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Abstract Temporal environmental variation has long
been considered as one of the potential factors that
could promote species coexistence. A question of par-
ticular interest is how the ecology of fluctuating envi-
ronments relates to that of equilibrium systems. Equi-
librium theory says that the more similar two species
are in their modes of regulation, the less robust their
coexistence will be; that is, the volume of external pa-
rameters for which all populations persist shrinks with
increasing similarity. In this study, we will attempt to
generalize these results to temporally varying situations
and establish the precise mathematical relationship be-
tween the two. Our treatment considers unstructured
populations in continuous time with periodic attractors
of fixed period length, where the periodic behavior is
due to external forcing. Within these conditions, our
treatment is general. We provide a coherent theoretical
framework for defining measures of species similarity
and niche. Our main conclusion is that all factors that
function to regulate population growth may be consid-
ered as separate regulating factors for each moment
of time. In particular, a single resource becomes a
resource continuum, along which species may segregate
in the same manner as along classical resource con-
tinua. Therefore, we provide a mathematical underpin-

G. Barabis (X)) - A. Ostling

Department of Ecology and Evolutionary Biology,
University of Michigan, 810 North University,
Ann Arbor, MI 48109-1048, USA

e-mail: dysordys@umich.edu

G. Meszéna

Department of Biological Physics, E6tvos Lordand
University, Pdzmény Péter sétdny 1A,

1117, Budapest, Hungary

Published online: 10 May 2011

ning for considering fluctuation-mediated coexistence
as temporal niche segregation.
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Introduction

Much of the early theory on coexistence concerned
equilibrium situations (Volterra 1926; Gause 1934;
Hardin 1960); the main conclusion was that if two or
more species consume the same resources, only one will
persist. Later, Levin (1970) and Levins (1974) realized
that this inference generalizes from resources to all
those factors that are involved in a density-dependent
feedback loop. After Krebs (2001, p. 288), Case (2000,
p.- 146), and Meszéna et al. (2006), we will call these
factors regulating variables (they are equivalent to what
Levin 1970 and Chesson 1994 call limiting factors and
what Chesson and Huntly 1997 call competitive fac-
tors). The competitive exclusion principle then states
that at equilibrium, the number of coexisting species
cannot exceed the number of regulating factors. This
simple picture emerging from equilibrium theory came
under attack, however, from at least two quarters. First,
the practical utility of the principle came into doubt.
Second, the question arose whether fluctuating dynam-
ics would invalidate the competitive exclusion princi-
ple, something that seems to depend on the equilibrium
assumption crucially.

The problem of practical usefulness arises when
there are infinitely many regulating factors, and there-
fore, there is no upper limit to the number of coexisting
species. Though MacArthur and Levins (1967) argued
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persuasively that limiting similarity is the expected be-
havior in the context of the Lotka—Volterra model, the
work of May and MacArthur (1972), May (1973), and
Roughgarden (1979) demonstrated that it is possible to
have arbitrarily tight species packing, suggesting that
the competitive exclusion principle is more of a math-
ematical curiosity than an empirically relevant idea
(Rosenzweig 1995). On the other hand, it has been
observed mathematically that while there is no fixed
lower bound to similarity, not all configurations are
equally robust: Certain coalitions of species are more
sensitive to external perturbations than others. While
coexistence of similars is possible, it is restricted to a
narrow range of environmental parameters. Therefore,
the limiting similarity principle can be recovered by
shifting the emphasis from analyzing the possibility of
coexistence to looking at its likelihood, i.e., how wide
or narrow is the range of parameters that allow for
the persistence of all populations within the system
(“coexistence bandwidth”; Armstrong and McGehee
1976). Large volumes of parameter space allowing for
coexistence are called robust systems; narrow ranges
are called unrobust. A system with a very narrow
coexistence bandwidth, i.e., one that is unrobust, is
unlikely to persist for long, and therefore, some sort
of limits to similarity are expected to emerge after all.
This new, reformulated limiting similarity principle will
only be useful though if robustness will decrease with
increasing similarity in all realistic ecological scenarios,
at least for species that are already similar enough. That
this is so has been demonstrated rigorously for fixed
point models by Meszéna et al. (2006). They showed
that as species get more similar in how they relate
to the regulating factors (more specifically: if species
growth rates show similar sensitivity to a change in the
regulating variables, or the species have similar impacts
on the regulating factors), then the robustness of their
coexistence declines to zero. Hence, the criticism of
the competitive exclusion principle that it is unable
to address the question of how similar two species
may become has been resolved through considering the
robustness, as opposed to the stability, of coexistence.
However, there remains the second important criti-
cism of the competitive exclusion principle, namely that
the ubiquity of temporal fluctuations in real ecosystems
calls the equilibrium assumptions behind the principle
(and behind the more modern theory of robustness
of coexistence) into question. The consequences of
the equilibrium conditions were thought to lose va-
lidity in a fluctuating system (Hutchinson 1961). Pre-
sumed invalidity of the competitive exclusion princi-
ple was developed into an ecological world view by
Huston (1979). However, as Abrams (1983) and

@ Springer

Chesson (1991) pointed out, the need for ecolog-
ical segregation is not alleviated by environmental
fluctuations: It just seems to be that way if we look
at segregation strictly in the sense of resource parti-
tioning. Chesson and Huntly (1997) not only argued
for the verity of the need for ecological segregation
but demonstrated the flaws inherent in those theories
that look upon fluctuations as a means to invalidate the
competitive exclusion principle.

Rigorous theories of coexistence in a fluctuating
environment also imply the need for ecological seg-
regation. Levins (1979) established the role of higher
moments as effective regulating factors in situations
where the densities are fluctuating arbitrarily in a
bounded region of phase space. This means that, e.g.,
the time average and variance of a resource both act
like effective resources, and thus, two species could
stably coexist on them—provided that interspecific
competition between the two species “consuming” the
mean and the variance of the resource is lower than
intraspecific competition within each of the species.
Chesson (1994, 2000, 2009) provided a classification
scheme for the coexistence maintaining mechanisms.
Beyond fluctuation-independent niche segregation, he
established the “effect of relative nonlinearity” (which
occurs when species have different nonlinear responses
to competition) and the “storage effect,” which is based
on species-specific responses to the environment, co-
variance between the environment and competition,
and buffered population growth. His approach is based
on a small-fluctuation approximation. Intuitively, the
storage effect is considered a mathematical represen-
tation of temporal niche segregation (Chesson and
Huntly 1997; Chesson 2000).

In this paper, we aim to provide a solid ground
for the concept of temporal niche segregation and its
role in maintaining coexistence. That is, we intend to
formalize the commonality between temporal and more
conventional types of niche segregation. Our starting
point is Meszéna et al. (2006) that has already provided
that commonality in a stable environment. We restrict
our attention to externally forced periodic dynamics
with a fixed period T. Moreover, we assume the dy-
namics of the regulating variables to be fast compared
with population dynamics. Within these restrictions,
we keep our considerations general. In particular, we
do not need the assumption of small fluctuations. In
Meszéna et al. (2006), the common ground was segrega-
tion with respect to the regulating variables. In line with
this biological intuition, here we consider the regulating
variables at different instants of time to be different
regulating variables. In this scheme, temporal niche
segregation is also a type of differentiation with respect
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to regulating variables. Therefore, all considerations in
Meszéna et al. (2006), especially decreasing robustness
with increasing similarity, carry over to the fluctuating
case. We will discuss the relationship between our and
Chesson’s (1994) formalization as well.

