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Traditionally health monitoring techniques in lithium-ion batteries rely on voltage and current measurements. A novel method of
using a mechanical rather than electrical signal in the incremental capacity analysis (ICA) method is introduced in this paper. This
method derives the incremental capacity curves based on measured force (ICF) instead of voltage (ICV). The force is measured on the
surface of a cell under compression in a fixture that replicates a battery pack assembly and preloading. The analysis is performed on
data collected from cycling encased prismatic Lithium-ion Nickel-Manganese-Cobalt Oxide (NMC) cells. For the NMC chemistry,
the ICF method can complement or replace the ICV method for the following reasons. The identified ICV peaks are centered around
40% of state of charge (SOC) while the peaks of the ICF method are centered around 70% of SOC indicating that the ICF can be
used more often because it is more likely that an electric vehicle (EV) or a plug-in hybrid electric vehicle (PHEV) will traverse the
70% SOC range than the 40% SOC. In addition the Signal to Noise ratio (SNR) of the force signal is four times larger than the
voltage signal using laboratory grade sensors. The proposed ICF method is shown to achieve 0.42% accuracy in capacity estimation
during a low C-rate constant current discharge. Future work will investigate the application of the capacity estimation technique
under charging and operation under high C-rates by addressing the transient behavior of force so that an online methodology for
capacity estimation is developed.
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Lithium-ion (Li-ion) batteries have been one of the most popu-
lar choices for use as power sources in electric vehicles (EVs) and
hybrid electric vehicles (HEVs). Their popularity stems from their
high energy and power densities and their ability to achieve long
driving ranges. However, their performance suffers from aging and
degradation1,29,33 that should be recognized and accounted for to
achieve efficient long term performance. Thus significant research
has been focused on trying to understand the aging mechanisms in
Li-ion cells and connect them with measurable and identifiable fea-
tures in an effort to improve the utilization and reliability of these cells
through the battery management system (BMS). The power capabil-
ity and capacity are both important factors used to determine the state
of health (SOH). The SOH of a battery is usually quantified using
either resistance growth3,8,17,18,25,32 or capacity loss.9,13,35,36 This paper
focuses on the capacity fading dimension of SOH.

Several methods haven been introduced in literature for the evalua-
tion of the aging in battery. Traditional and conventional methods rely
on voltage measurements. In Cyclic Voltammetry (CV), the electrode
potential is ramped linearly versus time.12 And the resulting current
is plotted vs voltage. Peaks in the CV indicate reactions and, a shift in
their location is correlated with aging. The probability density func-
tion (PDF) method applies a histogram to the charge/discharge voltage
data of a cell to extract the PDF curve.10 As the cell degrades, the PDF
curve shifts which allows for aging detection. Another widely known
method is the Differential Voltage (DV) method.5,14,34 The method
plots the differential of voltage over capacity with respect to capacity
(dV/dQ versus Q). Finally, one of the most recent methods in litera-
ture is the incremental capacity analysis (ICA).7,14,35,36 In many cell
chemistries, the cells are characterized by a voltage plateau for a wide
range of SOCs. The ICA method plots the incremental capacity over
voltage (d Q/dV ) with respect to voltage, which allows for clearly
identifiable peaks where their location with respect to voltage is cor-
relate with capacity fading. This method has been recently shown to
predict capacity fade with less than 1% error.35

Although the ICA method has been shown to be accurate in esti-
mating capacity fade, it still has some major setbacks. First, the method
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is sensitive to noise and accuracy of voltage measurements. Comput-
ing the differential of voltage in areas with flat voltage vs SOC could
result in noise (since dV≈0). This is especially the case in Lithium Iron
Phosphate (LFP) cells which are characterized by flat voltage curves.
Second, depending on the chemistry and anode/cathode matching, the
ICA peaks in discharge are centered around the low SOC range. For
example, in the case of a Nickel-Manganese-Cobalt Oxide (NMC)
cell, the ICA peaks are centered around 40%. This means that the cell
has to operate at the low SOC range (below 40%) in order to estimate
and monitor capacity fading.

In more recent work, focus has been directed toward understanding
and modeling the mechanical behavior of batteries19,20,23,31 in an at-
tempt to provide better means to estimate the states of a battery, mainly
SOC and SOH. In Ref. 20, it has been shown that force measurements
can decrease the mean and standard deviation of the SOC estimation
error by up to 50% in some regions. The authors in Ref. 23 show
that, unlike voltage which changes minimally with C-rate, strain can
vary significantly and can be used for characterizing dynamic system
states. More recently, other methods have investigated the first and
second derivative of strain with respect to charge, by measuring the
strain on the surface of the battery during charging and discharging.
Note that these methods have been applied to a battery that is not
constrained in any way and is allowed to expand freely. In Ref. 31, it
is shown that the second derivative of strain with respect to capacity
exhibits similar shift in peaks as those resulting from the DV method
as the cell degrades in a more consistent and reliable manner. Also, in
a battery pack where cell expansion is limited, measuring the strain
can be hard and can result in low signal to noise ratios, which makes
the methods, such as that presented in Ref. 31, difficult to implement.

