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Abstract— Although guidance of all aircraft is affected by developedin[4,17,18] as an extension of unbiased minimum
wind disturbances, micro-UAVs are especially susceptibleTo  variance filtering [12].

estimate unknown wind disturbance, we consider two illus-, yhis paper, we extend the techniques in [18] for esti-
trative scenarios for planar flight. In the first scenario, we

assume that measurements of the heading angle are available Mating unknown external disturbances for nonlinear system
while, in the second scenario, we assume that measurements This technique is based on the unscented Kalman filter

of the heading angle are not available. Since the disturbarc (UKF) [9, 10] for state estimation for nonlinear systems,
estimation problem is nonlinear, we develop an extension of which is an example of a sigma point Kalman filters
the unscent_ed Kglman filter that provides an estimate of the (SPKF) [24]. Recent work [10,24] illustrates the improved
unknown wind disturbance. Furthermore, we show through
simulations that, when the heading angle is not measured, a P€rformance of SPKFs compared to the extended Kalman
kinematic ambiguity is introduced. However, when the inital ~filter (EKF), which is prone to numerical problems such as
heading angle is known and the subsequent heading angle is initialization sensitivity, bias (divergence), and irtstiy for
not measured, this kinematic ambiguity is resolved and acaate  strongly nonlinear systems.
estimates of the wind velocity are obtained. The nature of the disturbance estimation (input recon-
struction) problem depends on the type of measurements
available. In the present paper we consider two illusteativ
Small and micro air vehicles are increasingly being usescenarios for planar flight. In the first scenario, we assume
to improve situational awareness by conducting survaian that measurements of the heading angle are available.dn thi
patrolling, and convoy protection [15]. These vehicles-procase, the estimation problem is linear, and the technigties o
vide imagery reconnaissance capability out to five to telf 17,18] are applicable. In the second scenario, we assume
miles at the company/platoon/squad level. Due to their smdhat measurements of the heading angle are not available. In
size, these aircraft have limited payload capacity andllysuathis case, the disturbance estimation problem is nonlinear
carry fixed cameras (which require accurate pointing, ther@nd we therefore develop an extension of the unscented
fore accurate knowledge of heading) and commercial off-théalman filter that provides an estimate of the unknown
shelf autopilots (which often have poor heading measurémegisturbance.
accuracy) [6]. After describing the basic setting in Section 2, the two
Although guidance of all aircraft is affected by the atmosScenarios described above are developed in sections 3 and
spheric motion relative to the Earth, that is, wind, micro4. For each scenario, we consider flight involving straight
UAVs are especially susceptible. Localized wind-field -estiline and circular motion in the presence of a wind field that
mation, especially winds at low velocity, is difficult. Cans Vvaries as a triangular waveform in both of its components. In
quently, alternative means must be used to assess theseffdbe case of unknown heading angle, we show that wind field
of wind. Efforts in this direction include wind estimatiohg, —estimation requires knowledge of the initial heading amgle
19], and techniques for path planning in wind, for exampl@rder to remove a kinematic ambiguity.
[1,13], which assume constant known wind fields, and [20,
22], which make use of gimbaled cameras. Il. WIND-FIELD ESTIMATION
In the present paper we develop a technique for using
available measurements to estimate the local wind-field ve-
locity. To do this, we use state-estimation techniques that

|. INTRODUCTION

Consider the planar flight equations

have the ability to reconstruct exogenous disturbanceasgn T = Vacyw cos ¥ + Wiy /g cos ¢, (2.1)
that are not d|regtly measured. _ § = Vac)w sin ¢ + Viy g sin ¢, (2.2)
In the case of linear systems, early work on reconstructing :
. . . . Y =w, (2.3)
exogenous signals includes input reconstruction throygh s

tem inversion [14,21], while methods using optimal filtersyhere  and y are the ground coordinates of the vehicle,

are developed in [2,5,8,23]. More recently, a technique oV, is the airspeed of the vehicle,is the heading angle,