We begin by introducing the fundamental concept
of regulating factors (“Regulating factors” section) and
then reviewing the basic framework for fixed points in
“Summary of the fixed point theory” section. Then, in
“Extending the theory to periodic orbits” section, we
extend the theory to periodic orbits in phase space and
rederive the basic formulas in a periodically fluctuating
environment. Finally, as a demonstration, we apply the
results to a simple example in “Example: a minimal
model of purely fluctuation-maintained coexistence”
section.

Regulating factors

Populations with fixed demographic parameters grow
exponentially—but since the parameters usually de-
pendent on density and external influences, population
growth can take on virtually any form. However, one
may still treat any change in population densities as
locally exponential in time, where the instantaneous
growth rate is a function of both density-dependent
and density-independent variables. Taking density de-
pendence into account, one can introduce the concept
of regulating factors: the set of variables involved in
the feedback between growth rates and densities. In
other words, all interactions between the individuals of
the populations have to be mediated by the regulating
variables: Fixed values of these factors would lead to
the exponential growth of all species in the community.

In this context, the growth of any population in any
model may be written as

dx; :
);t(t) = RO, X O E D) G=1,...

L),

1

where x;(f) = In(n;(¢)) is the natural logarithm of the ith
population’s density #;(f) at time ¢ (the logarithmic scale
having been introduced for future convenience), r; is
the growth rate of the ith population, E is the collection
of environmental and all other density-independent
parameters (the “external” variables), L is the total
number of species in the system, and R is the vector
of regulating factors (the same as I in Meszéna et al.
2006), which of course is a function of the densities. In
case one has environmental parameters that fluctuate
with time, only the time-independent parts go into E,

and the rest should be considered as an explicit time de-
pendence of the growth rates. For example, if a certain
ecological situation causes the (density-independent)
intrinsic rate of growth ry to fluctuate as ro = a(l +
e cos(wt)), then the vector E refers to the parameters
a, ¢, and w. One does not lose generality by this choice
of convention, and it will make differentiation of r; with
respect to E more convenient later on.

There are two things neglected by Eq. 1. First, it
considers unstructured populations only. Second, it as-
sumes that R depends on the instantaneous values of
the population densities—in other words, it disregards
time lags in the regulation of populations. Apart from
these restrictions, however, these population dynamical
equations are general: Any continuous time, continu-
ous density model may be stated in the form of Eq. 1.

The vector of regulating factors R deserves spe-
cial attention. In general, its elements will include re-
sources, predators, and other discrete entities. But the
number of regulating factors is not necessarily finite.
The paradigmal example for infinite dimensional reg-
ulation is the resource continuum, e.g., the continuum
of foods of different sizes. In this case, the function
g — R(qg) constitutes the vector R, where R(g) denotes
the concentration of food with size g. One can consider
q as a continuous index of the vector R. In general,
the continuous index variable can be more than one
dimensional (e.g., describing size and hardness of the
food). It is also possible to have discrete and continuous
indices at the same time, e.g., if two different kinds of
food both have size distributions, or if a food size con-
tinuum and various predators function to regulate the
populations. To emphasize the role these indices play in
our analysis, here we adopt the notational convention
that the boldface type will be reserved for quantities
that carry the same indices as R.

Summary of the fixed point theory
Limiting similarity of species

The idea behind Meszéna et al.’s (2006) general theory
of niche and limiting similarity is to realize that any
system will behave like the Lotka—Volterra model near
a stable fixed point. One therefore has to linearize the
growth rates around the equilibrium point and analyze
the robustness (i.e., the range of parameters where all
densities are positive) of the simpler linear model (May
1973; Vandermeer 1975). Dynamical stability of the
community, i.e., negative real parts of the eigenvalues
of the community matrix, is assumed (there is no point
in looking at the robustness of a dynamically unstable
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system). To obtain the set of parameters that allows for
coexistence, one calculates the response of the densities
to a change in the external variables E. A wild response
even to small changes indicates unrobust coexistence,
one that is oversensitive to external perturbations and
is therefore unlikely to persist for long.

So we have to take the set of equilibrium equations
and differentiate them with respect to E. At a fixed
point, attractor Eq. 1 becomes time independent so that
the left-hand side is zero and the growth rates on the
right-hand side are independent of time. Since at a fixed
point all growth rates are zero, we have L algebraic
equations:

ri(R(xf, ..., x}), E) =0, 2

where the asterisk in the superscript refers to equilib-
rium values. Implicit differentiation with respect to E
yields

L *
ar; ar; OR dx*
r + r j =07 (3)
OE = IR dx; dE

where summation (integration) for all discrete (contin-
uous) indices of R is understood in the scalar product
(0r;/0R)(0R/dx;). This formula yields the linearized
growth rates as a function of the perturbations of the
densities and, as such, connects an arbitrary ecological
model with the classic Lotka—Volterra equations.

The first factor of this scalar product describes the
response of the ith growth rate to a change in the regu-
lating variables, i.e., the sensitivity of the population to
changes in regulation; the second describes the impact
of a change in population densities on the regulating
factors. These two vectors turn out to be very important
in our analysis. The first one,

4)

is the sensitivity niche vector. Originally it was defined
with an extra minus sign in Meszéna et al. (2006)
to imply resource depletion—but since the general-
ized regulating factors could be anything, not just re-
sources, we will not use this convention here. The other
quantity,

_9R

I =—,
! 8x]~

®)
is the impact niche vector (the C of Meszéna et al. 2006).
Again, we use a slightly different convention: Origi-
nally, the impact vector was the derivative of R with
respect to nj = exp(x;), not x;. This is to make the for-
malism consistent with what will follow in “Extending
the theory to periodic orbits” section. These vectors
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may be calculated for any population size, but their
real utility comes through when evaluated at equilibrial
densities, as they are in Eq. 3.

Let us define the community matrix as the product
of the two niche vectors:

Bri oR _ 8}‘,'

i=81lj=——=—,
YN T SR ox; | ox;

(6)
where, as before, summation or integration for all in-
dices of R is assumed.

With these notations and conventions established,
Eq. 3 can be rewritten as

L *
ar; dxj
iy a—L =0 7
aE+j:1“de Q)

Rearranging and inverting the community matrix solves
this system of equilibrium equations:

dx} ZL: _,0r; (®)
= — a.. —,

dE ~ &7V 9E

or

det 1.

aE = 1 & E ©)

where J and g;; are the determinant and the classical
adjoint of a;;, respectively. Also, it is understood that
the inverse operation ai;l always refers to inverting the
whole matrix as opposed to calculating the inverses of
the individual matrix elements.

Small values of |J| indicate weak community regu-
lation and strong dependence on population densities
so that even a slight change in abundance may drive
certain populations to extinction. This means that in
this case coexistence is only possible for a narrow range
of environmental parameters and is thus not robust.
Since the determinant is simply the product of the
eigenvalues, knowing all eigenvalues of a;; is equivalent
to knowing the determinant. More importantly, the
largest eigenvalue (whose real part will still be negative
for a stable system) may be used as a proxy for the
loss of robustness: as the largest eigenvalue approaches
zero, so does the determinant, signaling that the system
has approached a bifurcation point.

