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Abstract— This paper addresses the problem of estimating
SOC-imbalance between two battery cells connected in series.
Particularly, the effectiveness of using force measurements for
the SOC-imbalance detection against pack/total voltage mea-
surements is studied. SOC imbalance estimation during charg-
ing using pack voltage measurement was previously demon-
strated for the LiFePO,/graphite battery chemistry. However,
the Li-ion battery with LiNiMnCoO./graphite, which is of great
interest in a hybrid electric vehicle application, exhibits an
almost linear relation between SOC and voltage when battery
SOC is greater than 15%. This characteristic makes SOC
imbalance estimation using pack voltage challenging. The use
of other novel measurands, related to volumetric change of
the electrode materials during battery operations, make the
problem feasible. To estimate SOCs of two batteries connected
in series, a Moving Horizon Estimation (MHE) technique is
applied and three different measurement sets are considered:
(1) total voltage, (2) force, and (3) both voltage and force.
Simulations results show that, for the batteries of interest,
the inclusion of force measurements significantly improves the
estimation of SOC-imbalance.

I. INTRODUCTION

Battery cells are typically packaged in a constrained space.
However, a lithium ion battery exhibits a change in its
volume induced by lithium intercalation and de-intercalation
[1]. Soft foam spacers may be placed between cells in the
pack to accommodate this battery swelling. In this case a
change in gap between adjacent cells (compressing the foam)
can be measured using strain or displacement sensors [2], [3].
In the case of rigid packaging, with cells between two end-
plates at fixed displacement as shown in Figure 1, a load
cell may be used to estimate the bulk (or average) SOC of
the cells [2] from the force exerted during swelling of the
batteries.

In a pack, capacity variations among battery cells and their
state-of-charge (SOC) imbalance are inevitable. Differences
in capacity and self discharge rates resulting from variance
in the manufacturing process as well as localized degradation
by inhomogeneity of the thermal distribution inside the
pack lead to imbalance. Battery SOC should be accurately
monitored and balanced in real-time, or battery cells could
be irreparably damaged due to overcharge and overdischarge.
Thus, many approaches to SOC estimation have been pro-
posed in literature [2], [4]-[9]. These techniques require volt-
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Fig. 1. Measured free swelling and force of the battery during constant

current operation at 0.2C and 0.3C respectively. Schematic of a fixture for
the free swelling measurements is adopted from [1].

age sensing of each individual cell, which is costly. Among
these works, authors in [9] proposed an interesting tech-
nique to estimate SOC imbalance between two battery cells
using pack/total voltage measurement, reducing the number
of required measurements. Experimental results, conducted
with two LiFePO,/graphite chemistry cells, showed that
a nonlinear observer, Newton Observer, could effectively
identify the SOC imbalance between the two cells from a
single pack voltage measurement. However, the algorithm
relies on the strong nonlinearity between battery terminal
voltage and SOC, specifically the presence of non-zero first
and second derivatives with respect to SOC, and therefore is
only effective in bounded regions of SOC, specifically high
and low SOCs.

For other battery chemistry, however, the voltage as a
function of SOC does not have a strong nonlinearity when
SOC is greater than 0.15, as can be seen from Fig. 2 for
cells with LiNiMnCoOy/graphite electrodes. Although the
first derivative of the open-circuit voltage increases when
SOC is greater than 0.97, this change is much smaller than
that of a LiFePO, cell shown in [9], which poses a problem
for using total voltage measurements for detecting SOC
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Fig. 2. Open-circuit voltage and constrained force of Li-ion battery under
a low rate (C/5) constant current charge and their derivatives with respect
to battery SOC. The battery consists of NMC cathode and graphite anode.

imbalance. Fortunately other novel measurands related to
volume changes of the electrode materials during lithium
intercalation [10] have stronger nonlinearities as shown in
Fig. 2.

In this work, we investigate the use of a force measurement
for estimating SOC imbalance between two battery cells,
similarly to [9]. For state estimation, a nonlinear Moving
Horizon Estimation technique in [11] is considered because
the trajectory of output measured over a time interval is
required as discussed in [9]. Simulation results show that
an approach relying on total voltage only cannot estimate
SOC imbalance while the inclusion of force measurement
significantly improves the accuracy.

The remainder of the paper is organized as following:
Section II details dynamic behaviors of the Li-ion battery
under consideration. Specifically, the measurement of (1)
lithium intercalation-induced swelling of the battery without
constraint and (2) force in a constrained fixture are described.
In Section III, a general idea of Moving Horizon Estimation
scheme and its application to SOC imbalance estimation
are explained. Section IV the effectiveness of using force
measurements for estimating SOC imbalance between two
battery cells is shown through simulation. Finally, Section V
concludes the paper with a summary of presented work and
with a discussion on future extensions.