reconstructing unknown exogenous disturbances has begfis the steering angle ratéyy r is the wind speed, andis
the angle of the direction of the wind as measured fronithe
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velocities is illustrated in Figure 1. Throughout this pgpe problem can be described as follows. Assume that, for all
we assume that measurementsaindy are available from % > 1, the known data are the measuremeptse R™,
GPS, and that measurementslofc v are available from the inputsuz—; € RP, and the statistical properties of
an airspeed sensor that measures angle of attack andidesty, wy_; and v,. The initial state vectorry, € R" is
We consider the problem of estimating the unknown win@éssumed to be Gaussian with meanand error-covariance
speedViy i and anglep of the wind. Py® £ E [(zo — &0)(z0 — 20)"]. The process noise;_1 €
R4, which represents unknown input disturbances, and the
Vac/e measurement noisg, € R™, concerning inaccuracies in the
measurements, are assumed white, Gaussian, zero mean, and
mutually independent with known covariance matriéBs 1
and Ry, respectively. Next, define the cost function

Vac/w J(@r) £ plarl(y, - yp)), (3.9)
which is the conditional probability density function ofeth
7 state vectorz;, € R™ given the past and present measured
Fig. 1. Schematic of relationship between components of  datayi,...,y,x. Under the stated assumptions, the maxi-

velocities in an Earth-fixed frame and the body-fixed frame. mization of (3_9) is the state estimation problem, while the

maximizerz;, of J is the optimal state estimate.
The optimal state estimatg, is given by the Kalman filter

1. M EASUREDHEADING ANGLE o
) _ _ ) ) [11], whoseforecaststep is given by
We first consider the case in which the heading angle

is measured. In this case, we use (2.1) and (2.2) to estimate Zxjx—1 = Ar—1%k—1 + Br_1ug_1, (3.10)
Vay,e and ¢. By defining W = Apa PPTAL 4 G Qi Gy,
N 3.11
Vv /Bx = Vw/E cos ¢, (3.1) . . (3.11)
" A v in ¢ (3.2) Yklk—1 = Ckxk\kfla (3.12)
= sin ¢, . o
W/By = TW/E Pl = CwPii_Cl + Ry, (3.13)

it follows that (2.1), (2.2) are linear in the unknowng; /i « Py _ paz T (3.14)
; klk—1  —  Lkk—1Ck> .

and Viy /g,y Once estimates of they i and Viy g, are

obtained, the wind speédy r and anglep can be obtained \where Py 2 E[(xk — Sappo) (@ — Epp_1)T],

using the relationships P;ffé_l A E [(yk — i) (yn — gk‘kil)T], and
zy A - - T
Vv /g = \/VVQV/E,X + VVQ\,/EJ, (3.3) Pk‘kfl = _E _[(xk - fc_k\k—_l)(yk — Yrjk—1) ] and whose
v data-assimilatiorstep is given by
a1 [ IW/Ey . B
¢ = tan (Vw/E,x) . (34) Ky = Pk\g;cfl(Plg\ifl) 17 (3-15)
Thus the problem is stated as Tk = rp-1 + Kie(Yr = Grjp-1), (3.16)
Tr T _ vy T
Problem 1. Equations: B = By = BBy 1 B (3.17)
i = Vac/w cost + Vay/max (3.5) wherg pre £ E [(zk —_fck)(xk — &) 7] i_s the error-
) ) ’ covariance matrix and(; is the Kalman gain matrix. The
g =Vacywsiny + Wk, (3.6) notationzy;_; indicates an estimate af, at time k based
Available measurements; y, Vac,w, andz. on information available up to and including time— 1.
Unknowns:Vay /s and Vay /.y - Likewise, z;, indicates an estimate of at time k& using

