rated torque of 880 N m at 2000 rpm is used for
this study. It is intended for a variety of medium-duty truck

applications covering the range between classes IIB and VII, and
features technologies such as high pressure common rail fuel
injection, twin sequential turbochargers, and exhaust gas recircu-
lation. A high-fidelity, AC electric dynamometer couples the
physical engine with the simulation models in real time and
operates in speed control mode. The setup is connected to
Matlab/Simulink for integration with mathematical models, allow-
ing for a real-time hardware-in-the-loop simulation. This connec-
tion is achieved through an EMCON 400 flexible test bed with an
ISAC 400 extension (Filipi et al., 2006). The photo of the engine-in-
the-loop setup is shown in Fig. 4.

Transient soot emissions are measured with a Differential
Mobility Spectrometer (DMS) 500 manufactured by Cambustion
Ltd. in the form of temporally resolved particulate concentrations.
The DMS 500, whose measurement principle is illustrated in Fig. 5,
offers measurement of different particle sizes by identifying the
mobility of particles with a sampling frequency of 10 Hz and a
response time of 200 ms. Therefore, the DMS 500 makes it
possible to analyze the time evolution of the soot emissions. In
this study we consider a military application and thus focus on
engine out emissions due to the fact that military vehicles do not
use aftertreatment systems. Soot emission measurements are
performed for a time window of 750 s due to the limitation of
the measurement instrument for reliable and repeatable data.
After 750 s, the measurements start becoming unreliable due to
contamination in the instrument.

3.2. Battery-in-the-loop setup

A cylindrical 26650 power cell manufactured by A123 systems
is used for the battery-in-the-loop test. The cell chemistry is LFP
with capacity of 2.3 Ah. The specifications of the battery pack and
cell are summarized in Table 2. Since a single cell is tested, the
battery current (or demand) requested by the power management
strategy Ipack has to be scaled down to the cell level Icell given by
Icell ¼ Ipack=np. This scaled current demand is applied to the battery

Table 1
Vehicle specification.

Parameter Value Unit

Weight 14 403 kg
Payload 1814 kg
Frontal area 5.72 m2

Diesel engine 260 kW
Generator 236 kW
Battery 9.27 kWh
Motor 380 kW

Location 2

Location 3

Location 1

Driver PMS

Engine Generator

Battery

Vehicle Motor

Drive cycle

Vehicle speed

Desired E/G power

Engine
power

Throttle,
brake

Voltage,
 current

Generator power

Battery
power

Motor
power

Desired motor power
Brake

Torque

Speed

Fig. 3. The overview of the networked hardware-in-the-loop simulation setup.
Each shaded area represents a different geographic location. Italic typeface denotes
actual hardware components. Dashed lines represent the signals communicated
over the network. PMS stands for the power management strategy.

1 EPA, Code of Federal Regulations, Title 40 Chapter I, §600.109-08 EPA driving
cycles.
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cell using a Bitrode Battery Test System FTV1-200/50/2-60. The
battery SOC is estimated based on coulomb counting given by

dSOC
dt

¼ � Icell
3600Cb

ð4Þ

where I and Cb are current and battery capacity respectively.
As seen from Fig. 6, the battery cell is placed in a designed flow

chamber which emulates forced-air cooling conditions inside the
battery pack (or module). Since the flow chamber is located in
a thermal chamber, the ambient temperature can be controlled
around a predetermined temperature at 25 1C. In particular, forced-
air cooling is performed by controlling the fan speed and tempera-
ture inside the thermal chamber. To investigate the performance of
different power management strategies in terms of battery life,
the temperature of the battery during operation is also measured
using a T-type thermocouple. The sensor accuracy is the maximum
of 0.5 1C or 0.4% according to technical information from the
manufacturer. Similar to the engine-in-the-loop setup, the
battery-in-the-loop setup is also interfaced to Matlab/Simulink for
a real-time hardware-in-the-loop simulation.