II. BATTERY MODELING

A. Battery dynamics

A 5 Ah prismatic LiNiMnCoQO»/graphite Li-ion battery
is considered in this study. The battery cell, was extracted
from a 2013 Ford Fusion HEV battery pack. An OCV-R type

battery model is used to describe the dynamics of the battery
and expressed in discrete time domain with a sampling period
At by the following equations:

21 = 2k — I At/ Cpay,s
Vi = g(2x) — IRy,

for K =0,1,..., where z is the state-of-charge of a battery
cell, I is the current and Cl, is the battery capacity. The
terminal voltage V' is determined from the nonlinear function
g(z) and the voltage drop because of the Ohmic resistance
R. The nonlinear function g(zy) is obtained under a constant
charging current operation at low rate.

(D

The constrained force experienced by the battery F' is
modeled by a nonlinear spring,

Fr = a(zk) (50 + spi(zk)) + B(zk) (so + SLi(Zk)>3~
2)

The terms sg and sp; represent the change in free length
due to the initial compression of the cells and the lithium
intercalation induced swelling respectively. The coefficients
of the nonlinear spring equation are denoted by « and f.
These stiffness parameters are a function of the battery SOC
as shown in Fig. 3.

The battery cell is a flat-wound jelly-roll type. This type of
battery exhibits swelling sz ; because of electrode expansion
in the direction perpendicular to its largest face [1]. The free
swelling of the cell is measured during a 0.2 C-rate (1A) dis-
charge with high-precision contact-type displacement sensors
with 1um accuracy and 0.1pm resolution (Keyence GT2-
HI12KL, Japan). The fixture holds the sensors at the center
of the surface as shown in Fig. 1. The net displacement at the
center of the battery is measured with respect to the battery
SOC. Battery temperature, measured using a thermocouple,
remained within 0.1°C of the 25°C ambient temperature
during the battery operation and hence data at low discharge
rate allows direct correlations to be made between swelling
and Li-ion intercalation in a cell sandwich without significant
influence by thermal expansion.

Figure 1 shows a schematic of a fixture to measure the
force generated by expansion of the constrained battery
cells during charging. Two garolite end plates are used to
clamp the batteries together using connecting bolts with
lock nuts to prevent the fixture from loosening. Rigid plas-
tic spacers between are used to maintain passageways for
passing air over the cell to provide convective cooling. The
force measurement is made using a 500 Ib (LC305-500)
Omega load cell sensor (strain gauge type). The entire battery
fixture is cycled inside a thermal environmental chamber for
temperature regulation. The measured force as a function of
SOC is shown in Fig. 2(a).

Based on two experimental data sets including free
swelling versus SOC and force versus SOC shown in Figs. 1
and 2(a) respectively, the relation between force and swelling
of the battery can be identified. Because of the structure of
the battery cell, a jelly-roll encapsulated in an aluminum
case, its force-displacement relationship is modeled as a
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Fig. 3. Nonlinear spring constants, « and 3, as a function of SOC

nonlinear spring. More details about the derivation of govern-
ing equations and parameter identification for the 1-D force
model can be found in [12]. Figure 3 shows the identified
nonlinear spring rates of the battery cell, @ and S which
depend on battery state of charge. The increase in « with
SOC is expected due to stiffening of the graphite layers
during lithium intercalation [13].

B. A 2-cell fixture model for simulation

The total force measured in the two battery cell fix-
ture with rigid packaging between two end-plated of fixed
displacement can be related to the free swelling of each
individual cell by the following force balance:

F =a(2*)(s0 + spi(2*) + As)

+ B(2)(s0 + s1i(2*) + As)?

=a(2®)(s0 + 51:(2®) — As)

+ B(2B)(s0 + sp:(2®) — As)?
where the variable As indicates the relative change in
thickness of each battery due to a state of charge imbalance
and can be computed from the force balance equation above.
The superscripts A and B denote battery cell A and B in the
fixture seen from Fig. 4.

When modeling the 2-cell fixture system, the following
assumptions are made :

3)

1) The capacity, open-circuit voltage and Ohmic resis-
tance of the batteries are the same and known.

2) Temperature is regulated at a fixed value, e.g. room
temperature.

3) The distance between two end-plates of the fixture is
constant, and the battery stiffness functions o and (8
are known.