Niche

The biologically more intuitive sensitivity and impact
niche vectors also have the capacity to measure robust-
ness besides the determinant of the matrix a;;. As shown
in Meszéna et al. (2006), it is always true that

IJ| < Vs, (10)
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where Vs and V) refer to the volume of the paral-
lelepipeds spanned by the sensitivity and the impact
vectors of each species, respectively. Note that these
volumes remain finite dimensional even if there are
infinitely many regulating factors because they are
spanned by as many vectors as the number of species
considered. The volume Vs (Vi) will be zero if the
collection of all sensitivity (impact) vectors is a lin-
early dependent set and will be small in the case of
near linear dependence. A corollary of this is that the
volumes will be small if any two vectors are nearly
parallel to one another. Therefore, coexistence will not
be robust if either the sensitivity or the impact vectors
are too similar to each other, making Vs or Vy and
thus the product of the two volumes small. In theory,
it would be possible that a small Vs is compensated by
a large V) leading to robust coexistence, but in practice
this probably never happens. On the contrary, a small
(large) value of one of the volumes usually implies a
small (large) value of the other, since corresponding
sensitivity and impact vectors tend to be similar—a

Set of all factors
(niche space)

Quantities of factors
(vector in regulation space)

mathematical way of saying the biological fact that a
population will generally use and therefore influence
the same resources that it depends upon for its survival.
In conclusion, species have to differ in their responses
to the regulating factors as well as in the way they
modify them if they are to coexist robustly. Similarity
of species is measured by the volumes spanned by the
sensitivity and impact vectors, two quantities that can
mechanistically and very simply be obtained from the
model definition (though usually the numerical values
of the equilibrium densities also need to be known).
The more orthogonal the vectors of the species, the less
similar they are. Coexistence of similars is not impossi-
ble but sensitive to perturbations of the environment, as
is the coexistence of species that are weakly regulated
(indicated by niche vectors of small length), since in
both cases the volumes defined by the vectors will be
small. The general way of making this instability more
robust is to make regulation stronger and the coexisting
species less similar, i.e., making the vectors longer and
more orthogonal to one another.

Space of all factors
(regulation space)

/
=
3=
gl .
® L J @ E . o, &
NO, PAR H0| & . ol
U 1 L L .
Discrete NO, PAR H,0 NO;
r'y
=
=)
——- g
Small seeds Large seeds § Infinite dimensional
5 function space
U .
Continuous Seed size

Fig. 1 Niche space and regulation space for the cases of discrete
(upper row) and continuous (lower row) resources. The discrete
case is exemplified by three resources (regulating factors): nitrate
(NO7), light (photosynthetically active radiation, P A R), and wa-
ter (H>0O). Now the niche space (defined as the set of regulating
factors) is a three-element set (left figure). These resources are
always present in specific quantities; the central figure in the
upper row plots these three numbers. They form a vector of three
components, a specific realization of the vector R. The regulation
space (figure on the right) is the vector space that contains
all possible vectors R. Having three distinct regulating factors
(i.e., a three-element niche space) means that the regulation
space is three dimensional. In the continuous case, we assume

easily visualizable

the existence of a fine gradation of various seed sizes that a

hypothetical bird community may consume. That is, between the
limits defined by the smallest and largest possible size, all seed
sizes are available and are potentially regulating. The niche space
therefore has infinitely many elements: one for each seed size.
These elements are linearly ordered, creating a one-dimensional
space (left figure of lower row). As in the discrete case, one
may plot resource availabilities for all seed sizes—but this time,
instead of a vector, one obtains a function (central figure of lower
row). The space that contains all these possible functions has
infinitely many dimensions, and thus, it is impossible to visualize
on paper. Notice, however, that while the regulation space is
infinite dimensional, niche space has only one dimension and is
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Leibold (1995) and Chase and Leibold (2003) al-
ready introduced a modernized ecological niche con-
cept that was based on the two-way interaction be-
tween a population and its environment. Their version
of the impact vector is almost identical to ours. Our
sensitivity vector is the normal vector of the zero net
growth isocline (ZNGI) describing Leibold’s concept
of the requirement niche. We consider only the slope,
but not the location, of the ZNGI as a descriptor of
the niche because the impact and sensitivity niche vec-
tors thus defined are the proper generalizations of the
Hutchinsonian resource utilization function describing
the partitioning of the niche space: Their scalar prod-
uct (overlap) yields the competition coefficients (see
Pigolotti et al. 2008 for the case of classical resource
continua).

The essential aspect of the Hutchinsonian niche
space is that coexisting species avoid competitive ex-
clusion via partitioning that space (Hutchinson 1978).
In the context of the described theory, the species
should differ with respect to the regulating variables.
Therefore, the proper concept of niche space is that
of the set of all regulating factors. In the case of a
continuum of regulating variables, the continuous index
(like the food size g in the example in “Regulating
factors”) section constitutes the “niche variable” or
“niche axis.” To allow for generality while keeping the
spirit of Hutchinson’s parlance, one may want to refer
to the discrete indices of the regulating variables also as
(discrete) niche variables. Then, the niche space to be
partitioned is the space spanned by the niche variables.
It should not be confused with the space of regulating
factors (or regulation space), which is the space of
all the possible combination of values the regulating
factors may assume. For instance, in the case of the food
size continuum, niche space is one dimensional, while
regulation space is the infinite dimensional function
space of the functions R(q) (see Fig. 1 for a visual
representation of this difference).

Extending the theory to periodic orbits

Recall the general continuous-time dynamical equa-
tions of the system (Eq. 1):

dx; (1)
dr

=r RO (@), ..., x,0), E.)  ((=1,...,L).
1

Now we shall assume that the L-component vector
field defined by the right-hand side of Eq. 1 induces
a unique, stable, periodic flow ¢;(x?, ..., x9, E, 1) with
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period T and initial conditions x? = x,;(0), where the
initial moment 7, was chosen to be zero without loss of
generality. [t is a very important restriction at this point,
however, that we assume 7 not to change in response
to perturbations—in other words, we assume that it is
independent of E. This assumption is more or less rea-
sonable when the source of the periodicity is external
forcing like seasonality but usually breaks down if the
cycles are internally generated by the dynamics.

Now, if we were able to translate the system into an
equivalent discrete model with time step 7, then this
new system would possess a fixed point to which one
could apply the formalism of the previous section. More
specifically, let us write the logarithms of the discrete
rates of growth A; that we obtain by stroboscopically
recording the state of the system defined by Eq. 1 every
time 7. Various expressions are possible; the more
useful of which are

T
ki(x?, ...,xOL, E) = f ri(t)dr (11)
0
and
Ai(x?, .. ,xOL, E) = l'[i(x‘l), . xOL, E) — x?, (12)

where r; are the growth rates as defined by the right-
hand side of Eq. 1, 7 is the time integration variable,
and IT; is the so-called stroboscopic (or Poincaré) map.
This map transforms the initial densities into the densi-
ties one period later, so that by definition

H,-(x?, . xOL, E) = (pi(x?, .. .,x%, E, T)=xy(T). (13)

When the dynamics is flowing on the periodic attractor,
ri(xt, ..., X}, E) =0, where x} are the equilibrium ini-
tial conditions (to which the system returns after time
T). Naturally, all the x; are functions of E. Implicit
differentiation of this condition with respect to E yields

L *
i dn; dxj
— ———=0. 14
9E T ; 9x9 dE (14)
Rearranging the equation and inverting the matrix mul-
tiplying the second term above, we get

d)C;k = 3)\1'
()

Now the only thing left to be done is to express the
derivatives of %; in terms of the continuous dynamics.
The response of A; to changes of the external parame-
ters is expressible from Eq. 11 as

. T 5.
931::‘/‘ 0ri(t) 4o (16)
9E ), OE

-1
Yy

o7 (15)
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The derivative of ; with respect to the initial conditions
may be obtained using the stroboscopic map:

ar; 0T 0x)

o _ 2 % 17
8x(]). 8x(} 8x? (17)
which is shown to be

AN T 9ri(7) R (1)

— - 7TE L dr ) — 8 18
02" P (/0 oR(7) 9x,(7) T) i (18)

in “Appendix 1.” Apart from the calculation lead-
ing to the above Jacobian for the stroboscopic map,
“Appendix 1” also contains the definitions for the time-
ordering operator 7 and the matrix exponential Exp
therein (8;; is the identity matrix). As before, summa-
tion or integration for all indices of R is assumed in the
exponent above.

