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Appendix S1: Derivation of Eq. 126

Here I show in detail how to derive Eq. 12 from Eq. 11 in the main text by converting the sum over species7

k into an integral over types T ′ and using Eq. 10 in the main text:8

pT (t) =
∑

configs

∑
k

ρ(nk, Tk, T )P (n1, . . . , ns, t)

= ν
∑

configs

∑
k

f lossTk
ρ′(Tk, T )nkP (~n, t)

= ν
∑

configs

∑
k

∫
dT ′δ(Tk − T ′)f lossT ′ ρ′(T ′, T )nkP (~n, t)

= ν

∫
dT ′f lossT ′ ρ′(T ′, T )

∑
k

δ(Tk − T ′)
∑

configs

nkP (~n, t)

= ν

∫
dT ′f lossT ′ ρ′(T ′, T )

∑
k

δ(Tk − T ′)E[nk(t)]

= ν

∫
dT ′f lossT ′ ρ(T ′, T )NT ′(t), (1)

where NT ′(t) =
∑
k δ(Tk − T ′)E[nk(t)].9
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Appendix S2: Derivation of Eq. 14 in main text10

In the main text I began my treatment of the tradeoff community by writing down a differential equation11

for the joint distribution, P (n1, n2, . . . , nS , t), defined as the probability for the community to have the12

configuration {n1, n2, . . . , nS}, where nk is the abundance of species k, and the time t is the time since13

species 1 speciated. Implicit in the configuration of the community is the type of each species, {T1, . . . , TS}.14

The differential equation I wrote down was:15

dP (n1, . . . , nS , t)
dt

=∑
k

lknk+1P (n1, . . . , nk + 1, . . . , t)

+
∑
k

gknk−1P (n1, . . . , nk − 1, . . . t)

−
∑
k

(lknk
+ gknk

)P (n1, . . . , nk, . . . , t)

+
∑
k

ρ(nk + 1, ~Tk, ~TS)δnS ,1P (n1, . . . , nk + 1, . . . , nS−1, t)

−
∑
k

∑
~TS+1

ρ(nk, ~Tk, ~TS+1)P (n1, . . . , nk, . . . , nS , t). (2)

As mentioned in the text, the probability for a species of type T to have abundance n at time t, PT (n, t) is16

obtained from the distribution P (n1, n2, . . . , nS , t, by summing over the configurations of species other than17

species 1:18

PT (n, t) =
∑

configs

P (n1, . . . , nS , t) δn1,n, (3)

where the
∑
configs is the sum over all possible configurations of the community, but with the implicit19

constraint that the type of species 1 is fixed at T (actually all of the species that were present at t = 0, when20

species 1 speciated are fixed in type in the sum over configurations). I then provided a differential equation21

for this partial distribution under a “non-interactive” approximation and using the speciation dynamics as22

modelled in the main text. This differential equation can be obtained carrying out this sum on both sides23

of the differential equation for the joint distribution. Here I provide the details of the derivation of the24

differential equation for the partial distribution (Eq. 12 in the main text).25

Note that the
∑
configs includes the sum over all possible values for the number of species in the com-26

munity configuration, integration over the possible types (presuming T varies continuously) for all species27

that were not present when species 1 speciated (t = 0), and a sum over the possible abundances for all the28
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species. In other words:29

N∑
S=S0

(∫
TS0+1

dTS0+1 . . .

∫
TS

dTS

)
N∑

n1=0

. . .

N∑
nS=0

(4)

where S0 is the number of species that were present at time t = 0, including species 1. Applying this sum30

to both sides of Eq. 2 gives (note that I have already applied δn1,n)31

dPT (n, t)
dt

=

N∑
S=S0

(∫
TS0+1

dTS0+1 . . .

∫
TS

dTS

)
N∑

n2=0

. . .

N∑
nS=0

{l1n+1P (n+ 1, . . . , nS , t) + g1
n−1P (n− 1, . . . , nS , t) − (l1n + g1

n)P (n, . . . , nS , t)

+ρ(n+ 1, T, TS)P (n+ 1, . . . , nS−1, t)δnS ,1 −
∑
TS+1

ρ(n, T, TS+1)P (n, . . . , nS , t)}

+
N∑

S=S0

(∫
TS0+1

dTS0+1 . . .

∫
TS

dTS

)
N∑

n2=0

. . .