These assumptions are made to neglect the impact of battery
aging and variability of materials and to remove the effect
of thermal expansion for simplicity of analysis.

In the case where the two battery cells are SOC-balanced,
ie., 24 = 2B, then the thickness of the battery cells are

Fea |

(@) (b)

Fig. 4. Schematic of changes in di1s4placement of two battery cells in the
fixture at different SOC levels: (a) 24 = 2B; (b) 24 < 2B

the same i.e. As = 0 (-see Fig. 4(a)). When two batteries
are operating at different SOCs, their thicknesses could be
different as shown in Fig. 4(b). In the case when their spring
constants are the same, As can be computed by

As = (spi(z") = sLi(2))/2 (4)

. Otherwise As should be solved from a cubic root or nu-
merically from the force balance equation (3) and estimates
of each batteries” SOC.

The problem of estimating SOC-imbalance can be formu-
lated as finding initial SOC of each cell and As for every set
of voltage, force and current measurements. The integration
of current is used to compute a change in stored charge and a
corresponding change in displacement associated with Li-ion
intercalation. For the 2-cell fixture, given n measurements,
there are 2n equations with n + 2 unknowns to be solved to
find the SOC. It is possible to identify SOC-imbalance in the
ideal case, of noise-free force measurements, when n > 2
and F has 2" order non-zero derivatives'. However, this
requires significantly higher computation effort compared to
the case when spring constants of two battery cells are the
same, i.e., n + 2 vs. 2 variables to be estimated. The spring
rates are found to be constant when SOC is greater than
0.65. Therefore, in the estimation problem, it is assumed that
spring constants of two cells are the same when z > 0.65.

III. SOC IMBALANCE ESTIMATION

A. Moving Horizon Estimation

As discussed by authors in [9], the battery cell SOCs
can be estimated from the trajectory of output measured
over a time interval not a single time instant. Therefore,
in this study, a trajectory-based nonlinear Moving Horizon
Estimation (MHE) scheme is considered to identify SOC-
imbalance between battery cells. A general idea of the MHE
is summarized in this subsection. More details on the MHE
can be found in [11].

Consider a nonlinear dynamic system expressed in discrete

IThe observability of the system can be checked by constructing an
observability matrix for nonlinear system based on Lie derivatives.
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time domain:

Tpy1 = f(Tr, ur), &)
yr = h(zk). 6)
where z is the vector of state variables, u is the vector of

control variables and y is the vector of output variables or
measurements.

Define  Ty_nk,---,Zgr as the estimates of
Tk_N|ks---»Tkp at time instant k, and Tjp_pn as the
priori estimate of Zj_ |1, that is,

Th-N = [(Tp-N-1)k—1, Uk—N—1)- (7
The information vector Z;. is defined as,
Uk—1]. (3)

Then, at each step, a nonlinear minimization problem is
solved by considering the following cost function:

A
Tk = [Wk=Nose s Yk Uk—N—1, -

k

Z ly; = h(@)|1 + M|Ze-npe — Zr-nl. (9)
j=h—N

J:

The cost function consists of two terms: the first term is
used to minimize the summation of output errors while the
second term is used to penalize the deviation from previous
state estimates. The weighting factor ) is used to handle the
trade-off between two terms.

B. Measurement-dependent Cost Function

In the problem of estimating SOC-imbalance, we consider
the three cases and corresponding cost functions based on
output measurements.

Case I: Voltage measurement only

k
ho= 3 (V- =R+
j=k—N

(10)

(an

where = = [z, 2B]’. The total voltage V = VA+V 5 is used
for the measurement because two batteries are connected in
series.

Ml[E—nk — Zoon|]*

Case II: Force measurement only

k
B= Y (1= B +IE - EPIB)+ (2
j=k—N
Aol Zp— Nk — Tr-n|[* (13)

where © = [24, 2P]" As mentioned in Section II, to address
the general case, As over the time interval and the initial
SOCs need to be included in the estimation, ie., x =
[z(‘)“,zég,Asj:k,N:k]’., here we consider the high state of
charge case, where the spring constants are equal and As
is given by Eq. 4. Unlike the voltage only case, the force
applied to each cell is identical due to the structure and hence
two force errors are used and equally weighted.

Current (A)
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i
p
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Fig. 5. Simulated total voltage and force during the charge process which
are used for the SOC estimation.

Case I1I: Voltage & Force measurement

k
Js= 30 (IE = FAP+11F - BPIB)+ 4
j=k—N
k A~ A
o (I = V7 = VR IP)+ (15)
j=k—N
As2| &k Nk — Tr—n ]| (16)

where © = [24, 2P]’. In this case, both voltage and force
measurements are used; therefore, two weighting factors As;
and \39 are used.