This paper focuses on the mechanical behavior of packaged cells
and how the measured force can be used for better capacity esti-
mation. The ICA method is used to derive the IC curves from the
measured force. In Li-ion batteries, charging causes volume change
or swelling of the electrodes as the lithium ions intercalate in the nega-
tive electrode. The authors in Ref. 31 propose a method which uses the
measurements of the battery free expansion. However, in applications
where the batteries are constrained in a pack to prevent expansion,
as in the case in a real vehicle application, the swelling causes a
stress. This stress can be measured using a force sensor mounted on
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Figure 1. Schematic showing 3 lithium ion cells sandwiched between two garolite end plates. A load cell is installed for measuring the force due to cell expansion.
The end plates are bolted together while the garolite middle plate is meant to act as a separator between the cells and the load cell.

the end plates of a cell pack or module as described in Sec. Force
measurements. The resulting measured force can thus be used in the
incremental capacity analysis.

Incremental capacity analysis based on force measurements (ICF)
is promising technique since the percent change in force (68%) is
much larger than voltage (27%), and the minimum slope in the force
curve is 0.5% full scale / % SOC while for voltage it is 0.1% full
scale / % SOC. The peak in force derivative, d F/d Q, is 62 lbs/Ah,
while for voltage, dV/d Q, it is 0.2 V/Ah. The standard deviation in
voltage measurement is around 1 mV yielding a SNR of 1.3, while
for the force sensor it is 0.2 N (0.04 lbs) and the resulting SNR is 4.
This makes the force derivative easier to compute and less sensitive
to noise which permits the use of inexpensive force sensors. Since the
relative change in force is larger than voltage, the resulting signal to
noise ratio when deriving the incremental capacity curves is larger for
the ICF than the ICV as shown in Sec. Incremental capacity analysis
for bulk capacity estimation. In the case of an NMC cell, the ICF
peaks occur around 70% SOC while those of the ICV occur around
40% SOC. Hence the proposed ICF based SOH monitoring could be
updated more frequently within the regular use of an EV or PHEV
involving short trips where the SOC does not usually fall below 50%
.

This paper is organized as follows: first, Experimental section
shows the experimental fixture for measuring force and the experi-
mental protocol used to probe degradation. The measured capacity
fade, calculated by a 1C discharge, are presented in Capacity. Then
the ICF method is shown in Incremental capacity analysis for bulk
capacity estimation and Incremental capacity analysis for individual
cell capacity estimation for bulk and individual cell capacity estima-
tion. Finally, the C-rate dependence of the ICF method is investigated
in Sec. C-rate dependence.

Experimental

Force measurements.—The batteries used in this study are
Lithium Nickel-Manganese-Cobalt (NMC) Oxide battery. Each bat-
tery is 120×85×12.7 mm with a 5Ah nominal capacity. A flat-wound
jelly roll is encased inside the aluminum hard shell of the battery. The
jelly roll does not fill the whole enclosure and thus there are air gaps
around the sides and the top of the cell. The structure of the jelly
roll results in electrode expansion in the direction perpendicular to
its largest face.23 The NMC cells were extracted from a HEV battery
pack. In a vehicle battery pack, multiple cells are stacked together
in an array and constrained together under compression to prevent
expansion. Thus, as these cells are cycled in the vehicle pack, it will
be easier to measure stress and not strain. To emulate the typical pack

conditions for identical fixtures were fabricated consisting of three
Li-ion batteries each as shown in Figure 1. Since the estimation of
SOH or capacity fading is the primary objective of this study, the
four fixtures are intended to test the effect of nominal operating SOC
and initial preloading conditions on the degradation rates of cells.
The details about the degradation experiments are presented in Sec.
Degradation experiments. Each fixture has two garolite end plates in
between which are the 3 batteries, a garolite middle plate and a load
cell. The fixture is clamped together using bolts with lock nuts to
prevent it from loosening. The load cell is a 500 lbs (LC305-500)
Omega load cell sensor (strain gauge type) with an accuracy of 1 lbs.
The garolite middle plate is meant to act as a separator between the
load cell and the battery cells. This is to prevent the load cell from
acting directly on the battery and to uniformly distribute the force. The
middle plate is also slightly lifted off the ground as to not allow the
ground friction to absorb some of the force exerted by the cells. The
cells are separated by a plastic spacer, also taken from the HEV pack,
with dimples on it to allow for air to flow between the cells for cooling
purposes and also maintain compression between the batteries.