N∑
nS=0

S∑
k=2

{lknk+1P (n, . . . , nk + 1, . . . nS , t) + gknk−1P (n, . . . , nk − 1, . . . nS , t) − (lknk
+ gknk

)P (n, . . . , nk, . . . , nS , t)

+ ρ(nk + 1, Tk, TS)P (n, . . . , nk + 1, . . . , nS−1, t)δnS ,1 −
∑
TS+1

ρ(nk, Tk, TS+1)P (n, . . . , nk, . . . , nS , t)}(5)

Regardless of whether one takes the non-interactive approximation or not, it turns that all of the terms32

k > 1 (i.e. the second of the two major terms in the above) cancel out. I’ll focus on those terms now to33

show this. The sum over k is interchangeable with the integrals over types and sums over abundances, and34

we can bring the sum over nk to the right to obtain35

N∑
S=S0

S∑
k=2

(∫
TS0

dTS0 . . .

∫
TS

dTS

)
N∑

{ni}i6=k=0

{
N∑

nk=0

lknk+1P (n, . . . , nk + 1, . . . nS , t)

+
N∑

nk=0

gknk−1P (n, . . . , nk − 1, . . . nS , t)

−
N∑

nk=0

lknk
P (n, . . . , nk, . . . , nS , t)

−
N∑

nk=0

gknk
P (n, . . . , nk, . . . , nS , t)}

+
N∑

S=S0

S∑
k=2

(∫
TS0+1

dTS0+1 . . .

∫
TS

dTS

)
N∑

{ni}i6=k=0

N∑
nk=0

ρ(nk + 1, Tk, TS)P (n, . . . , nk + 1, . . . , nS−1, t)δnS ,1

−
N∑

S=S0

S∑
k=2

(∫
TS0+1

dTS0+1 . . .

∫
TS

dTS

)
N∑

{ni}i6=k=0

N∑
nk=0

∑
TS+1

ρ(nk, Tk, TS+1)P (n, . . . , nk, . . . , nS , t) (6)
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In the first grouping of terms, the first term (the lnk+1 term) can be shown to cancel with the third term36

(the lnk
term) by setting the summation variable in the first term to nk′ = nk + 1, adjusting the limits of37

summation, and then noting that the nk′ = N + 1 term in the first term is zero and that the nk = 0 term38

of the third term is also 0, and hence these two sums are actually identical in magnitude but opposite in39

sign. A similar trick can be used to show that the second and fourth terms cancel. The last two major terms40

also cancel, which can be seen by setting the species richness summation variable to S′ = S − 1 and the41

abundance summation variable to nk′ = nk + 1 in the second to last term, and then noting that any terms42

with S′ = S0 − 1 or nk′ = N + 1 are zero, and hence that the two terms are the same in magnitude but43

opposite in sign.44

The k = 1 terms are essentially Eq. 12 from the main text. Under the non-interactive approximation is45

is clear that the birth-death k=1 terms (i.e. all but the last two k=1 terms) simply become46

l1n+1PT (n+ 1, t) + g1
n−1PT (n− 1, t)− (l1n + g1

n)P (n, t). (7)

This is because under this approximation the transition rates l1n = g1
n ≈ T1n depend only on the abundance47

of species 1, and hence they can be factored out of the sum over configurations, and that sum is just applied48

to the P (n, n2, . . . , ns, t) leading to the partial distribution according to Eq. 3. A similar thing happens with49

the speciation k = 1 terms. Since as explained in the main text I assume ρ(n, T, Ts) = f lossT νnρ′(T, Ts), the50

first part of these transition rates also factors out of the sum over configurations, leaving:51

f lossT ν(n+ 1)
∑

configs

ρ′(T, TS)P (n+ 1, . . . , nS−1, t)δnS ,1− f lossT νn
∑

configs

∑
TS+1

ρ′(T, TS+1)P (n, . . . , nS , t). (8)

The sum over configurations in the first of these terms involves a sumTS
. Since

∑
TS
ρ′(T, TS) = 1 in the52

first term, and sumTS+1ρ
′(T, TS+1) = 1 in the second term, these terms become simply53

f lossT ν(n+ 1)PT (n+ 1, t)− f lossT νnPT (n, t). (9)

Combining these with the birth death terms leads to Eq 12 from the main text.54
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Appendix S3: Derivation of Eq. 18 in main text55

Then, from the differential equation for the partial distribution, I derived a differential equation for the56

species abundance distribution of each type, where analogous to in the neutral case, that species abundance57

distribution is related to the partial distribution by58

ST (n, t) ≈ pT
∫ t

0

dt′PT (n, t− t′) (10)

Carrying out this integration on both sides of Eq. 12 from the main text leads to59

pT

∫ t

0

dt′
dPT (n, u)

du
= wTn+1S(n+ 1, t) + gTn−1S(n− 1, t)− (wTn + gTn )S(n, t) (11)

where u = t− t′. Transforming variables using dt′ = −du the integral on the left becomes60