Substituting Eqgs. 16 and 18 into Eq. 15, we finally

arrive at
Ay & T ori(z) AR(x) -
FTAp® (TEXP (/0 IR(@) 9,(0) df) ) 5”)
T 95
X /(; %dr. 19)

This formula looks considerably more complicated
than its equilibrium analogue (Eq. 8), but the interpre-
tation will turn out to be the same. Let us define the
time-dependent niche vectors in the following way. The
sensitivity will be

Si(t) = ——— (20)

for every moment 7 € [0, T). Similarly, the impact for
any moment will be

Ii(r) = gR& = &ﬂj(f), (21)
xj(t) Onj(t)

where the form of the vector has also been indicated

on the linear scale, since that will be more useful for

applications later on.

We shall see that these vectors have the capacity to
measure the robustness of the system—just as they did
in the fixed point case. The scalar product of these two
vectors for all indices of the regulating factors will yield

a community matrix for every moment t:

or;(t) oR(7)

ai(0) = $i{OL) = 3p oo

(22)

Notice, however, that the exponent in Eq. 19 contains
not just the scalar product of the sensitivity and impact

vectors, but this product integrated over time. Let us
denote the integral of a;;(t) with A;;:

(" _ [T ori(r) 0R(v)
A,’j = /0 Ll,'j(‘L’) dr = /(; 3R(t) 8Xj(f) dr. (23)

In this formula, we sum or integrate over all indices
of R, plus integrate over time. The time integration
is in principle no different from all the other inte-
grals/summations involved: As a matter of formal anal-
ogy, we could even say that 7 is just another continuous
quantity indexing the vector of regulating factors, for
which we need to integrate over the interval [0, T).
This observation allows us to redefine the concept
of a regulating factor. Instead of considering R(7) a
different vector for every moment 7, we can regard
the function v — R(r) as a single vector of regulating
factors with the extra continuous index t (cf. Meszéna
and Metz 2011). If we accept this formal analogy
between resource continua and time, then the cyclic
time variable 7 itself becomes a niche variable. Let
us call the vector R(r) at any one particular moment
t the instantaneous vector of regulating factors and
R(:), where t plays the role of an index, the tempo-
ral vector of regulating factors. All quantities carrying
these same indices (i.e., time-dependent boldface ones)
should inherit this nomenclature; therefore, we may
talk about instantaneous and temporal sensitivity and
impact vectors as well. For the purposes of our theory,
the temporal niche vectors are the ones we need, as
opposed to the instantaneous ones.
Equation 19 can be rewritten in terms of A;;:

dx? = 1T o o)
L= TExp(A;) — 8 I~ dr.
dE ]Z( xp(Ai) f) /Q IE OF

The matrix A;; is the scalar product of the temporal
sensitivity and impact vectors for all indices of R(-)
(which therefore includes time). If any two species have
very similar temporal sensitivity (impact) vectors, the
determinant of A;; will be small. The question is: Does
a small det A;; imply that det(7 Exp(A;) — 6;;) will also
be small and thus the response of the equilibrium den-
sities large? This question is answered affirmatively in
“Appendix 2,” implying that the product of the volumes
spanned by the temporal sensitivity and impact vectors—
cf. inequality 10—is the proper measure of robustness
in our context. Therefore, we may conclude that the
biological content of Eq. 19 is exactly equivalent to the
meaning of Eq. 8. Treating every regulating factor at
every moment within one period as a dif ferent regulat-
ing factor defines the full space of regulating variables
now, and each species has a fixed temporal sensitivity
and impact vector in this extended space. This linear

(24)

@ Springer



Theor Ecol

space of functions is the one in which the volumes
spanned by the niche vectors have to be calculated. We
will refer to the corresponding extended niche space
(the set of regulating factors) as the temporal niche
space (see Fig. 2).

Naturally, the regulating factors at different times
cease to be different from one another in the absence
of fluctuations. This intuitively obvious fact can be
demonstrated mathematically by showing that Eq. 19
simplifies to the time-independent Eq. 8 if the attractor
of the dynamics is a fixed point instead of a limit cycle.
In that case, the “period” T can be chosen arbitrarily,
so let us choose an infinitesimal dz for the period. Then
Eq. 19 will read

dx? L ar; R 1 or;
Lo S (7Exp (240 ) — 5 ) gy,
dE Z( Xp(aRaxj r) ’) 9E "

(25)

Since the matrix in the exponent is now a constant, time
ordering (see “Appendix 1”) does not play a role and

thus the exponential function can be Taylor expanded
to linear order in time:

L
d.)C;k 3)’,‘ /R
- _ Siid L7
dE ;( T 3R ox;

L 8ri JR - 8r1~
dRdx;) OE’

j=

-1
or;
dr — 8,~j> 8—2 dr

(26)

I
i\

which is identical to Eq. 8. As expected, our theory
contains the equilibrium situation as a special case.

See “Appendix 4” for an alternative derivation and
form of the niche vectors that is interesting but less
convenient from a computational point of view.

Example: a minimal model of purely
fluctuation-maintained coexistence

Here we apply our formalism to a minimal model of
temporal niche segregation. It is a two-species Lotka—
Volterra model with periodic r((f) and K(¢) parameters
and competition coefficients that are all equal to 1.
This means that the determinant of the community
matrix will be zero at any one moment: Coexistence

Niche space Vector in regulation space
'y
=
2
g
L L C— 'E
. 8 e
P N Seed size =S
e ®
U 1 o
Equilibrium
3
o
O
:-_’
Fluctuating P N Seed size

Fig. 2 Instantaneous and temporal niche and regulation space
for a hypothetical bird community. The birds feed on seeds
of various sizes, use specific nesting sites (N), and are preyed
upon by a predator (P). The first row depicts an equilibrium
community: The left side shows the niche space; the right side

@ Springer

shows a sample element of regulation space (i.e., a specific vector
R). The second row does the same, but for the temporal niche and
regulation spaces, where every regulating factor at every moment
is a different factor, leading to the temporal R(-) on the right side.
Notice that the dimension of the niche space has increased by one
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is maintained purely by fluctuations. This assumption
is not necessary for fluctuations to have a stabilizing
effect—however, we want to focus strictly on the effects
of fluctuations and not have any other mechanisms that
might contribute to coexistence, hence the choice for
our competition coefficients.

Formally, the model is defined as

ﬁ#ﬁ?=mmo—ﬂ%$§9> (=12
@)

with

roi(t) = 0i(1 + re cos(at + ) (28)

and

Ki(t) = k(1 + K. cos(wt + ¢;)). (29)

Here p; and k; measure the time averages of the in-
trinsic rate of growth and the carrying capacity of the
ith population, respectively; r. and K. are the relative
amplitudes of their fluctuations with angular frequency
 (so the period is T = 27 /w). Note that ry and K;
oscillate in-phase for each population. The difference
A¢ = ¢ — ¢ of the phase shifts characterizes the rela-
tive timing of the two populations.

The two populations are regulated by the same,
single regulating variable: the sum of the densities. The
fact that there is only one regulating factor can be made
transparent by reparametrizing the model (MacArthur
1972) as a two-species competition model for a single
resource R(1):

Lodm( - -
o A b R(t) — m(t) (i=12), (30)
and
R(t) = Ry — ny(t) — ny(0). (31)

Here we assumed fast resource dynamics; R, corre-
sponds to the maximum possible amount of resource.
The factor

roi(t)
K@

bi() = (32)

characterizes the resource dependence of the popula-
tion and

Ro
0= (g5 -

1) roi(?) (33)

can be seen as the resource-independent mortality rate.