4. Experimental results and discussion

The performances of the two power management strategies are
investigated using an aggressive military driving cycle, Urban
Assault Cycle (UAC) (Lee et al., 2011), which features frequent
acceleration and deceleration events. The velocity profile of this
driving cycle is displayed in Fig. 7. The parameters of the baseline
thermostatic SOC and the FDPD strategies, both optimized for the
UAC, are summarized in Tables 3 and 4. Note that the baseline
strategy behaves like proportional control above the threshold
power of 20 kW; that is, the engine power increases by 34.3 kW to
compensate for every 0.01 decrease in battery SOC. Fig. 8 shows
the power spectral analysis of the UAC and the cut-off frequency
τLF obtained as a result of the optimization.

To highlight the performance of the power management strate-
gies, specific time periods are shown in Fig. 9. There is no difference in
vehicle speed between the FDPD and thermostatic strategies, imply-
ing that the vehicle performance is not deteriorating. The engine
power demand gradually changes under the FDPD strategy when the
power demand is higher than 116.7 kW, the threshold power level 2,
Pth;2. In general, the actual engine power can track the desired engine
power very closely, indicating that the engine can operate very close
to the optimal operation line. In contrast, the baseline thermostatic
SOC strategy always commands engine power demand above the
threshold level of 20 kW with high power rate. Moreover, it can be
seen that the diesel engine cannot follow an aggressive command
with high power rate due to its slow dynamics; therefore, the battery
has to provide the remaining propulsion power until the engine
power demand is satisfied. The thermostatic SOC strategy requires
significantly high power demand to charge the battery for SOC
regulation. On the other hand, the FDPD strategy reduces the power
demands higher than threshold power level 2, leading to
a reduced occurrence of aggressive transients. Specifically, these
smooth engine transients under the FDPD strategy result in 62.7%
reduction in the accumulated soot emissions from 0.822 g/km to
0.306 g/km for the first 750 s.

Furthermore, the FDPD strategy does not emphasize battery
charging as much as the thermostatic SOC strategy does. The
decrease in multiple power conversions could improve system
efficiency. Specifically, the fuel economy is improved by 5.9% from
2.87 km/l to 3.04 km/l compared to the thermostatic SOC strategy
over the UAC. The term Ns used in the fuel economy calculation in
Eq. (3) is found to be 166 and 49 for the thermostatic and FDPD
strategies, respectively.

Fig. 10 shows the histogram of battery cell operation and engine
operation with the two power management strategies. The fre-
quency of high battery currents and aggressive engine power
demands (as quantified by the engine power rate) are significantly
reduced in case of the FDPD strategy, leading to the decrease in soot
emissions. Specifically, the amount of time the battery spends in
high C-rate (more than 75 C) is reduced from 25% to 18% with the
FDPD strategy. A C-rate is a measure of the rate at which a battery is
discharged relative to its maximum capacity. A 1C rate means that the
discharge current will discharge the entire battery in 1 h. Additionally,
the high power rate (more than 50 kW/s) operation time of the engine
is reduced from 51% to 1%. Since Joule heating dominates the heat
generation from the battery as discussed in Kim et al. (2014), a lower
operating temperature of the battery is expected corresponding to
lower average C-rate. Indeed, Fig. 11 shows that the battery tempera-
ture is 3 1C lower with the FDPD than the thermostatic strategy for the
same cooling condition, even though both strategies regulate the
battery SOC around the target value of 0.5. These results could lead to
an additional benefit of a reduction in power/energy consumption for
battery cooling.

Battery degradation over the driving cycle is estimated by using the
weighted Ah-processed model discussed in Onori et al. (2012). This

Fig. 4. A photo of the engine-in-the-loop testing facility. The engine is on the left,
and the dynamometer is on the right.

Fig. 5. The schematic of the measurement principle of the DMS system (Reavell,
Hands, & Collings, 2002).

Table 2
Specifications of battery pack and cell.