. o ) ) . information available up to and including time Model
Since Problem 1 is linear in the states and linear in thﬁ}formation is used during the forecast step, while measure

ur_lk_nownsVW_/EM and Viw/k,y, We can use the unblqsed ment data are injected into the estimates during the data-
minimum-variance filter [18] for linear systems to estimate, cqimilation step, specifically, (3.16)

the states and the unknown inputs. We briefly review the
Kalman filter and the unbiased minimum-variance filter. B. Unbiased Minimum-variance Filter
A. Kalman Filter Consider the system

For the linear stochastic discrete-time dynamic system 2r = Ap 1251 + Bo1tp1 + Hy1ep1 + Gro1Wh1

rpy = Ap_1@k—1 + Broiupg—1 + Gr_rwi—1, (3.7) (3.18)
yr = Crap + v, (3.8)  wyr = Cray + v (3.19)

where A1 € R"™™, By 1 € R"P Gy € R" 4, wherexg, yg, ug_1, €x—1, Ax_1, Br_1,Gr_1 and Cy are
and C, € R™*" are known matrices, the state-estimatiordefined as in section llI-A, while,_; € R’ represents the



unknown input andH;,_; € R™*! is the input matrix. We
assume thatd,_1, Br_1, Ck, Dy, and H,_, are known,

while ej._1 is unknown.

Due to the presence of the unknown non-zero-mean ter
H._1e,_1, the Kalman filter estimate in Section IlI-A is
biased in general. The optimal unbiased state estimgais
given by the Unbiased Minimum-Variance filter (UMV) [18], wind
whoseforecaststep is given by (3.10) - (3.14), and whose

data-assimilatiorstep is given by

(3.22)
(3.23)
(3.24)

AN
Vie = CpHp_q,

AN _ _ _
M = (Ve (P ) V) ' (p )™t (8:21)
L. = Hk,lﬂk+P§7€71(Pg|@,’€71)’1(1—Vka),
Ty = Tpp—1 + LYk — Grjk—1)s
P — P]j‘”fcfl—LkP,fﬁﬁng,

whereL,, is the UMV filter gain matrix. Finally, the estimate

of the unknown signat;_ is given by

ék,1 = H]];,lLk(yk — ij?ldk—l - Dkuk).

(3.20)

(3.25)
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Fig. 3. Flight path of the aircraft in the presence of wind

disturbance. The steering angle is an alternating sequence
of zeros and ones, which represents the aircraft flying in a
straight lines and in circles alternately. The two arrowsvsh
the extremities of the wind direction, which is a time-vauyi

C. Results: Wind Estimation with Measured Heading Angle riangular waveform.

The steering angle is chosen to be alternating sequences
of zeros and ones, which represents the aircraft flying afively. Figure 4 compares the actual flight path and their
ternately in a straight line and in circles. The wind-velgci estimates using the Kalman filter and the UMV filter. Figure
component profiles are chosen to be triangular waveforms.shows a magnified version of the time interval from 32 sec
Figure 2 shows the flight path in the absence of windo 48 sec of Figure 4. Although measurementscadnd y
disturbance, while Figure 3 shows the flight path in theositions are available, the state estimates using the UMV

presence of the wind disturbance.
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Fig. 2. Flight path of the aircraft in the absence of wind

disturbance. The steering angle is an alternating sequeince
zeros and ones, which represents the aircratft flying in abtra
lines and in circles alternately.

Since Problem 1 is linear in the unknown wind-velocit

filter are seen to be better than the state estimates using
the Kalman filter. Finally, Figure 6 shows the actual wind
velocity components and their estimates from (3.25) fohbot
the UMV filter and the Kalman filter, while Figure 7 shows

a zoomed in portion of the interval between 32 sec and 48
sec from Figure 6.

In practice, although measurements of the heading angle
v are available, they are often unreliable due to the size
and cost restrictions of the sensors on a micro-UAV. Hence,
we next consider the case in which the heading angie
unknown.