−pT
∫ 0

t

du
dPT (n, u)

du
= −pT (PT (n, 0)− PT (n, t)) = −pT δn,1 + pTPT (n, t) = −pT δn,1 +

dST (n, t)
dt

(12)

where the last equality can be seen by using the Fundamental Theorem of Calculus (f(x) = d
dx

∫ x
0
dyf(y)) (Spi-61

vak, 1980):62

dST (n, t)
dt

= pT
d

dt

∫ t

0

dt′PT (n, t− t′)

= pT
d

dt

∫ t

0

duPT (n, u)

= pTPT (n, t) (13)

where the substiution u = t− t′ was used in the second line. Hence I arrive at the following set of differential63

equations for the SAD:64

dST (n, t)
dt

= wTn+1ST (n+ 1, t) + gTn−1ST (n− 1, t)− (wTn + gTn )ST (n, t) + δn,1pT (14)

This is Eq. 16 in the main text. The equilibrium solution to this differential equation has the following65

properties:66

wTn+1ST (n+ 1)− gTnST (n) = wTnST (n)− gTn−1ST (n− 1)

= . . .
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= wT2 ST (2)− gT1 ST (1)

= wT1 S(1)− pT = 0

The last equality arises because the total number of species of each type must be in equilibrium. That this is67

the correct equality can be seen in a way analogous to the neutral case above, i.e. by obtaining a differential68

equation for the total number of species of type T and setting it equal to 0. These equations imply the69

recursive relations:70

ST (1) =
pT
wT1

ST (2) =
gT1
wT2

ST (1)

...

ST (n) =
gTn−1

wTn
ST (n− 1) (15)

which imply that the equilibrium solution take the form:71

ST (n) =
pT g

T
n−1g

T
n−2 . . . g

T
1

wTnw
T
n−1 . . . w

T
1

(16)

which, with some further algebra yields Eq. 17 from the main text.72

Appendix S4: Neutral community predictions73

Here I derive the completely neutral community structure properties used to compare to the tradeoff case in74

the main text. In the completely neutral case, even under “zero-sum” dynamics, one can immediate write75

down a differential equation for the partial distribution P (n, t), i.e. the probability for a species to have n76

individuals at time t after it arose through speciation. This is because the transition probabilities depend77

only on the abundance of the focal species. It takes the form78

dP (n, t)
dt

= ln+1P (n+ 1, t) + gn−1P (n− 1, t)− (ln + gn)P (n, t) (17)

with79

ln = dn
N − n
N

+ νn (18)
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80

gn = d(N − n)
n

N
(19)

where N is the total number of individuals in the community and ν is the per-capita speciation rate, and81

the rate at which species speciate is taken to be proportional to their abundance (Alonso & McKane, 2004;82

Etienne et al., 2007). Note that Eqs. 18&19 as well as the transition probabilities for the tradeoff model83

in the main text assume that the new offspring replacing the dying individual can come from that dying84

individual. In contrast, Hubbell (2001) did not allow for such self-replacement, even though it seems to be85

more realistic and simplifies the algebra. The first term in Eq. 18 includes the rate at which individuals of86

the species die (dn) times the probability that the subsequent birth event comes from another species in the87

community (N−nN ). Eq. 19 can be understood similarly. Considering species abundances n much smaller88

than the community size N leads to the non-interactive approximation:89

ln ≈ dn+ νn (20)

90

gn ≈ dn (21)

Volkov et al. (2003) and Volkov et al. (2007) considered a non-interactive approximation like this, but did91

not explicitly model the effect of speciation on species’ abundances and hence ignored the increased rate at92

which species loose individuals due to speciation. Instead they took gn = bn where b is a birth rate, and93

assumed b < d. Here, speciation causes each species to have a negative population growth rate (specifically94

dE[n(t)]/dt = −νE[n(t)]. Species must be on average declining in abundance to make room for the new95

species, otherwise the total community size will blow up over time.96

One can use the differential equation for P (n, t) to derive a differential equation for the species abundance97

distribution (SAD) S(n, t) (i.e. the average number of species with n individuals), just as in the tradeoff98

case. I won’t repeat the details of that again. The result is:99

dS(n, t)
dt

= ln+1S(n+ 1, t) + gn−1S(n− 1, t)− (ln + gn)S(n, t) + δn,1νN (22)

Note that νN is the total rate at which species with one individual are arising in the community. At100

equilibrium we obtain the following:101

ln+1S(n+ 1)− gnS(n) = lnS(n)− gn−1S(n− 1)
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= . . .

= l2S(2)− g1S(1)

= l1S(1)− νN = 0

The last equality is a necessity for having an equilibrium number of species–the extinction rate must balance102

the speciation rate. These equations imply that the equilibrium solution satisfies the following recursive103

relations:104

S(1) =
νN

l1

S(2) =
g1
l2
S(1)

...