For constant parameters, the single regulating factor
allows for the robust persistence of only one species. In
this situation, the model reduces to the well-known case

of density-dependent selection (Metz et al. 2008): Com-
petition is won by the species with the higher K; value
(K-selection, MacArthur 1962), or—equivalently—by
the species with the lower equilibrium resource level
(R* rule, Tilman 1982).

The issue of interest is that oscillations of the para-
meters result in a periodic solution. In turn, periodicity
of the solution transforms the single regulating variable
R into the continuum of regulating factors R(-). With
this in mind, let us calculate the temporal sensitivity and
impact vectors (functions) from Egs. 30 and 31:

S, =S8i(1) = 22—((?) =b(1), (34)
and

OR
Ij = Ij(l) = anjill‘; l’l]'(l) = —I’Lj(t). (35)

The sensitivities are equivalent to the birth rates at each
moment, assuming the available total resource is unity
(see Eq. 30). The populations are more sensitive when
their per-unit-resource birth rates are high and less so
when they are low. The magnitudes of the impacts are
simply measured by the population densities. This in
effect means that the per capita impacts are all the
same: Each individual consumes exactly one unit of
resource in a unit time; therefore, the total consumption
per unit time is simply the total density. The negative
sign of the impacts indicates that the populations reduce
the amount of resource available. Should our model
be formulated for two populations who compete in-
directly via a shared predator (apparent competition,
Holt 1977) instead of a shared resource, the impacts
would be positive, since the presence of the populations
will tend to increase the predator population, not re-
duce it.

The community matrix will be the scalar product of
Si(t) and I;(¢) in time:

T
A,’j = /0 S,‘(‘L’) I]‘(‘L') dr

T
= —/ bi(m)n;(r)dr
0
= _TW
:—T(b_in_j—i—Cov(bi,nj)), (36)

where we used the identity pg = p g + Cov(p, q), the
overline denoting time averaging, and Cov(p, q) be-
ing the covariance of p and ¢. Note that a lack
of covariance between b; and n; leads to det A;; =
det (—Tb_in_j) = 0. Therefore, nonzero covariance be-
tween the densities and the b;s is a requirement for
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robust coexistence. Obviously, the constant case vio-
lates this requirement. This covariance is the same one
that is so essential to Chesson’s (1994) general theory
of the temporal storage effect.

It is instructive to calculate b;(#) for small
fluctuations, i.e., for small r. and Ke:

0i(1 + re cos(wt + ¢;))

bi(t) = k(1 + K, cos(wt + ¢;))

Q

% (1 + (re — Ko) cos(wt + ¢;)) . (37)
L

Observe that b;(¢) oscillates in-phase with ry;(#) and
K;(t) for r. > K., but in opposite phase for r. < K.
The other constituent of the covariance, n;, would
reach K; in a constant environment. In the case of
a fluctuating K;(t), one can expect n;(t) to follow the
changes in K;(f) with some phase delay. Therefore,
if ro > K. and the rys are large enough to minimize
the delay of the #n;s, then b; and n; oscillate nearly in

(a)
82

— Species 1
--- Species 2

oo
—_
|

magnitude of sensitivity
~ x©
Ne) (=)
| |

78 ‘ \ ‘ \ ‘ \ ‘ \
0 0.2 04 0.6 0.8 1
time
(c)
82
— Species 1 e
--- Species 2 ’
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—_
|

magnitude of sensitivity
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| |

78 ‘ \ ‘ \ ‘ \ ‘ \

time

Fig. 3 Top row: robust coexistence maintained by out-of-phase
oscillations (A¢ = 7). The sensitivities S; (f) and S»(¢) are shown
in a over one full period; b shows the population densities 7 ()
and ny(f), which are equal to the impacts /;(¢¥) and I>(¢) times
(—1). Since both of these quantities oscillate out of phase, they
exhibit reduced similarity, leading to robust coexistence. Bottom
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phase. In this case, each population becomes sensitive
to resource concentration levels at the time period
when it uses the resource most intensively. If A¢ differs
from zero significantly, this situation corresponds ex-
actly to the traditional concept of niche segregation:
The resources at different instants of time are consid-
ered different, and each population depends on the
very same resource which it uses. Consequently, we
expect robust coexistence with the described parameter
combination.

These results are in line with a more Chessonesque
analysis of the same model. The application of Ches-
son’s framework to this model can be found in
“Appendix 3.” There we find that the only coexistence
mechanism operating is the storage effect, which reads

Al =2 (r. — K)(Cov(En,) — Cov(Ein,)) (38)
Ki

in our model. Compare the two covariance terms
above with the expression for the community

— Species 1
--- Species 2

0.4+
0.3 o
- . T T T
0 0.2 0.4 0.6 0.8 1
time
(d)
1,
I —
— Species 1
= 0.8+ --- Species 2
‘z
5
8 0.61
=
g
= 0.4
=
9
°©
=9
0.2+
0F—— = T ]
0 0.2 04 0.6 0.8 1

row: unrobust coexistence with a smaller phase difference (A¢ =
0.327). Observe on ¢ that the sensitivities S; (f) and S, (¢) have al-
most maximal similarity, and on d that the density 7, (¢) of Species
2 is very small: any further decrease of the phase difference could
cause it to go extinct. Parameters: k; = 1.0001, k2 = 1, K¢ = 0.02,
01 =02 =280,r. =0.04, T = 1, ¢; = 0 (therefore ¢» = Ag)
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matrix A;; that we obtained with Eq. 36. At first
they might look different, but if one applies the
small fluctuation approximation in Eq. 37 to the
community matrix, then A;; — Ay (r=1,i=2) will
precisely correspond to A/. In Chesson’s approach, the
difference of the elements in one column of A;; gives
the storage effect; in ours, robustness is determined
by det A;;. The difference in our approaches has its
roots in the fact that Chesson uses invasion criteria to
assess coexistence, while we are interested in stability
only in the vicinity of the attractor. Calculating the
difference of the column elements corresponds to the
first approach, since the invasibility criterion in the
Lotka—Volterra model is that intraspecific competition
has to be greater than interspecific competition within
the resident (so A;; — A > 0 means species 2 can
invade species 1). On the other hand, we also know that
the fixed point of stable coexistence in the same model
disappears precisely when the determinant of the
community matrix becomes zero, so what we are doing
is simply measuring how close the system is to this
critical point. Therefore, the difference between the
two approaches is the particular coexistence criterion
they consider, which are equivalent in the context of
the Lotka—Volterra model.

The simulations (not shown) confirmed that if the
two populations have identical parameters except for
A¢, their average densities are the same, and only the
relative phases in which they oscillate varies. Then we
gave a small relative advantage of 10~ to species 1 by
increasing «;. In the various runs, the phase difference
A¢ was gradually decreased from 7 to near zero. As
expected, decreasing A¢ increases the response of the
average densities to the perturbation of «; (Fig. 3a,
b). Coexistence proved to be robust when the two
oscillations were out of phase (A¢ = n, corresponding
to the kind of parameter combination described above).
Lower values of A¢ resulted in significant reduction of
the average density of the species with the smaller «,
however (Fig. 3¢, d). Having obtained the community
matrix A;; by numerically integrating over one full
period, its determinant was calculated as a function of
A¢ (Fig. 4). Observe that the determinant becomes
very small around A¢ ~ 0.327 = 1. This is consistent
with the results in the lower row of Fig. 3, where the
10~ relative disadvantage of species 2 almost leads to
its extinction at A¢ = 0.327.