IV. HEADING ANGLE NOT MEASURED

We now assume that measurements of the heading angle
1 are not available. Sinceé must be estimated, we consider
the complete equations (2.1) - (2.3). Thus the problem can
be stated as

Problem 2.
= Vacyw cos ¥ + Vi /g x 4.1)
Y = Vacywsiny + Vv /gy, (4.2)
U =w. (4.3)

Available measurements:;, y, V¢ w, andw.
yUnknownsn/), Vw /e and Viy /g -

components, we apply the UMV filter (3.20)-(3.24) and In this case, since is not measured the state equations
(3.25) to estimate the states and unknown inputs, respeare nonlinear. We thus require a filter for nonlinear systems
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Fig. 4. Actual flight path and estimate of the flight path using
the Kalman filter and the unbiased minimum-variance filter in
the presence of an unknown wind disturbance.
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Fig. 5. Actual flight path and estimate of the flight path using
the Kalman filter and the unbiased minimum-variance filter in
the presence of an unknown wind disturbance.

A. State Estimation for Nonlinear Systems

80

Actual Wind Velocity
60 ( {| — — - UMV Estimate 1
| ! I — — Kalman Estimate

400181 |

50 100 150

60 T

| Actual Wind Velocity
401 | — — - UMV Estimate .
i I I } A b M — - — Kalman Estimate
20T M | " g
V‘/,\,\(\ A {‘V\l\‘/}\’\l\\/\/ I T
AR R AT R R AV R TR TR TR AT RVRATRTRTAVE TA TS
\f y f | J
-20f | i
—40k ; i
60 . I .
50 100 150
Fig. 6. Actual wind velocity and filter estimate when

measurements of the heading angle are available.

and second-order moments. We thus use an approximation
based on the classical Kalman filter to provide a suboptimal
solution to the nonlinear case.

B. Unscented Kalman Filter

First, for nonlinear systems, we consider the unscented
Kalman filter (UKF) [9] to provide a suboptimal solution
to the state-estimation problem. Instead of analyticaty |
earizing (4.4)-(4.5) and using (3.10)-(3.17), UKF employs
the unscented transform (UT) [10], which approximates the
posterior meary € R™ and covariancé’¥? € R™*™ of a
random vectory obtained from the nonlinear transformation
y = h(z), wherex is a prior random vector whose mean
Z € R™ and covariance?*® € R™*" are assumed known.
UT vyields the actual meaf) and the actual covariandev¥
if h = hi + hs, where h; is linear andh, is quadratic
[10]. Otherwise,j; is a pseudo meamnd PYY is a pseudo
covariance

Consider the nonlinear stochastic discrete-time dynamic

system

zpy = fr-1(Te—1, Uk—1, Wr-1), (4.4)
ye = hi(zk) + v, (4.5)

where f_1 : R" x RP x R? — R™ and hy, : R — R™

are, respectively, the process and observation models. Th
objective of the state-estimation problem is, for &al> 1,
to maximize (3.9). However, the solution to this proble
is complicated [3] by the fact that, for nonlinear systems,
,Yr)) is not completely characterized by its first

p(@e|(ys, - -

UT is based on a set of deterministically chosen vectors
known as sigma points. To capture the megn, of the
augmented prior state vector

22, 2 [ L1 ] (4.6)

WE—1

Wﬁereaz:z_1 € R™ andn, £ n+gq, as well as the augmented
morior error covariance

pre 0
prea A k—1|k—2 nxq ] , 47
et |: 0q><n Qkfl ( )



the sigma-point matrix(,_; € R"=*(27a+1) s chosen as

colp(Xp—1) =84,
COli(:X:kfl) é 572—1
+ /X el [ (Pzz3) 7]
i= 11 . )y Na,
coliyn, (Xg—1) =df, i
— /(na+ ) col; [(P,ff‘f) / ] ,
1=1,...,n4,,
with weights
(m) a _ A
o a na/—\i- A
() & 2
2 1—
Yo Na + A + "+ 5, )
(m) & () & (m) & () &
Vi = Y% = Yitna = Yitn. — 2(na + A)’
i= 17 . y Na,
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Fig. 7. Actual wind velocity and filter estimate when

wherecol; [(')1/2] is theith column of the Cholesky square measurements of the heading angle are available.
root,0 < <1,3>0,x >0, and\ £ a?(k + n,) — na.
We seta = 1 andx = 0 [7] such thatA = 0 [9] and set
B = 2 [7]. Alternative schemes for choosing sigma pointdhe unbiased minimum-variance unscented (UMVU) filter are

are given in [9].