Since thermal expansion of the cell material can result in mea-
surable strain or expansion in the cells,21 affecting the force, it is
important that the temperature of the cells be measured, and the ther-
mal expansion is taken into account. Resistance temperature detector
(RTD) sensors were instrumented on the middle battery of each of
fixture. The RTD arrays were made from flexible kapton substrate
and composed of platinum with a nominal 100 � resistance. They are
less than 100 μm thick and have a 0.5◦C accuracy. These RTDs have
been shown to improve the observability and convergence of the core
temperature estimation of the battery as compared to a conventional
thermistor sensor placed close to the tabs.27 The accurate estimation
of the cell core temperature is important at high C-rates for clarifying
how much of the observed force is due to thermal expansion and how
much is attributed to lithium ion intercalation. All data is sampled at a
1 Hz rate. The fixtures are placed in a thermal environmental chamber
for ambient temperature control.

Degradation experiments.—Typically, quantitative analysis of
degradation is either based on capacity fade9,13 or growth in inter-
nal resistance of the battery.3,8,17,18,25,32 In this paper, the focus is on
capacity fade since it is very important for the range of EVs, and
could be important in the future for hybrids if the operating SOC win-
dow for these batteries widens. Since aging related mechanisms are
shown to be coupled to mechanical effects,33,37 the 4 fixtures are de-
signed to test degradation while cycling with the same current profile
at different states of charge (SOC) and initial preloading conditions.
Capacity fade is shown to be slower at lower SOCs as shown in other
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Table I. Operating conditions for all 4 fixtures.

(1st stage / 2nd stage) Fixture 1 Fixture 2 Fixture 3 Fixture 4

Initial SOC [%] 33/40 50/50 66/60 50/50
Ambient Temperature [◦C] 10/25 10/25 10/25 10/25
Initial Preload [lbs] 168/168 168/168 168/168 334/334
�SOC [%] 20/26 20/26 20/26 20/26
�Voltage [V] 0.46/0.62 0.41/0.48 0.43/0.48 0.41/0.47
�Force [lbs] 47/81 33/66 21/47 37/71

studies,11,16,28 perhaps due to the lower bulk stresses on the battery.15

As such, Table I shows the nominal SOC and preloading force for all
4 fixtures. The nominal SOC is defined as the nominal SOC at which
the cell is being cycled at, and preload is the initial force that is used
to clamp the cells before any degradation experiments. The preload is
set at an initial SOC of 50% at 25oC for all 4 fixtures.

Note that this is a two stage degradation experiment. During
the first stage of the experiment, fixtures 1 through 4 are set to
{33, 50, 66, 50}% initial SOCs and a preload of {168, 168, 168, 334}
lbs respectively at the ambient temperature of 10◦C. During the sec-
ond stage of the experiment, the current is scaled by a factor of 1.3 and
the ambient temperature is raised to 25◦C. Since the current is scaled
in the second stage, the initial SOCs for fixtures 1 and 3 had to be
moved closer to 50% SOC, otherwise voltage limits would be violated
due to the high current rates. Specifically, the fixtures 1 through 4 are
set to {40, 50, 60, 50}% initial SOCs without changing the preload.
The two stage experiment was designed to develop a predictive model
for battery capacity loss considering operating conditions such as
accumulated Ah-processed, operating SOC and temperature.28 The
elevated current and temperature of the 2nd stage were chosen to in-
vestigate conditions that would result in faster degradation rates. The
same cells were used as only a minor capacity loss was observed at
the end of the first stage, as opposed to using fresh cells.

A charge sustaining current profile is used for cycling the cells.
The battery current profile is the result of the vehicle hybrid power

split captured during an actual drive. The fixtures are connected in
series and hence the same current passed through all the cells in all
fixtures. The details of the current profile is detailed in Appendix A.
After cycling the cells continuously for 450 cycles, a test to measure
capacity of the cells is performed. The corresponding procedure for
measuring capacity is detailed in Appendix B. After the capacity test,
the process was repeated. The entire testing involved 3500 cycles of
stage 1 type experiments followed by 2700 cycles of stage 2 type
experiments for a total of 64 kAh. This corresponds to 95000 total
miles traveled for the HEV.

Results

In the following sections, the capacity fading results of the degra-
dation experiments are shown in section Capacity fading. Sections
Incremental capacity analysis for bulk capacity estimation and In-
cremental capacity analysis for individual cell capacity estimation
present the results of using bulk force measurements for offline bulk
fixture capacity estimation and individual cell capacity estimation
respectively using incremental capacity analysis.

Capacity fading.—To study the capacity fading mechanisms in
the different fixtures, an approximately 20 min charge sustaining cur-
rent profile, which is detailed in Appendix A, is applied to the cells
continuously for 450 cycles. After that a capacity test is applied to the
cells using a 5 A (1 C-rate) discharge current. The protocol for the
capacity test is detailed in Appendix B.