Biologically, these results mean that the timing of
the birth pulses of two populations consuming the same
resources should not be overly synchronized. If we treat
our example as a toy model of two competing tropical
bird species limited by the availability of nesting sites,
our broad conclusion would be that differences in the

0.04

0.03

Robustness
o
S
[\®)
|

0.014
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0 0.5 1 1.5 2 2.5 3
Phase difference [rad]

Fig. 4 Loss of robustness with increasing similarity. Horizontal
axis: phase difference A¢ in radians; vertical axis: determinant
of Aj; as a measure of robustness. For practical purposes, det A;;
becomes almost zero when A¢ < 1; it becomes exactly zero at
A¢ = 0. The curve is smooth everywhere, though it does change
very rapidly around A¢ ~ 1

timing of reproductive behavior (i.e., nesting site use)
would make coexistence less fragile. If the first species
breeds in the dry and the other in the wet season,
competition is avoided because the limiting resource
is not being used by the competitors at the relevant
moments. The more similar the two species are in their
timing of nesting site use, the greater the overlap in
their resource usage, leading to an increased likelihood
of competitive exclusion.

Discussion

In this paper, we extended Meszéna et al.’s (2006) the-
ory of coexistence and niche from fixed point dynamics
to cycles of constant period, without any constraints on
the amplitude of the fluctuations. The emerging picture
is a formalization of the concept of temporal niche
segregation. The original theory required species to
segregate with respect to the variables involved in their
regulation as a condition for robust coexistence. Ac-
cordingly, temporal niche segregation means segrega-
tion with respect to the timing of population regulation
within the cycle: This is done by considering the values
of a given regulating variable at different instants of
time within the period as different regulating variables.
Generally, the niche of a species is characterized by the
species’ impact on and sensitivity toward the regulating
variables. For the cyclic case, it means that the time
courses of the impacts and the sensitivities within a
period should differ between the species.
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In principle, our treatment was independent of
whether the cyclic dynamics originates from external
forcing or from the internal dynamics of the system.
However, we assumed that the period T was unaffected
by the perturbations, with respect to which robustness
was considered. This condition is naturally satisfied
in the case of external forcing but is usually invalid
otherwise, i.e., when the cycles are generated internally
by the dynamics.

Our study was motivated by the wish to have a
unified mathematical theory of the ecological niche.
After the Lotka—Volterra model had fallen out of fa-
vor because of its uneasy relationship with empiri-
cal details, it became the prevailing attitude to study
coexistence in specific mechanistic models and have
generalized conclusions only on a verbal level. As the
assumptions and conclusions of the different models
are often difficult to compare and no model is immune
to the criticism of neglecting important details, the
predictive power of this approach is limited. Instead,
we prefer to have a consistent theory with clear mathe-
matical foundations on the general level that maintains
a well-defined connection to verbal theory as well as
to specific models of arbitrary detailedness. Adaptive
dynamics (Geritz et al. 1998; Meszéna et al. 2005) and
the theory of structured populations (Caswell 2001;
Diekmann et al. 2003) demonstrated the possibility and
usefulness of such a framework within the context of
population biology. Within such a framework, there is a
clean way of incorporating additional details whenever
it is necessary.

The perturbation approach makes a general theory
of coexistence possible. It was demonstrated that ro-
bustness of coexistence against the change of exter-
nal parameters is tied to niche segregation in a well-
defined sense (Meszéna et al. 2006). As it is sufficient
to consider small perturbations only, no generality is
lost by carefully made linearization. This linearization
establishes a general connection between an arbitrar-
ily complicated model of coexistence and the Lotka—
Volterra model. Unfortunately, the concept of a re-
source utilization function as a descriptor of the niche
of a species does not generalize: One has to linearize
the two legs of population regulation separately, lead-
ing to the concept of impact and sensitivity niches.

Intuitively, three types of niche segregation can
(and have) be distinguished: functional, habitat, and
temporal segregation (Christiansen and Fenchel 1977).
Functional segregation is covered by the basic fixed
point theory. Habitat segregation requires the handling
of the spatial structure of populations—this has been
achieved by Szildgyi and Meszéna (2009a, b), not just
for spatial but for arbitrary population structure as
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well. Finally, temporal niche segregation in a periodic
environment is what this paper was about. Parvinen and
Meszéna (2009) studied a different kind of temporal
segregation, one that is inherently tied to spatial struc-
ture as well: the coexistence of successional species.
Szilagyi and Meszéna (2010) applied the framework
to fluctuation-mediated coexistence by the effect of
relative nonlinearity.

Today, the reference point for any theory of coex-
istence in a fluctuating environment is the framework
of Chesson (1994), both because of its completeness
and its generality. Chesson’s reference point is the
case when the regulating (competitive) factors affect
the growth rate linearly and additively to the direct
effect of the environmental fluctuation (Chesson and
Huntly 1997). In this situation, the average growth rates
are determined by the average competitive factors.
Therefore, despite the presence of fluctuations, popu-
lation regulation operates through a single competitive
factor; therefore, no coexistence is made possible by
the fluctuations. This reference assumption may be
breached in two ways: either by dropping the linear-
ity or the additivity condition. The two cases lead to
two different coexistence maintaining mechanisms: the
effect of relative nonlinearity and the storage effect.
To formalize these effects, Chesson concentrates on
a second-order approximation of the small-fluctuation
limit. In this context, relative nonlinearity manifests
itself in regulation through the mean and the variance
of the competitive factor, while the storage effect de-
pends on the covariance between the environmental
fluctuations and the fluctuations of the competitive fac-
tor. Obviously, the two mechanisms are not exclusive:
It is entirely possible to have both of them in a model.

Chesson’s distinction is directly applicable within our
framework. The model we presented in “Example: a
minimal model of purely fluctuation-maintained coex-
istence” section belongs to the case of storage effect;
it is analyzed using Chesson’s formalism in “Appendix
3.” We saw that the covariance instrumental in Ches-
son’s formulation directly corresponds to the concept
of temporal niche segregation. A model where relative
nonlinearity is the operating coexistence mechanism
could, e.g., be a variant of the model of Szildgyi and
Meszéna (2010) with periodic instead of a white-noise
environment. Our general formulation would apply
without modification. Two important problems arise,
however. First, our methodology only applies to mod-
els with relative nonlinearity as long as the period of
the oscillations remains fixed—this basically precludes
the analysis of endogenously generated cycles, since
their period will in general depend on the perturbed
parameters. Second, the temporal niche segregation



Theor Ecol

picture, while it would remain correct, would miss the
possibility of a more economic choice of the regulating
variables: the average and the variance of the total den-
sity. Having only two regulating variables restricts the
number of robustly coexisting species to at most two,
but this conclusion would not be immediately trans-
parent in our formulation. So in summary, we can say
that our formalization of temporal niche segregation
covers all combinations of storage effect and effect of
(non-endogenously generated) relative nonlinearity—
however, it is not the strongest possible formulation for
the pure effect of relative nonlinearity.

Nevertheless, in comparing Chesson’s formalism
with ours, we could mention three ways in which our
framework provides additional insight and clarification.
First, our theory discusses the shrinking robustness of
coexistence with increasing similarity in a framework
which is common between fluctuation-dependent and
constant-environment cases; therefore, we treat tem-
poral niche segregation on an equal footing with the
other (functional and spatial) ways of niche segrega-
tion. Second, Chesson’s formalism concentrates on the
sensitivity side of regulation, i.e., how the growth rate
depends on the competitive factors, leaving the im-
pact side—how the populations affect these factors—
implicit. In our framework, these two equally important
legs of population regulation are both being formally
considered. Third, our formulation does not rely on the
small-fluctuation approximation.