S(n) =
gn−1

ln
S(n− 1) (23)

which together imply that the equilibrium solution take the form:105

S(n) =
gn−1gn−2 . . . g1νN

lnln−1 . . . l1
=

∏n−1
i=1 di∏n

i=1(d+ ν)i
νN =

ν

d
〈N〉

(
(1 + ν/d)−1

)n
n

(24)

This is the log-series Sn = αx
n

n with x = (1 + ν/d)−1 and α = Nν/d.106

Note that the SAD in the zero sum case is also the log series in the limit of large community size (Alonso107

& McKane, 2004). As mentioned above, Etienne et al. (2007) have shown that the sampling probability,108

i.e. the probability of sampling a given set of abundances across species when examining a fixed number of109

individuals, are identical under the non-interactive approximation and the zero-sum approach. Ultimately110

both the zero-sum approach and the non-interactive approximation are approximations to the dynamics of111

real communities, where populations likely tend to in total remain near a community-level carrying capacity112

through community-level density dependence. Haegeman & Etienne (2008) showed that there is structural113

similarity for predictions of the likelihood of sampling a given vector of abundances across species (which114

I’ll call the “sampling probability”) between the zero-sum approach and an explicit community density115

dependence approach, but it is as yet unclear exactly how far off the zero-sum approach is. In any case, we116

use the zero-sum approach and non-interactive approximation as a good starting point for comparison with117

a tradeoff model derived from a similar approach and approximation.118

We can use Eq. 24 for the SAD to derive other properties of the community. The total species richness119
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is:120

S =
∞∑
n=1

S(n) = −α log(1− x) =
ν

d
N log

(
1 + ν/d

ν/d

)
(25)

where I used 1 − x = ν/d
1+ν/d . Note that the bigger the ν, the more species there will be in the same size121

community. The bigger the d, the faster the turnover rate of populations and hence the higher the extinction122

rate and the lower the species richness. We can also verify that the expected number of individuals in the123

community over time for equilibrium community configurations comes out to N :124

N =
∞∑
n=1

Sn · n = α

∞∑
n=1

xn = α
x

1− x
=
ν

d
N

1
1+ν/d

ν/d
1+ν/d

= N (26)

The mean abundance of extant species is:125

〈n〉 =
N

S
=

1
ν
d log

(
1+ν/d
ν/d

) (27)

Note that bigger ν and lower d lead to a higher number of species and hence a lower mean abundance of126

extant species.127

Appendix S5: Simulations of Case 2 to verify accuracy non-interactive approxi-128

mation129

In the main text I used a “non-interactive” approximation to the zero-sum dynamics approach to derive an130

analytical prediction for the species abundance distribution of each type in the tradeoff model. To verify131

the accuracy of this approximation, I carried out simulations of zero-sum dynamics for one of the speciation132

dynamics scenarios. Specifically, I simulated Case 2 of Fig. 1 of the main text, but for a smaller community,133

total community size N = 10,000. In other words, I carried out simulations in which the rate at which134

a species speciates is independent of its life history type T , and the rate at which species of a given life135

history type arise is independent of their life history type T , i.e. f lossT and fgainT were both independent of136

T . Figures 1 and 2 below show that the non-interactive approximation agrees well with simulation results137

for this smaller tradeoff community.138
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Figure 1: Simulation and “non-interactive” approximation results for Case 2 of Fig. 1 of the main text, but
with a smaller community size of N = 10,000. Note that the life history type T is assumed to range over
integer values from 1 to 100, and that the speciation rate per average death rate (ν) is 5× 10−4. Simulation
results are an average over 1000 different equilibrium communities. Shown are the number of species of a
given type, ST =

∑
n ST (n) and the average abundance of a species present with a given life history type

〈nT 〉 =
∑
n ST (n) · n/ST . The “non-interactive” approximation is calculated using Eq. 20 of the main

text. Although the total abundance of species of a given type T is not shown, since NT = ST · 〈nT 〉, the
“non-interactive” result should agree well with the simulation result for that property as well. For this case
the expectation is that NT is essentially independent of T .
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Figure 2: Simulation and “non-interactive” approximation results for Case 2 of Fig. 1 of the main text, but
with a smaller community size of N = 10,000. Note that the life history type T is assumed to range over
integer values from 1 to 100, and that the speciation rate per average death rate (ν) is 5× 10−4. Simulation
results are an average over 1000 different equilibrium communities. Shown is the fraction of species with

abundance n, S(n)
S =

∑
T
ST (n)

S . The “non-interactive” approximation is calculated using Eq. 19 of the main
text. Although not shown on the graph, the total number of species in the community predicted by the
non-interactive approximation (S = 72.5) also agrees well with the average simulation result (S = 72.9).
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