The results of the capacity fading are plotted in Fig. 2. The dashed
vertical line represents the moment at which the second stage degra-
dation experiment started. Since each fixture has 3 cells, the average
capacity for each fixture is plotted against the number of cycles. The
plot shows both absolute and percent capacity fade. Also, since each
fixture is comprised of 3 cells each, a bar is used to represent the
span of capacities of each of the 3 cells at each point. Notice, for
example, that around 2700 cycles, the difference in capacity between
the 3 cells in fixture 4 is around 2.5%. This is the largest imbalance
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Figure 2. Capacity fading measured as it evolved for the various cells in the 4 different fixtures.
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between the 3 cells in any given fixture at any given time during the
experiment. This is important because the capacity analysis that fol-
lows in Sec. Incremental capacity analysis for bulk capacity estimation
and Incremental capacity analysis for individual cell capacity estima-
tion is based on the fact that the imbalance between the cells is not
larger than 2.5%. However, a separate experiment is also performed
to test the applicability of the capacity estimation method on cells that
have an imbalance larger than 2.5%. This is detailed at the end of Sec.
Incremental capacity analysis for individual cell capacity estimation.

Results show that fixture 1 which operates at 33% nominal SOC has
the slowest rate of capacity fade, while fixture 3 which operates at the
highest SOC (66%) degrades the fastest, similarly to what was shown
in previous research.11,16,28 Another important observation is that both
fixtures 2 and 4 which have same SOC (50%) but different preloads
(168 lbs and 334 lbs respectively) show almost identical rate of capac-
ity fade. Although capacity fade has been shown to correlate with high
levels of stress (>1.5 MPa) as shown in Ref. 2, relatively large stress
levels are required to cause closure of the membrane pores.24 The cells
in this study were operated at a much lower level of stress, is in the or-
der of 0.1 MPa; therefore, it would be reasonable to consider the influ-
ence of force on capacity fade to be insignificant. Except for fixture 1,
all fixtures experience a significant drop in capacity after only 800 cy-
cles. This could be a characteristic of the NMC cell being used and re-
quires further study. During the second stage degradation experiment,
where the ambient temperature has been increased and the current has
been scaled up, the degradation rates do not change significantly.

In summary, results indicate that operation at low SOC causes
slower rates of degradation. Also it is shown that the preload at this
magnitude (∼100 KPa) does not affect degradation. In fact, it is only
at higher pressures (>1 MPa) that a change in degradation rates can be
noticed,2 with higher rates of applied pressure leading to higher rates
of capacity fade. The results of the capacity fading experiments will
be used for validation against the capacity estimation method to be
presented in Sec. Incremental capacity analysis for bulk capacity esti-
mation and Incremental capacity analysis for individual cell capacity
estimation.

Incremental capacity analysis for bulk capacity estimation.—
Much focus has been directed toward the ability to monitor capacity
fade.9,13,35,36 One of the approaches that yields appropriate capacity
estimation results is the incremental capacity approach (ICA).7,14,35,36

This method plots the differential of capacity to the differential of volt-
age versus voltage. Accordingly, one can easily identify peaks which
correlate with capacity fading. This paper shows that a non-electrical
signal could be used in capacity fading identification, or more
specifically, force measurements can correlate with capacity fading.

Figure 3 shows the voltage and force plot as a function of discharge
capacity during the 1C discharge test (refer Appendix B) for fixture
1 after different number of cycles. It is apparent that as the cell is
discharged, the voltage and force decrease. As expected, the voltage
decreases with the increasing number of cycles due to the fact that
the cell capacity fades as the cell is cycled. Figure 3 also shows
that the force changes as the cells are cycled. Unfortunately, this
change is not monotonic with time as the cells are aged. This non-
monotonic behavior could be the result of degradation or creep of the
cell materials (specifically the polymer layers) and requires further
investigation. Fortunately the derivative of the force measurements
is insensitive to slow variation, relative to the charging time, such as
creep. From the data shown in Fig. 3, one can extract the corresponding
dV/d Q and d F/d Q curves. Figure 4 shows the dV/d Q and d F/d Q
curves for fixture 1 after N = 325 cycles.

The plot in Fig. 4 shows that the derivative curves are very noisy
and need filtering. Notice, however, that the d F/d Q curve has a bet-
ter signal to noise ratio than the dV/d Q curve since the amplitude
of the force signal is much bigger than that of the voltage signal.
This makes data processing for the d F/d Q curve easier. In other
cell chemistries, not investigated here, such as the Lithium iron phos-
phate cells (LiFePO4), the voltage curves are characterized by voltage
plateaus for a wide range of SOC.6 As a result, this insensitivity would
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Figure 3. Voltage and force measurements during the 1C discharge capacity
test after different N number of cycles.

lead to even lower signal to noise ratios for the dV/d Q curves, since
the value of dV is almost zero. In this study, a Savitsky-Golay (SG) fil-
tering technique30 was used to process the data and estimate the deriva-
tive. This methods fits to successive sets of data a low order polynomial
using least squares method, and can improve the signal to noise ratio
without affecting or distorting the signal. The SG filter requires the
window or frame length (F) and the polynomial order (n) to be spec-
ified. The details of the filter are shown in Appendix C. For this study,
F = 951 and n = 3 are chosen and are shown to result in a smooth fit.