We close our discussion by commenting on the status
of niche theory in a nonequilibrium environment. Our
framework assumes periodic dynamics. Nevertheless,
we conjecture that the underlying idea, the concept of
temporal niche segregation, generalizes for all station-
arily fluctuating environments and ergodic situations
as well, be it aperiodic stationary fluctuations or sea-
sonally forced chaotic dynamics. The crucial point is
to have an “equilibrium” condition, which then can be
subjected to perturbation analysis. In the periodic case,
this happened to be the periodicity condition A; = 0.
For arbitrary stationarily fluctuating environments, it is
the condition that the long-term average growth rate
should be zero (Turelli 1978; Chesson 1994; Szilagyi
and Meszéna 2010; see Hofbauer and Schreiber 2010;
Schreiber et al. 2011 for the formal proof). On the
other hand, existence of a long-term environmental
trend (i.e., departure from stationarity, as in the case of
global climate change) invalidates our approach in an
essential way. Then, our formulation applies only as an
approximation. It could be a very good approximation,
however. If a population survives for a sufficiently long
time 7T, then the average growth rate In(n(7)/n(0))/ T
for that time period is close to zero even if the initial

and final densities n(0) and n(T) differ considerably.
Therefore, the existence of long-term environmental
trends does not essentially invalidate niche theory. It
remains a null model: The real process can be seen as a
perturbation of the presented theory.
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Appendix 1: The Jacobian of the stroboscopic map

We want to obtain an expression for the derivative
of the stroboscopic map I1; with respect to the initial
conditions x‘}. According to the definition of Eq. 13,

BH,' i 8<pi

0 — 9.0
8x]. 8xj

(39)

t=T

with x;(1) = @:(x9, ..., xY, E, 1) being the flow induced
by the right-hand side of Eq. 1 with initial conditions
x?. Now, let us calculate

Poi D (3%‘)
Btax(;_&x(} ot

)
= @ri(R(xl ®,....x.0), E, )
i
L

B Z ori(1) IR() dgx
B < OR(1) dxk (1) 9x5

(40)

where summation or integration for all indices of R is
understood. The equation we have ended up with reads

3 (o0 _ XL: ori(t) IR(1) dgx
gt \ox) | &= 9R(@) dxi(t) 9xY

(41)

where the derivative of r; with respect to R and of
R with respect to xi () are evaluated at the flow on
the attractor. Since ¢;(0) = x? by definition, the initial
condition to this equation is

2

0
8x]-

= 5ij~
t=0

(42)

Let us introduce some simplifying notation, with ® ()
being the derivative of the flow with respect to the
initial conditions and a(¢) being the time-dependent
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coefficient matrix multiplying ®(¢) on the right-hand
side of Eq. 41:

¢;

o) = — 43

(1) a0 (43)
and

_0ri(1) IR()

“O = 3R met)’ (44)
Equation 41 can then be rewritten as
do()

5 = a - e, (45)

with the initial condition translating to ®(0) = 1.

The solution to the matrix differential equation
(Eq. 45) is nontrivial as the matrices a(t;) and a(t,)
do not necessarily commute for ¢, # t,. To handle the
problem, we first define the matrix Exp(a), the ex-
ponential of the matrix a, by substituting a into the
usual Taylor series of the exponential function. Note
that Exp(a(t)) + a(t)) # Exp(a(t))) - Exp(a(t)) except
when the matrices a(¢;) and a(t,) commute. The solu-
tion of Eq. 45 can now be written as an infinite product
of matrix exponentials:

o) = Al}ﬂ) Exp(a(t — AH)AY) - ... - Exp(a(At)Ar)

- Exp(a(0)Ar)

0
= lim T:]_N[_l Exp (a(t ADAY), (46)

where N =1t/At — oo. It is easy to show that this is
indeed the solution: For an infinitesimally small At,
Eq. 45 can be written as

Ot + Af) = D) + a() D () At
= (1 +a(OADD®)
~ Expa(®And (1), (47)

and applying this formula recursively from ¢ = 0 to the
final moment yields Eq. 46.

Note that the matrices within the product in
Eq. 46 are ordered according to decreasing time. The
expression can be made notationally more convenient
by introducing the so-called time-ordering operator 7.
By definition, this operator rearranges a product of
matrices to decreasing order in time:

Ta(ty) - a(ty) = Ta(t) - a(ty)

_ {a(n) ~a(t)
a(ty) - a(tr)

if, <t,

ift, > t4. (48)
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This somewhat obscure but very useful notation, widely
used in quantum field theory (see, e.g., Weinberg 1995,
p. 143), allows us to write Eq. 46 in the simple form

t
®(H) = TExp </ a(t) dr) ) (49)
0

Substituting the definitions of ®(¢) and a(f) from
Eqgs. 43 and 44, this solution actually reads

opi L ori(r) OR(7)
g(])‘ = TExp </o IR(D) 9x,(7) dr) , (50)

and, using Eq. 39, the final expression for the Jacobian
of the stroboscopic map is

ol " ori(r) oR(v)

Though the result looks elegant, remember that the
time-ordering operator is simply a convenient mnemo-
technical symbol: Its real content is expressed by the
infinite matrix product in Eq. 46.

Appendix 2: The criterion for robustness

Suppressing indices for better readability, Eq. 19 will
read

dx*
dE

o
oE’

— (TEXp(A) — 8>_1 (52)

where x* and A stand for the vectors x} and Aj, re-
spectively, A = fOT a(tr)dr with a(t) = S;() I;(¢) as in-
troduced in “Extending the theory to periodic orbits”
section, and § is the identity matrix.

Since the inverse of a matrix is proportional to the
inverse of its determinant and the determinant will
be near zero if any of the eigenvalues approach zero,
the left-hand side of the equation (the response of
the equilibrium densities) will become large, leading
to the destabilization of the equilibrium point, if any
one eigenvalue of 7Exp(A) — § approaches zero. Our
intuition is that two species having similar temporal
niche vectors will lead to one of the eigenvalues being
almost zero, i.e., species that are too similar cannot
coexist robustly.

First, we prove that linear dependence of the
temporal impact (sensitivity) niches makes the ma-
trix 7Exp(A) —§ degenerate, i.e., having an eigen-
value of 0. Linear dependence of the temporal impact
vectors means that there exists a time-independent
L-dimensional vector o = («y, o, ...,ay) such that
Zle alj(r) =0forallt € [0, T). Then, forall 7, isa
right eigenvector of the matrix a;;(r) = S;(7)I;(r) with
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a corresponding eigenvalue of 0. Or, using Eq. 46, « is a
right eigenvector of 7Exp(A) with an eigenvalue of 1.
This means that 7Exp(A) — § has an eigenvalue of 1 —
1 =0, implying our proposition. The same argument
applies for the sensitivities and the left eigenvectors.
Then, since eigenvalues and eigenvectors depend on
the matrix elements continuously, similarity (i.e., near
linear dependence) of the temporal impact or sensitiv-
ity niches leads to having an eigenvalue that is nearly
zero, leading to non-robust coexistence.

Next, we will show that the product of the volumes
spanned by the temporal niche vectors (Vs)y) is still
the proper measure of robustness: The system gradually
loses its stability as this number gets closer to zero.
First, we verify by direct calculation that the determi-
nant of TExp(A) is insensitive to time ordering. Using
Eq. 46,

det 7Exp(A)

T
=det7Exp (/ a(t) d‘L’)
0

= det lim Exp(a(T — ADHAL) - ...
At—0

- Exp(a(At)At) - Exp(a(0)Af)
= Alim0 Exp(Tra(T — AH)AY) - ...
t—

- Exp(Tr a(At) At) - Exp(Tr a(0)At)

T
= Exp (/ Tra(z) d'L’)
0
T
= Exp (Tr / a(t) dT)
0
T
= det Exp (/ a(t) dr)
0

=det Exp (A), (53)

where Tr a denotes the trace of the matrix a.

