
Alex Silk
Heim & Kratzer “Cheat Sheet”(ish)

Sets, relations, functions jargon
• {o ∶ o = Penny} = the set of things o such that o is identical to Penny = {Penny}
• relation: a set of ordered pairs ⟨a, b⟩ (where ⟨a, b⟩ is the pair of elements a and b in that order)
• A function f ∶X → Y is a relation that associates any element in X (the domain of f) with a

unique element in Y (the range of f)— formally, a set S of ordered pairs such that if ⟨a, b⟩ ∈ S
and ⟨a, c⟩ ∈ S, then b = c.

– e.g., the relation fi = {⟨1,Alice⟩, ⟨2,Bert⟩, ⟨3,Alice⟩} is a function; the relation Ri =
{⟨1, 1⟩, ⟨1, 2⟩} isn’t a function.

– domain of a function: the set of (possible) inputs to the function (i.e., first members of
the pairs). the domain of fi = {1, 2, 3}

– range of a function: the set of (possible) outputs of the function (i.e., second members of
the pairs). the range of fi = {Alice, Bert}

• λ notation (pp. 36–37): Read “[λα ∶ϕ . γ]” as

– (a) “the function which maps every α such that ϕ to 1 iff γ” if γ is a sentence,

* Read “[λx ∶ x = Percy or x = Colin . x jumped]” as “the function which maps every x
such that x = Percy or x = Colin to 1 iff x jumped”

– (b) “the function which maps every α such that ϕ to γ” otherwise

* Read “[λx ∶ x = Percy or x = Colin . Penny]” as “the function which maps every x
such that x = Percy or x = Colin to Penny”

Components of our semantic theory
• Lexicon

– dictionary specifying the conventional meanings of words (“lexical items”)
– includes “lexical entries”— e.g. JAliceK = Alice; JjumpedK = [λxe . x jumped]

• Interpretation rules: rules specifying how to determine the meanings of (complex) expressions
from the meanings of their parts (e.g., Function Application; see below)

• J K: the interpretation function, whichmapswell-formed expressions— i.e., trees, or words with
a particular structure, as determined by the syntax— to their meanings (“denotations”)

– in our theory, the meanings of expressions are treated as elements in a “domain” of things
in the world…

• Semantic type: a kind of thing. Domain: a set of things of a given semantic type. (p. 28)
– De = D = the set of things of type e = the set of individuals (say, {Alice, Bert, …})
– Dt = the set of things of type t = the set of truth values = {0, 1} (where 0 represents falsity

and 1 represents truth)

1

– D⟨a,b⟩ = the set of things of type ⟨a, b⟩ = the set of functions mapping elements in Da to
elements in Db

* defined as follows: (i) e and t are types; (ii) if σ and τ are types, then ⟨σ, τ⟩ is a type;
(iii) nothing else is a type.

* e.g., D⟨e,t⟩ is the set of functions from individuals (type e) to truth values (type t)

* e.g., D⟨⟨e,t⟩,e⟩ is the set of functions from elements of D⟨e,t⟩ (type ⟨e, t⟩, as defined
above) to individuals (type e)

– (NB:we’ll often abbreviate lambda expressions of the form “[λα ∶α ∈ Dτ .γ]” as “[λατ .γ]”;
more generally, we’ll abbreviate “[λα ∶ψ ∧ α ∈ Dτ .γ]” as “[λατ ∶ψ.γ]”— i.e., indicating
constraints that the variableα is of such-and-such semantic type τ via the subscriptedατ .)

Inventory of justifications in derivations (details on next page):
• Interpretation rules

– Function Application (FA): p. 44, 95
– Predicate Modification (PM): p. 65, 95
– Pronouns & Traces (PT): p. 111
– Predicate Abstraction (PA): p. 114, 186
– Terminal Nodes / Lexical entry (“by lexical entry for…”): p. 95
– Semantic vacuity (“by vacuity of ‘a’/‘is’/‘to’/‘that’ ”): p. 62

• Formal conventions
– Convention (9): p. 94
– Convention (11): p. 112

• Math-ish
– λ-reduction
– Assignment modification: p. 112

2

Details:

• Interpretation rules

– Function Application (FA): p. 44, 95

* ≈ If α = βγ and the domain of JβKg contains JγKg, then JαKg = JβKg(JγKg)
* e.g., JPercy laughedKg = JlaughedKg(JPercyKg)

– Predicate Modification (PM): p. 65, 95

* ≈ If α = βγ and JβKg, JγKg ∈ D⟨e,t⟩, then JαKg = [λxe . JβKg(x) = 1 and JγKg(x) = 1]

* e.g., Jgreen pigKg = [λxe . JgreenKg(x) = 1 and JpigKg(x) = 1]

– Pronouns & Traces (PT): p. 111

* ≈ JαnKg = g(n)
* e.g., Jit4Kg = g(4)
* e.g., Jt8Kg = g(8)

– Predicate Abstraction (PA): p. 114, 186

* ≈ If α = n γ, then JαKg = [λxe . JγKgx/n]
* e.g., Jwhich3 t3 pigKg = [λxe . Jt3 pigKgx/3]

– Terminal Nodes / Lexical entry (“by lexical entry for…”): p. 95

* e.g., JpigK = [λxe . x is a pig]

– Semantic vacuity (“by vacuity of ‘a’/‘is’/‘to’/‘that’ ”): p. 62

* e.g., Ja pigKg = JpigKg
• Formal conventions

– Convention (9): p. 94

* e.g., JpigKg = JpigK
– Convention (11): p. 112

* e.g., Jwhich1 t1 pigK = Jwhich1 t1 pigK∅
• Math-ish

– λ-reduction

* e.g., [λxe . [λye . y likes x]](Percy)(Penny) = [λye . y likes Percy](Penny)

– Assignment modification: p. 112

* “gx/n” ≈ “the unique assignment which maps n to x and is otherwise identical to g”

* e.g., Jt3 pigK∅y/3 = Jt3 pigK[3→y]

3

Presupposition

• Formal implementation:

– undefined semantic values: constraints on function domains, i.e. partial functions

– JαK = [λh ∶ .⋯]

– e.g., JtheK = [λf ∶ f ∈ D⟨e,t⟩ and there is a unique x such that f(x) = 1 . the unique y such
that f(y) = 1]

– e.g., JThe cat is happyK = 1 iff the unique y such that y is a cat is happy, provided that
there is a unique x such that x is a cat

• Diagnostics:
– “Hey, Wait a Minute” test

* Presupposed implications, unlike truth-conditional implications, often can only be
challenged indirectly

* e.g., if I said ‘The Waitrose in Edgbaston is exciting’, and you wanted to challenge my
implication that there is a (unique) Waitrose in Edgbaston, you would need to say
something like ‘Hey, wait a minute; I had no idea there was a Waitrose in Edgbaston’
rather than simply ‘No’.

* Contrast: if I said ‘Waitrose is exciting’, and you wanted to challenge my implication
that Waitrose is exciting, it would be weird to say ‘Hey, wait a minute; I had no idea
Waitrose was exciting’. You would just say ‘No, Waitrose isn’t exciting’.

– “Family of Sentences” test

* Presupposed implications, unlike truth-conditional implications, are typically still
taken to be commitments of the speaker evenwhen the sentence is embedded under
clausal negation, in a question, or in a supposition.

* ‘The Waitrose in Edgbaston is exciting’⇒ there is a unique Waitrose in Edgbaston
‘It’s not the case that the Waitrose in Edgbaston is exciting’⇒ there is a unique
Waitrose in Edgbaston
‘Is theWaitrose inEdgbaston exciting?’⇒ there is a uniqueWaitrose in Edgbaston
‘Maybe the Waitrose in Edbaston is exciting’ ⇒ there is a unique Waitrose in
Edgbaston

* ‘Waitrose is exciting’⇒Waitrose is exciting
‘It’s not the case that Waitrose is exciting’⇏Waitrose is exciting
‘Is Waitrose exciting?’ ⇏Waitrose is exciting
‘Maybe Waitrose is exciting’⇏Waitrose is exciting

– Satisfying these tests is taken as evidence that an implication is linguistically presupposed.

4

* E.g., the implication of ‘The Waitrose in Edgbaston is exciting’ that there is a unique
Waitrose in Edgbaston would be treated as presupposed. It’s a condition that must
be accepted in order for the sentence to be felicitously used, or for one to be in a
position to evaluate it for truth or falsity.