Symbol Value

Pack
Number of cells in series ns 130
Number of cells in parallel np 10

Cell
Nominal capacity Cb 2.3 Ah
Nominal voltage Vn 3.3 V
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approach uses the linear cumulative damage concept to analyze
battery degradation. To account for the influence of operating condi-
tions such as temperature Tbatt and state-of-charge (SOC) or depth-of-
discharge (DOD) on the degree of degradation, Onori et al. introduced
the severity factor s, a nonlinear function of battery temperature and
SOC. The effective accumulated Ah-processed is calculated by using

Aheff ¼
Z
sðTbatt; SOCÞjIj dt: ð5Þ

Even though the severity factor is highly dependent on battery
specifications such as chemistry and electrode design, it is suggested
that the severity factor has a typical shape as illustrated in Fig. 12
(Onori et al., 2012). As seen from Fig. 11, the operating range of the
battery SOC under both strategies is narrow. Thus, it is reasonable to
assume that the severity factor is only a function of temperature. By
using the severity factor as a first approximation, the FDPD provides

a 23% reduction of Ah-processed over the UAC compared to the
thermostatic SOC strategy. This significant decrease in the Ah-
processed can be interpreted as less electrical stress on the battery
and longer battery life.

In this work, the power management strategies are optimized
and evaluated for one particular drive cycle. Other drive cycles
may need different control gains and lead to different savings in
terms of fuel economy, soot emissions, and battery life. Therefore,
the presented control gains should not be interpreted as a single
set of gains recommended for all drive cycles. The typical approach
in the literature to ensure a robust performance is to tune the
controller for different types of drive cycles separately and using a
pattern recognition algorithm to switch between the best gains
(Murphey et al., 2012, 2013). However, developing such a gain
scheduling approach and evaluating the robustness of its perfor-
mance is beyond the scope of this article and is left as future work.

5. Conclusions

The original contributions of this article can be summarized as
follows. A control parameter tuning strategy has been proposed for
the frequency-domain power distribution (FDPD) strategy. Control
parameters are systematically determined through the model-
based two-stage optimization process, where non-gradient and
gradient based algorithms are sequentially combined to take
advantage of both algorithms.

A case study has been conducted to experimentally compare
the performance of the FDPD to the thermostatic SOC strategy as
the baseline. A networked hardware-in-the-loop simulation plat-
form has been developed for this purpose and a Mine Resistant
Ambush Protected All-Terrain Vehicle (M-ATV) has been consid-
ered as the vehicle system.

The results show that the FDPD strategy successfully reduces
aggressive engine power demand and excessive electric battery
loads while improving fuel economy by 5.9% compared to the
baseline strategy in the specific scenario considered. The smooth
engine power demand results in 62.7% reduction of soot emissions
from the engine, as well as a reduction of high current operation of
the battery during propulsion. A decrease in high current opera-
tion leads to the lower temperature of the battery. Specifically, the
battery temperature is 3 1C lower under the FDPD strategy than
the baseline strategy. In addition, battery life is estimated by using
the weighted Ah-processed model. The results show that the FDPD
strategy can reduce the Ah-processed by 23% and thereby extend
the battery lifespan over typical military driving conditions.

Future work will compare the FDPD strategy to optimal control
strategies such as Dynamic Programming orModel-Predictive Control,

Fig. 6. A photo of the battery-in-the-loop testing facility.
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Fig. 7. The speed profile of the Urban Assault Cycle.

Table 3
Parameters of the thermostatic SOC strategy optimized for the UAC.

Parameter Value Unit

Target SOC 0.5 –

Deadband 0.02 –

Max. power SOC 0.43 –

Max. power 260 kW
Threshold power 20 kW

Table 4
Control parameters of the FDPD strategy optimized for the UAC.

Parameter Value Unit

Cut-off frequency, τLF 0.21 Hz
Threshold power 1, Pth;1 16.7 kW
Threshold power 2, Pth;2 116.7 kW
Proportional gain, kP 836.2 –

Integral gain, kI 4.537 –
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Fig. 8. Power spectral density of the power demand of the UAC.
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which requires the development of an accurate dynamic soot emis-
sions model, and an efficient way of formulating and solving the
resulting optimal control problem with increased dimensionality.
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Appendix A. SHEV modeling

This appendix presents the SHEV system model.
Fig. A1 shows the engine torque map obtained from a Navistar

6.4 L V8 diesel engine in Johri, Salvi, and Filipi (2012). The engine
torque map is augmented by a PI fuel controller sub-model
generating the engine rack position ðζðtÞA ½0;1�Þ, given by

ζðtÞ ¼ kPΔτeþkI

Z
Δτe dt; ðA:1Þ

where Δτe is the error between the desired and actual engine
torque; kP and kI are proportional and integral gains respectively.
To represent the effect of turbocharger lag on transient response
during rapid increases of engine rack positions, the fuel mass is

filtered by a first order filter. The engine-generator unit is assumed
to be fully warmed up so that the effects of temperature are
ignored. Fig. A2 illustrates the efficiency of the generator obtained
from Argonne National Laboratory (2002).