Note that these results imply that the determinant
of TExp(A) — & will become zero precisely when det A
does so. Indeed, what we have is just a trivial rescaling
of A, an artefact of the conversion between discrete
and continuous dynamics (in Eq. 19 the equilibrium
densities x} are quantities of the discrete dynamics,
while everything else is derived from the continuous
equations). So we may disregard this trivial rescaling
and simply use det A as the measure of robustness.
Furthermore, the inequality of Eq. 10 can be applied
to the matrix A to yield | det A| < V), demonstrating
that community robustness can be measured exactly
like in the equilibrium case, provided that we think
of the full set of regulating factors as containing every

regulating factor at every moment within the cycle as
a separate factor. This also means that all the hassle
of matrix exponentials and time-ordered products may
be completely ignored when applying the formalism
to specific models: All that matter are the temporal
sensitivity and impact vectors and the volumes they
span.

Appendix 3: Model analysis using Chesson’s (1994)
framework

In this section, we perform the analysis of the model
defined by Eq. 27 in “Example: a minimal model of
purely fluctuation-maintained coexistence” section us-
ing Chesson’s formalism. For this model, Chesson’s
environmental and competition parameters can be
chosen as

E; = cos(wt + ¢)) (54)
and
Cjznl + no, (55)

respectively. Note that £; = 0 and that the competition
parameter C; is the same for the two species. Chesson’s
theory applies for small fluctuations; this assumption
can be implemented by choosing the parameters r. and
K. small.

With this parametrization, the instantaneous growth
rate r; = g; (E;(1), C;(t)) of the model is

g (Ej®. Cj(0)

c
=01 E)l1—- ———1
oj(1+re ])( Kj(1+KeEj))
%Q,(1+reEj)—%(1+(re—Ke)Ej)c,
]

=0Qj 1_Q>+erc j_&(re_Ke)EjCj’ (56)
kj kj

where &~ means the small fluctuation approximation.

The natural reference points are E7 =0 and C} =«;,

for which g;(E*, ij) = 0 is satisfied, as required. Then

the standardized parameters of Chesson are

Ejzg](E}, Cj) ZQ]KeE] (57)
and
. Cj
Cjz—gj(E/-,Cj)Z—Qj 1—7 . (58)
J

Using these notations, the growth rate is

r]-%é’j—C,-+y,-8jCj, (59)
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where

— K
yy=—t =t (60)

Ker
is the measure of nonadditivity. Note that since r. was
greater than K. in our simulations, the y; are negative,
1.€., we have a subadditive situation.

Since the competition parameter C is a linear func-
tion of the competitive factors (the two densities in this
case), this model does not produce relative nonlinear-
ity. However, there is storage effect. Chesson’s formula
for the storage effect reads

Al =yECT = qin&Cr (61)

where the overline denotes time averaging, i is the in-
vader index, r is the resident, the —i superscript means
that the given quantity is to be evaluated with species i
at zero density and all other species at their equilibria,
and
!
o
are factors introduced into the theory so that all lin-
ear terms in the final expression for the coexistence-
affecting mechanisms cancel (this does not play a great
role in our case but becomes crucial if the competitive
factors are nonlinear functions of the densities, i.e., if
relative nonlinearity is operating). Let us calculate A/
in our model. The standardized competition parameter,
as given by Eq. 58, is

qir (62)

Cj= Q(nr+ni)—gj (63)
kj

(j is a general species index which may refer to the
resident or the invader), and so

¢'=%n —o, (64)

o
i
The differential of this expression is
deyi=d (ﬁn, —o j) = %dp,, (65)
kj kj

therefore
acl_l Qiky

qir = - = . (66)
aC; Orki

Let us work a little more on the expression &;C, ! using
the fact that £; = ¢, K. E:

£C =0 jKeEji—:(nr — k)

_ ojorKe
Kk

Ejn, (67)

@ Springer

(the second term is zero, since E; = 0). Substituting all
of this into Eq. 61, we get

Al = yigici_i - qiryrgrcr_i
_ Ke—regiKeprr oy

B K.oi Ki orki Keor Kr

K. —r. K. —re

=o———Ein, —oi——
Ki Ki

oiky Ke —re QrzKe

Eﬂ’l, E,»l/lr

E.n,

Ke_re
ZQL—<

En, — E,n,)

i

= % (re = Ko)(Cov(E,n,) — Cov(Emn,)), (68)

L

where we used Eq. 60 to evaluate y,. As mentioned
before, r. — K. is positive and so is Cov(E,n,) —
Cov(E;n,) because the resident obviously correlates
more strongly with its own E than with the E of the
other species. It follows that A7 > 0 and so we have the
storage effect.

Appendix 4: An alternative form of the niche vectors

A continuous periodic system can be converted into a
discrete one with a fixed point, as is done by Eq. 15, to
which the whole body of theory discussed in “Summary
of the fixed point theory” section directly applies. The
most straightforward way of extending our theory to
fluctuating situations would have been to derive the
sensitivity and impact vectors in the same manner as
was done in “Summary of the fixed point theory” sec-
tion, taking into account that the growth rates are actu-
ally the cumulative growths of each population during
the time interval [0, T)—which are all zero, as they
should be. Though it is somewhat quicker to obtain the
results this way, their interpretation is more difficult,
hence the longer route we have taken. Nevertheless, it
will be instructive to see the forms of the sensitivity and
impact vectors obtained by applying the equilibrium
theory to the cumulative growth rates. In other words,
we want to construct the point equilibrium-level (“P-
level”) niche vectors, the ones we obtain without “look-
ing into” the within-period dynamics, and see what
their relationship is to the cycle-level (C-level) niche
vectors (the ones we have already derived).

To establish the P-level niche vectors, we first need
to consider the cumulative growth of each population
over one period:

T
Ai[R] = / riRx1 (@), ..., xL(0), E, 1) dr, (69)
0
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which is thus a functional of the vector of regulating
factors. Now, looking at Eq. 15 shows that the eval-
uation of 9A;/ 8x(]]. will yield the P-level niche vectors.
Applying the chain rule, the sensitivity will be defined
by the functional derivative

5)\5 _ ari(r) _
SR(t)  oR(1)
that is, the P-level sensitivity is exactly the same as

the C-level one. The P-level impact is somewhat more
involved:

IR(7)
3x0

SF (1) = Si(1), (70)

(1) =

~

Il
M-
o
=
~
Q
N
N
eyl
>
o

</’ ore(t) OR(7)) /)
dr
o OR(z") dx;(t")

L .
=Y L(t)TExp ( / Sk(x)HI;(t)) df) :

0

(71)

where the time-ordered exponential expression for the
derivative of the flow is derived in “Appendix 1.” Ob-
serve that the P-level impacts are different from but still
composed of the C-level niche vectors.

With the P-level niche vectors, the matrix A;; be-
comes expressible as

oA
A= 50

T
f SPOIP () dr

0

B /T sxi OR(7)
~Jo SR(7) ax<;

L T T
=> / Si(1)Ik(v)TExp < / Sk(tHI;(z) dr’) dr,

k=1 0 0
(72)

the scalar product of the P-level sensitivities and im-
pacts for all regulating factors and time. This way we
have established the relationship between the P-level
and the more convenient C-level description.
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