The IC curves are defined as the inverse of the dV/d Q and the
d F/d Q signals. Figure 5 shows a plot of the d Q/dV (ICV) and
d Q/d F (ICF) curves as a function of voltage at different cycles.
Notice that the peaks in both the ICV and ICF curves shift linearly
as the number of cycles increases. This is similar to the findings in
literature for the ICV.31,35,36 Figure 5 shows that the identified ICF
peaks are at higher voltage (and thus higher SOC). This behavior is
important in EVs and PHEVs since one does not have to traverse
to the lower SOCs every time to update the capacity estimate. Also,
Fig. 5 shows two linear fits to the ICV and ICF peak location. The
corresponding voltages at which the ICV and ICF peaks occur is
defined as ṼI CV and ṼI C F .

Finally, a plot of the measured capacity (Q̃) of the cell versus
the identified voltage at which the ICF peak occurs (ṼI C F ) can be
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created. Figure 6 shows the resulting measured capacity (Q̃) versus
the ṼI C F values. Results show a linear trend of capacity fade with
shifting ICF peaks. The 4 subplots show the corresponding measured
capacity (Q̃) versus ṼI C F values with a linear fit with a 1% band (in
red solid and dashed lines) for all 4 fixtures. Also using all 4 fixtures,

an average slope (αavg = −5.28 [Ah/V]) of the 4 different linear fits
to the 4 fixtures can be calculated. This slope is considered to be
representative of the degradation mechanisms of the NMC cells being
used in these experiments. The resulting estimated change in capacity
(�Q̂) can thus be calculated using Eq. 1.

�Q̂ = αavg × �ṼI C F , [1]

or when expanded,

Q̂ − Q̃0 = αavg × (ṼI C F − Ṽ0,I C F ), [2]

where Q̃0 is the initial measured capacity of the cell, Ṽ0,I C F and
ṼI C F are the corresponding measured voltages at which the peak ICF
occurs during a 1 C discharge experiment for Q̃0 and Q̂ respectively,
and αavg = −5.28 [Ah/V] is the calculated average slope using the
degradation experiments on all 4 fixtures.

Thus, in each subplot in Fig. 6, Eq. 1 is represented by a dashed
black line that fits through the initial capacity measurement of each
fixture and is used for the estimation of capacity. The resulting max,
mean and standard deviation on the absolute error between Q̂ and Q̃ is
also shown in each subplot. The absolute error is defined using Eq. 3.

Absolute error[%] =
∣
∣
∣
∣
∣

Q̂ − Q̃

Q̃

∣
∣
∣
∣
∣
× 100, [3]

The results show that using a linear fit on all data from all 4
fixtures, the estimated capacity difference is ≤ 2.5% (worst case).
Further testing is required to verify whether a linear fit is can be
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extrapolated to predict continuted capacity loss. The analysis above
describes the ability of this method to estimate the bulk capacity of
each fixture using bulk force measurements. However, since each
fixture is comprised of 3 cells each, the ICF method lumps and smears
the effect of each individual cell degradation. In the following section,
the potential of a bulk force measurement for individual cell capacity
estimation is analyzed.

Note also that ICF curves are identified using a 5 A (1 C-rate)
discharge test (refer Appendix B). It would be interesting to investigate
whether the ICF curves exhibit the same peak locations for different
C-rates, or whether they are less sensitive to C-rates than the ICV
curves. The authors in Ref. 31 showed that the second derivative of
strain with respect to capacity (d2ε/d Q2) is more suitable at predicting
stage transitions in electrode materials at C-rates of up to C/2. Section
C-rate dependence will investigate the dependence of the ICF curves
to different C-rates, and whether the force behavior matches the strain
behavior shown in Ref. 31.

Incremental capacity analysis for individual cell capacity
estimation.—The adequacy of the above prescribed method of us-
ing bulk force measurements to estimate individual cell capacities in
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Figure 9. Histogram of errors on capacity estimation using the ICF method
for the 4 different fixtures with 3 cells each. The estimation is done over 6200
cycles of degradation (corresponding to 95000 miles).

each of the 3 cells constrained in a fixture is analyzed in this section.
Figure 7 shows the ICF curve versus the bulk voltage of the 3 cells
in fixture 1 and versus individual cell voltages after N = 325 cycles.
The bulk voltage is defined as the average voltage of all 3 cells in the
fixture. Notice that since the cells have different capacities, the result-
ing ICF curve has slightly different peak locations for the different
cells. Using the average slope (αavg = −5.28 [Ah/V]) of capacity fade
versus ṼI C F identified in Sec. Incremental capacity analysis for bulk
capacity estimation, the estimated capacity (Q̂) of each individual cell
can be identified using Eq. 1 for all the cells in all 4 fixtures. Figure 8
shows the estimated (Q̂) and measured capacity (Q̃) for all cells in the
4 fixtures, with the corresponding errors between the measured and
estimated capacity. Results show that, over 6,200 cycles (correspond-
ing to 95,000 miles), bulk force measurements results can be used to
estimate the individual cell capacities.