The most efficient operating points of the engine/generator
combined system are different from the best engine-efficient
operating points. In a series hybrid configuration, the attached
generator possibly shifts the best fuel efficient operating points of
the combined system to other operating points. The combined
system brake specific fuel consumption (bsfc) map is obtained by
dividing the engine bsfc map by the generator efficiency map. The
bsfc of the engine/generator unit bsfceng=gen can be calculated by
using

bsfceng=gen ¼ bsfceng=ηgen: ðA:2Þ
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The best fuel-efficient operating line is then determined
by searching the minimum fuel consumption point for any given
power demand. Fig. A3 shows the combined bsfceng=gen and optimal
operation line of the engine/generator unit which is used for
tuning both the thermostatic and FDPD strategies.

A 9.27 kWh (281 Ah) lithium ion battery pack with Lithium-
Iron-Phosphate (LiFePO4 or LFP) cells by A123 is considered and

the battery is modeled using an OCV-R-RC-RC equivalent circuit
approach. This model has been parameterized and validated in
Lin et al. (2014). The specifications for the LFP battery are
summarized in Table A1.

Terminal voltage Vt of the battery is calculated by using

Vt ¼ Voc�V1�V2� IRs; ðA:3Þ
where V1 and V2 are voltages across the capacitors C1 and C2,
respectively, and calculated based on the following dynamic
equations:

dVi

dt
¼ 1
Ci

I�Vi

Ri

� �
; i¼ 1;2: ðA:4Þ

The sign convention is such that positive current denotes battery
discharging.

Fig. A4 shows that the efficiency of the motor ηm is expressed as a
function of motor torque τm and motor speed ωm. Maximum output
torque of the motor τm;max is governed between the continuous torque
τm;cont and the peak torque τm;peak accounting for the heat index γ as
follows:

τm;max ¼ τm;contþð1�γÞτm;peak;

dγ
dt

¼ � 0:3
180

τm
τm;cont

�1
� �

; γð0Þ ¼ 0:3; ðA:5Þ

where τm;cont and τm;peak are a function of the motor speedωm as seen
from Fig. A4. The heat index γ emulates the change in the torque limit
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Fig. 12. Severity factor as a function of DOD parameterized with respect to battery
temperature (Onori et al., 2012).
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Fig. A3. bsfc of engine/generator unit obtained by combining engine bsfc and
generator efficiency and superimposed by optimal operation lines of the engine/
generator unit and the engine only.

Table A1
Specification of the battery.

Parameter Value Unit

Nominal voltage 3.3 V
Minimum voltage 2.0 V
Maximum voltage 3.6 V
Nominal capacity 2.3 Ah
Number of cells in series 130 –

Number of cells in parallel 10 –
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based on operating temperature as introduced in Powertrain Systems
Analysis Toolkit (PSAT) developed by Argonne National Laboratory
(2002).

A point-mass representation is used for the vehicle. The long-
itudinal dynamics of the vehicle is calculated through the equation

Mveh
dvveh
dt

¼ Fprop�Fbrk�FRR�FWR ; ðA:6Þ

where Mveh is the mass of the vehicle, respectively, Fprop is the
propulsion force, Fbrk is the braking force, and FRR is the rolling
resistance force expressed by

FRR ¼ f rMvehag ; ðA:7Þ
where fr is the rolling resistance, and ag is the gravitational
acceleration. The wind resistance force FWR is calculated by
using

FWR ¼ 1
2 ρairCdAvehv

2
veh; ðA:8Þ

where ρair is the air density, Cd is the drag coefficient, and Aveh is
the frontal area of the vehicle. The road grade is not considered in
the driving cycles in this study.

The driver model, which takes the desired and actual vehicle
velocities as inputs and provides propulsion or braking power
demands, is adopted from Ersal et al. (2011) and is a PI controller
with saturation and anti-windup.
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