* Contrast: the implication of ‘Waitrose is exciting’ that Waitrose is exciting is treated
as part of the sentence’s truth conditions.

5

Alex Silk
Heim & Kratzer, Chapter 1, pp. 9–10

a. true iff a = b
b. true
c. true
d. true iff anyone who likes a likes b and anyone who likes b likes a (special case: a = b)
e. true
f. true
g. true iff either (i) no one likes anyone, or (ii) someone likes herself and everyone is

liked by someone or other
● The Left Set (LS) is {x∶{y∶ y likes x} = ∅}. That is, it is the set of individuals x

such that the set of individuals y who like them is empty: {x∶no one likes x},
the set of people whom no one likes.

● The Right Set (RS) is a bit trickier: The inner condition {x∶ x likes x} = ∅ is the
condition that no one likes themselves. But note that this condition is indepen-
dent of the outer variable x; the outer variable x doesn’t “bind” anything. We
could have specified RS equivalently with {x∶{y∶ y likes y} = ∅}.
What happens when the condition is independent of the outer variable? The
set is either the set of all individuals D (if the condition is true), or the empty
set ∅ (if the proposition is false). (Compare: (a) What is {z∶ 2 + 2 = 4}? To be
in the set, you have to be such that 2+2=4. But since 2+2=4, every individual z
is such that 2+2=4. (b) What is {v∶ 2 + 2 = 5}? To be in the set, you have to be
such that 2+2=5. But 2+2 doesn’t equal 5. So, no v is such that 2+2=5.)
So, RS =D if the inner condition of the RS is true, i.e. if no one likes themselves.
And RS = ∅ if the inner condition is false, i.e. if someone likes herself.

● So, returning to the original question, when is LS = RS? When either (i) LS =
RS = D, or (ii) LS = RS = ∅. Take each case in turn:
(i) LS = D. So, everyone is such that no one likes them, i.e. no one is liked by
anyone. If RS also equals D, then the inner condition of RS must be true, i.e.
no one likes themselves. So, LS = RS = D when no one likes anyone.
(ii) LS = ∅. So, the set of individuals whom no one likes is empty, i.e. everyone
is liked by someone or other. If RS also equals ∅, then the inner condition of
RS must be false, i.e. someone likes herself. So, LS = RS = ∅ when everyone is
liked by someone or other, and someone likes herself.
So, LS = RS just when (i) no one likes anyone, or (ii) everyone is liked by some-
one and someone likes herself.

1

Alex Silk
Heim & Kratzer, Chapter 2–3ish sample derivation

It’s-not-the-case-that Ann introduced Fluffy to Percy.
• (NB: ¬ = it’s-not-the-case-that)

S ∶ t

¬ ∶ ⟨t, t⟩ t

Ann ∶ e ⟨e, t⟩

⟨e, ⟨e, t⟩⟩

introduced ∶ ⟨e, ⟨e, ⟨e, t⟩⟩⟩ Fluffy ∶ e

e

to ∶ ∅ Percy ∶ e

Lexical entries:JAnnK = AnnJFluffyK = FluffyJPercyK = PercyJintroducedK = [λxe.[λye.[λze . z introduced x to y]]]J¬K = [λpt . p = 0]
JSK

= (by FA)J¬K(JAnn introduced Fluffy to PercyK)
= (by FA)J¬K(Jintroduced Fluffy to PercyK(JAnnK))
= (by FA)J¬K(Jintroduced FluffyK(Jto PercyK)(JAnnK))
= (by FA)J¬K(JintroducedK(JFluffyK)(Jto PercyK)(JAnnK))
= (by vacuity of to)J¬K(JintroducedK(JFluffyK)(JPercyK)(JAnnK))
= (by lexical entry for Fluffy)J¬K(JintroducedK(Fluffy)(JPercyK)(JAnnK))
= (by lexical entry for Percy)J¬K(JintroducedK(Fluffy)(Percy)(JAnnK))
= (by lexical entry for Ann)J¬K(JintroducedK(Fluffy)(Percy)(Ann))
= (by lexical entry for introduced)J¬K([λxe.[λye.[λze . z introduced x to y]]](Fluffy)(Percy)(Ann))