The maximum error between the measured and estimated capac-
ities across all fixtures at any given time during the 6,200 cycles is
3.1%, while the mean and standard deviation of the error is 0.42%
and 1.14% respectively, as shown in Fig. 9.

Note that this result has been shown for cells in which the maximum
imbalance in capacity is 2.5%. This means that at any given time, the
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Figure 8. Results of using bulk force measurements to estimate individual cell capacities. Row 1 shows the estimated and measured cell capacities in each fixture
over 6200 cycles. Row 2 shows the resulting errors on the measured and estimated capacities.
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Table II. Cell capacities for the two fixtures.

Cell Capacities Fixture 1 Fixture 2

Cell 1 [Ah] 4.47 4.31
Cell 2 [Ah] 4.44 4.51
Cell 3 [Ah] 3.23 4.31

difference in capacities between the 3 cells in any given fixture is
≤2.5%. To investigate the adequacy of this method for estimating
capacity for cells that are more imbalanced, an experiment with two
different fixtures was performed. Table II shows the capacity of the
cells in two fixtures. The first fixture has a highly degraded cell bundled
with two other slightly degraded cells. Their difference in capacity is
27.5%. The second fixture has a fresh cell bundled with two other
slightly degraded cells. Their difference in capacity is only 4.7%. The
degraded and fresh cells are highlighted in bold in Table II.

By using Eq. 1 and the peak values from the bulk ICF curve, Table
III shows the estimated capacities and the resulting error between the
estimated (Q̂) and the measured (Q̃) capacities of each cell. Results
show that fixture 1, with the degraded cell, the estimation resulted in
a 29% error between the measured and the estimated capacity for the
degraded cell. The error on the other two cells was 5.6% and 5.4%
respectively. For fixture 2, with the fresh cell, the estimation resulted
in a 1.3% error between the measured and the estimated capacity for
the fresh cell, while the error on the two other cells was 3.5% and
3.0% respectively.

To better understand why the estimation error is large on the fixture
with the degraded cell, a separate experiment was performed. Each
cell in fixture 1 was discharged separately using a 3 A current while
the other two were kept fully charged (at 100% SOC). The results
from this experiment are shown in Fig. 10. Subplot 1 in Fig. 10
shows the resulting force measurements as a function of discharge
capacity [Ah] for all 3 cells. It is clear that the degraded cell (cell#3)
exhibits a different force shape than the other two cells, which have
similar force curves. Subplot 2 shows the resulting individual d Fi/d Q
(where i = 1, 2, 3) curves as a function of discharge capacity [Ah].
The calculated bulk d F̄b/d Q curve is also shown in a solid black line.
This curve is obtained by summing the individual d Fi/d Q curves of all
3 cells (d F̄b/d Q = ∑3

i=1 d Fi/d Q). In comparison, an experimental
bulk d Fb/d Q curve is also plotted in dashed black line. This curve
was obtained by discharging all cells together using a 3 A discharge
current. Interestingly, the d F̄b/d Q curve which was calculated by the
summation of the individual d Fi/d Q curves and the experimental
d Fb/d Q curve obtained by discharging all cells together exhibit the
same shape but are scaled differently. This is because in the case where
each cell is discharged separately, two cells are held at 100% SOC
when the third cell is discharged, while in the case when all cells are
discharged together, the SOCs change simultaneously, resulting in a
differently scaled bulk d Fb/d Q curve. It is likely that the modulus
of the cells is SOC dependent,21 and hence the generated force is
different for the same change in battery expansion.

Finally, the d F̄b/d Q curve which was calculated from the individ-
ual d Fi/d Q curves can be inverted to form the bulk calculated ICF
curve ( ¯I C Fb). The ¯I C Fb curve is plotted against the mean voltage
of the cells in the fixture. The mean voltage is calculated by taking
the mean of each cell voltage at the same discharge capacity. In com-

Table III. Estimated cell capacities for the two fixtures along with
the error between the estimated and measured capacities for each
cell using a 5 A discharge capacity test.

Fixture 1 Fixture 2
Cell Capacities Est. [Ah] / % Err. Est. [Ah] / % Err.

Cell 1 4.22/5.6% 4.46/3.5%
Cell 2 4.20/5.4% 4.45/1.3%
Cell 3 4.17/29% 4.44/3.0%

parison, the experimental I C Fb curve is also shown. This curve is
obtained by inverting the d Fb/d Q curve in subplot 2 and it is also
plotted against the mean voltage of the cells in the fixture. Finally, the
individual I C Fi curves are also plotted. Note that the I C Fi curves are
obtained by plotting the ¯I C Fb curve against individual cell voltages,
and not by inverting the individual d Fi/d Q curves. The reason for
doing so, is that in a battery pack, only the bulk force can be measured
and not the individual force responses of each cell. There are several
takeaways from subplot 3:

1. The maximum voltage difference between the peaks of the I C Fi

curves is �V1 = 17.4 mV . This corresponds to 9.2 mAh differ-
ence in capacity. This is why the estimated capacities of fixture 1
in Table III are so close to each other although the actual capaci-
ties, shown in Table II, are not.