The UKF forecastequations are given by

given by (4.8) - (4.15). Thelata-assimilatiorequations for
the UMVU filter are given by (3.20) - (3.24).

Vet = [#Rr ali, + Vi N EEDY 8L, — Va0 (B

(4.8)

coli(Xgp—1) = fe—1(coli(Xf_1), uk—1, coli(Xy 1)), i=0,...,2na, (4.9)
2N,

Brper = 37 eoli(Xg ), (4.10)
i=0
2N,

P = 3 A leoli(Xg_y) — dapema][eoli (X 1) — Frat] T (4.11)
1=0

coli(ka_l) = h,k (COli(:X:i“Q,l)), .= O, ceey 27’La, (412)
2N,

Ope—1 = Z%‘(m)COli(yMk—l)v (4.13)
1=0
2N,

P, = Z%‘(C)[Coh(ykw—l) — Grpe—1][coli(Yrie—1) — Drpp—1)" + R, (4.14)
1=0
2N,

Pty = > leoli(Xf ) — drgr])cols (Y1) — an] T, (4.15)
i=0

xe D. Results: Wind Estimation with Heading Angle not Mea-
where xﬁ,—l 2 Xpq, X¥, € R™CtD and  gyred
k—1

v € RI*(Znatl) The UKF data-assimilationequations

are given by (3.15)-(3.17).

C. Unbiased Minimum-variance Unscented Filter

To estimate the states and the unknown inputs in Problem
2, we use the UMVU filter described above. We use the
same simulation parameters as in the known heading case.
Figure 8 shows the actual wind velocity components and

Next, for nonlinear systems with unknown inputs, weheir estimates obtained from the UMVU filter.
consider an extension of the UKF along the lines of the linear As can be seen from Figure 8, the estimates of the wind
UMV filter. Thus, to obtain the pseudo mean and the pseudelocity do not match the actual wind velocity. This is due
error covariances we use the unscented transform, and to &sthe fact that there is a kinematic ambiguity because of the
timate the states and unknown inputs, we use the expressiammsnbined effect of unknown heading angle and unknown
derived for the UMV filter. Thus, théorecastequations for wind velocity. This kinematic ambiguity is resolved by



assuming that the initial heading angle is known. This iglisturbance. When the heading angle is not measured, a kine-
a reasonable assumption in practice since many small anshtic ambiguity was introduced. However, when the initial
micro UAV's are launched from catapults. When the initiaheading angle was known and the subsequent heading angle
heading angle is assumed to be known, but the subseques not measured, this kinematic ambiguity was resolved and
heading is not measured, the estimates of the wind velociaccurate estimates of the wind disturbance were obtained.

components using the UMVU filter are shown in Figure 9.
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Fig. 8. Actual wind velocity and filter estimate when the haegd [9]
angle is not measured. Due to a kinematic ambiguity, aceurat
estimates of the wind are not obtained. [10]
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Fig. 9. Actual wind velocity and filter estimate when the hegd
angle is not measured. When the initial heading is assumée to [19]
known, the kinematic ambiguity is resolved and accuratenests

of the wind disturbances are obtained. [20]

V. CONCLUSIONS

To estimate unknown wind disturbances, we considere[él]
two illustrative scenarios for planar flight. In the first sce
nario, we assumed that measurements of the heading anB%
are available. In this case, since the estimation problem
is linear, we applied techniques of [18] to estimate thé&3]
wind disturbance. In the second scenario, we assumed that
measurements of the heading angle were not available. In the
second scenario, since the disturbance estimation problem
is nonlinear, we developed an extension of the unscented
Kalman filter that provided an estimate of the unknown wind
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