In the following section, a simulation is performed to in-
vestigate the usefulness of force measurements for estimating

SOC-imbalance between two cells in a constrained fixture.

IV. SIMULATION RESULTS AND DISCUSSION

To investigate the performance of the nonlinear MHE with
three different measurements sets described afore, a simula-
tion of constant current battery charging is performed. This
setup is primarily meant to simulate charging batteries, for
instance, plug-in hybrid electric vehicles or battery electric
vehicles application. Two battery cells connected in series,
with an initial compression of sg = 100 pm, are charged at
1C current. The data is sampled at a 1 Hz rate. In practice,
every measurement is contaminated by a noise and this noise
is usually assumed to be Gaussian with zero mean and
o standard deviation. In this work, noise characteristics of
current, voltage and force measurements are oy = vV 1073A,
oy = V1073V and o = /10N, respectively.

Before charging the batteries, their initial SOCs are set
to 0.73 and 0.63, respectively. Two different sets of initial
conditions (ICs) for the SOC estimators are considered as
following:

Ic (D): [24,25) = [0.78,0.58],
IC 2): [24,25) = [0.68,0.68]'.
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Data is stored for 20 seconds.
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Fig. 6. Cell estimation results: SOC (top), Voltage (middle), and Force

(bottom); initial guesses for SOC estimates are set as 0.78 and 0.58.

During the charge process, time evolutions of current, total
voltage and force are stored and used for the SOC estimation
as seen from Fig. 5. The number of samples NN is tuned to
be 20, or 20 s, through various simulations considering the
accuracy and computation time. The weighting factor A for
each case is also tuned as following:

A = A32 = 6.8 x 10*, \g = 4 x 1071, A3y = 10°.

The performance of three approaches to SOC-imbalance
estimation are compared in Figs. 6 and 7 where SOC,
voltage, and force of battery cells are depicted. Note that
the actual battery SOCs are measured by the integration

TABLE I
SOC-IMBALANCE ESTIMATION PERFORMANCE COMPARISON
(CELL A/CELL B)

SOoC IC Case | Case 11 Case III
Error (Voltage) (Force)  (Voltage + Force)
Final (O 0.05/0.05 0.01/0.01 0.01/0.01

@ 0.05/0.05 0.01/0.01 0.01/0.01
RMS* (D 0.05/0.04 0.02/0.01 0.02/0.01

@ 0.05/0.05 0.01/0.01 0.01/0.00

*RMS errors are calculated using data after t=300 seconds.

Data is stored for 20 seconds.
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Fig. 7. Cell estimation results: SOC (top), Voltage (middle), and Force

(bottom); initial guesses for SOC estimates are set as 0.68 and 0.68.

of current, Coulomb counting?. Clearly, the voltage-based
approach fails to estimate SOCs of two cells whereas the
approaches utilizing force measurements successfully esti-
mate the individual SOC for both cells under unbalanced
conditions. The estimation error in final SOC and root-mean-
square errors during the battery charge process are summa-
rized in Table I. Both force based methods show similar
performance. As discussed with Fig. 2, the voltage-SOC
relation has a weak nonlinearity, resulting in unobservable
SOC conditions for both cells. One can also use the force
measurement for bulk SOC estimation as in [14].

V. CONCLUSION

This paper addresses the estimation of SOC-imbalance
for two battery cells connected in series. The effectiveness
of using force measurements for SOC estimation com-
pared to traditional voltage measurements is investigated.
The LiNiMnCOs/graphite battery has a weak nonlinearity
between voltage and SOC resulting in an almost zero 2™
derivative with respect to SOC. This inhibits the use of
pack/total voltage measurements for estimating individual
SOCs and requires another novel measurand exhibiting a
strong nonlinearity, such as force, for improved state observ-
ability during battery operation. A trajectory-based nonlinear
estimator is designed by applying a Moving Horizon Esti-
mation scheme. Three different measurement sets (Voltage /

2High accuracy laboratory grade current sensors required for accurate
counting are too expensive for automotive systems and subject to errors
over longer time periods due to sensor bias.
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Force / Force+Voltage) are tested by simulation of battery
charging for an electric vehicle. Utilizing force measure-
ments significantly improves the accuracy of the SOC esti-
mates compared to using total voltage measurements alone.
Future work will attempt to address the complications
arising from thermal swelling of the battery during operation
because of internal heat generation from the battery so the
estimation scheme can be performed at high current rates.
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