2. The difference in the peak voltage between the ¯I C Fb curve and
the experimental I C Fb curve is �V2 = 6.2 mV . This indicates
that the experimental bulk ICF curve is actually the result of the
individual cell force curves being smeared together.

3. For the sake of comparison, and if we assume that the individual
force responses of each cell are available (which is not a practical
case), one can invert the d Fi/d Q curves for each cell and plot
against their corresponding voltage (instead of plotting the ¯I C Fb

curve against individual voltages as shown in subplot 3 of Fig. 10).
By identifying the voltage at the location of the peak of these ICF
curves, and by using Eq. 1, the resulting estimated capacities of
fixture 1 are shown in Table IV. Results show that, for Cell 1 and
Cell 2, the estimation error is 2.9% and 0.9% respectively, while
that for Cell 3 is 12%. This leads to two important points that
need further investigation. One is the dependence of the locations
of the ICF peaks on C-rate. Since the identification of parameter
αavg was done using 5 A discharge current experiments, while the
experiment of Fig. 10 was done using a 3 A discharge current, the
estimation results could be erroneous. This dependence will be
investigated in Sec. C-rate dependence below. The second point
is the adequacy of a linear fit. The estimation is not accurate for
cell 3 which has degraded by 30%. This could mean that the
degradation mechanism could follow a higher order fit instead of
a linear one. This is to be investigated in future work.

Thus, the large error in capacity estimation for fixture 1 shown in
Table III is due to the individual d Fi/d Q curves being smeared into
one bulk d F̄b/d Q curve for which the resulting ¯I C Fb curve has a
peak that represents some weighted average of the capacities. In fact,
the individual d Fi/d Q curves and their resulting I C F curves could
be used to estimate the individual cell capacities as shown in Table
IV. Unfortunately, this is not a practical case since in a pack one does
not have access to the individual force response of every cell.

C-rate dependence.—The capacity calculation experiments per-
formed throughout this paper were using moderate C-rates (5 A and 3
A). To investigate the effect of C-rate on the behavior of the d F/d Q
curves, another capacity calculation experiment is performed using a
C/3 current rate on one of the 3 cell fixtures. By following the same
procedure as before, one could extract the ICF and ICV curves for both
C-rates. Figure 11 shows the ICV and ICF curves for the two different
C-rates. The ICF curves exhibit the same behavior as the ICV curves,
with the peaks shifting as the C-rate increases. This means that as the
C-rate increases from C/3 to 1 C, there is a shift in the peak locations
of the ICF curves.

The authors in Ref. 31, however, indicate that the positions of
the transition of the peaks of the d2ε/d Q2 curves do not change
significantly for C-rates of up to C/2. To compare the behavior of
force with that of strain,31 another separate experiment was conducted,
where two discharge tests were applied to the same cell. The first was a
C/3 discharge current while the second was a C/20 discharge current.
Figure 12 shows the ICF curves for both C-rates. Interestingly, the
results show that for lower C-rates between C/3 and C/20, the peak
locations do not shift significantly. The shift is around 3 mV which
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Figure 10. Plots of corresponding force, d Fi /d Q and I C Fi curves for the cells in fixture 1 using a 3 A discharge current. Also shown is the calculated bulk
d F̄b/d Q and ¯I C Fb curves and a comparison with the experimental bulk d Fb/d Q and I C Fb curves when all cells are discharged simultaneously using a 3 A
current.

corresponds to 16 mAh in capacity estimation (or equivalently 0.4%
error). Thus, the ICF method seems to follow the same behavior shown
in Ref. 31, where the peaks do not shift significantly for C-rates up
to C/3. However, at higher C-rates (1 C and above), the peaks appear
to start shifting as was shown in Fig. 11. The behavior of the ICF
peaks needs further investigation at higher C-rates, since there could
be a thermal swelling in addition to a dynamic intercalation-based
swelling effect in the cell, which could affect the force.

Conclusions

A novel method of using force in the incremental capacity analysis
has been introduced. The method shows promising results since it
could be used in tandem or instead of the ICV method where the
differentiation of voltage with respect to capacity can result in low
single to noise ratios. Also, it is able to monitor and estimate capacity

Table IV. Estimated cell capacities for fixture 1 along with the error
between the estimated and measured capacities for each cell using
a 3 A discharge capacity test.

Fixture 1
Cell Capacities Actual [Ah] / Est. [Ah] / % Err.

Cell 1 4.47/4.60/2.9%
Cell 2 4.44/4.48/0.9%
Cell 3 3.23/3.62/12%

fade of a battery at higher SOCs as compared to using ICV method.
This means that the stack does not have to traverse to lower SOCs to get
an estimation of the capacity fade. For an NMC cell, results using the
ICF method have shown that the peaks of the d Q/d F versus V curves
occur at around 70% SOC while those using the ICV method occur
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at around 40% SOC. Four different fixtures were used to investigate
the influence of SOC and preloading conditions on degradation. All
fixtures exhibit a similar degradation rate with a linear relationship
between decrease in capacity and increasing ICF peak voltage value.
The capacity of each fixture can be estimated with a maximum error of
2.5% over 95000 miles of cycling. The bulk force measurements can
be used to estimate individual cell capacities with a maximum error
of 3.1%. More data and further investigation is required to study the
extrapolation of the linear fit for the degradation. The results indicate
that the above proposed method can work for estimating individual cell
capacities if they are closely balanced. However as the cells drift apart
in capacity (results shown here for cells that have 27% difference
in capacity), the method cannot estimate individual cell capacities.
Finally, the dependence of the ICF curves on C-rate is shown for
different C-rates. For C-rates up to C/3, the shift in the ICF curve
peaks is minimal which agrees with the strain behavior in Ref. 31.
However, at higher C-rates (1 C-rate), the peaks start to shift. This
is one area where coupled electro-thermal-chemical and mechanical
modeling maybe used to elucidate the C-rate dependence. The force
measurements in this paper could be used in conjunction with such
models to further validate and explore the functional relationship
between stress at the particle,4,38 electrode,26 and cell levels22 with
degradation.

Future work would include investigating the sensitivity of the ICF
curves to the applied C-rate, and implementing this estimation method
in on-board state of health monitoring prognostic algorithms. Further
investigation of the shift in the ICF peaks during charging as a function
of capacity loss is needed since the algorithm would be easier to
implement in a vehicle charging scenario. This is especially important
for PHEV and BEV vehicles since charging through 70% SOC with
a constant current can be routinely achieved during normal usage by
plugging the pack into a charging outlet.
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Table AI. Current profile features during first and second stage
experiments.
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Appendix A: Repeated Current Profile

A charge sustaining current cycle was applied and repeated for 450 times continuously
to the cells. The applied cycle is a high power cycle from a HEV operating on a US06
cycle. The current profile is applied throughout a two stage degradation experiment. Table
AI shows the important features of the current profile for both stages of the degradation
experiments. Details of the aging procedure follows:

� Set thermal chamber ambient temperature to 25◦C.
� Charge all cells at 5 A (1 C-rate) using a constant-current constant-voltage (CCCV)

protocol to 4.1 V (corresponding to 100% SOC), until the current reaches 0.05 A.
� Discharge fixtures 1 through 4 to {33, 50, 66, 50}% SOCs for the first stage of

degradation experiments (first 3500 cycles) and to {40, 50, 60, 50}% for the second stage
of degradation experiments (next 2700 cycles) when current increases by a factor of 1.3.

� Set thermal chamber ambient temperature to 10◦C for first stage of degradation
experiments and to 25◦C for the second stage.

� Rest for one day.
� Apply the current profile detailed in Table AI for 450 cycles. In the first state of

degradation experiments the current is not scaled. During the second stage, the current is
scaled by a factor of 1.3.

� Proceed to capacity calculations (refer to Appendix B).

Appendix B: Capacity Calculations

After the fixtures have been cycled with the current profile (details in Table AI) for
450 times, a capacity calculation routine is done for all cells according to the following
procedure:

� Charge all cells with a 5 A (1 C-rate) using a constant-current constant-voltage
(CCCV) protocol to 4.1 V (corresponding to 100% SOC), until the current reaches
0.05 A.

� Set thermal chamber ambient temperature to 25◦C
� Rest for one day at the fully charged state at 25◦C.
� Discharge all cells at 1C (5 A) rate to 2.9 v (corresponding to 0% SOC).
� Record discharging capacity of each cell. Also, the capacity of each fixture is the

mean capacity of all 3 cells in the fixture.
� Proceed to current cycling.

Appendix C: Savitsky-Golay (SG) Filter

The SG filter fits to successive sets of data a low order polynomial using least squares
method, and can improve the signal to noise ratio without affecting or distorting the signal.
The SG filter requires the window or frame length (F) and the polynomial order (n) to
be specified. Since the sampling rate is 1 Hz, this would mean that F also represents the
number of data points or samples. Given the 1 Hz sampling rate for a 1 C-rate discharge
each sample covers 1/36 or 0.03 % change in SOC. For a nice filtering effect, n has to be
considerably smaller than F , otherwise the filter will be over-fit and track the noisy data.
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Figure CI. Force and d F/d Q curve fits using SG filter during 1C discharge capacity test for fixture 1 after N = 325 cycles for polynomial order n = 3 and
different frame lengths (F).

Figure CI shows a plot of the force and the derivative of force with respect to discharge
capacity for different frame lengths (F) and for n = 3. Notice that although, the force fit
seems to be similar using the 3 different frame lengths, the resulting d F/d Q is different.
For a short frame length, the derivative curve exhibits a lot of oscillations indicating that
the curve is not being sufficiently filtered. As the frame length increases, the derivative
curve becomes smoother.
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