1

= (by λ-reduction)J¬K([λye.[λze . z introduced Fluffy to y]](Percy)(Ann))
= (by λ-reduction)J¬K([λze . z introduced Fluffy to Percy](Ann))
= (by lexical entry for ¬)

[λpt . p = 0]([λze . z introduced Fluffy to Percy](Ann))
= (by λ-reduction)

1 iff [λze . z introduced Fluffy to Percy](Ann) = 0
iff (by λ-reduction)

it’s not the case that Ann introduced Fluffy to Percy

2

Alex Silk
Heim & Kratzer, Chapter 4 selected exercises

(1) Chapter 4, p. 63
Kaline is a gray cat.

S ∶ t

Kaline ∶ e ⟨e, t⟩

is ∶ ∅ ⟨e, t⟩

a ∶ ∅ ⟨e, t⟩

gray ∶ ⟨e, t⟩ cat ∶ ⟨e, t⟩

JSK
= (by FA)Jis a gray catK(JKalineK)
= (by semantic vacuity of is)Ja gray catK(JKalineK)
= (by semantic vacuity of a)Jgray catK(JKalineK)
= (by lexical entry for Kaline)Jgray catK(Kaline)
= (by PM)

[λxe . JgrayK(x) =JcatK(x) = 1](Kaline)
= (by lexical entry for gray)

[λxe . [λye . y is gray](x) =JcatK(x) = 1](Kaline)
= (by lexical entry for cat)

[λxe . [λye . y is gray](x) = [λze . z is a cat](x) = 1](Kaline)
= (by λ-reduction)

[λxe . x is gray and x is a cat](Kaline)
= (by λ-reduction)

1 iff Kaline is gray and Kaline is a cat

1

(2) Chapter 4, p. 76
a. The killer of the black cat escaped.

S

the
killer

of
the black cat

escaped

b. (i) There’s a unique killer of a unique black cat, but that killer didn’t escape.
(ii) It’s not the case that there’s a unique black cat.
(iii) There’s a unique black cat, but it’s not the case that there’s a unique killer.

(3) Chapter 4, Exercise 2, p. 80
a. (i) b1

(ii) b2
(iii) there is no apple that fits that description

b. JleftmostK = [λxe . x is leftmost]Jthe leftmost dark apple-in-the-rowK
= (by FA)JtheK(Jleftmost dark apple-in-the-rowK)
= (by PM)JtheK([λxe . JleftmostK(x) = Jdark apple-in-the-rowK(x) = 1])
= (by lexical entry for leftmost)JtheK([λxe . [λye . y is leftmost](x) = Jdark apple-in-the-rowK(x) = 1])
= (by PM)JtheK([λxe . [λye . y is leftmost](x) = [λze . JdarkK(z) = Japple-in-the-rowK(z) = 1](x) = 1])
= (by lexical entries for dark, apple-in-the-row)JtheK([λxe . [λye . y is leftmost](x) = [λze . [λue . u is dark](z) =

[λv . v is an apple-in-the-row](z) = 1](x) = 1])
= (by λ-reduction)JtheK([λxe . [λye . y is leftmost](x) = [λze . z is dark and z is an apple-in-the-row](x) = 1])
= (by λ-reduction)JtheK([λxe . x is leftmost and x is dark and x is an apple-in-the-row])
= (by lexical entry for the)

[λf⟨e,t⟩ ∶ there is exactly one y such that f(y) = 1 . the unique z such that f(z) = 1]
([λxe . x is leftmost and x is dark and x is an apple-in-the-row])

= (by λ-reduction)
the unique z such that [λxe . x is leftmost and x is dark and x is an apple-in-the-row](z) = 1,
provided that there is exactly one y such that [λxe . x is leftmost and x is dark and x is
an apple-in-the-row](y) = 1

2

= (by λ-reduction)
the unique z such that z is leftmost and z is dark and z is an apple-in-the-row,
provided that there is exactly one y such that y is leftmost and y is dark and y is an apple-
in-the-row
This says that the leftmost dark apple in the row picks out the unique apple in the row
that is leftmost and dark. So, treating leftmost as a one-place predicate predicts that (ii),
like (iii), won’t yield a semantic value. But (ii) does yield a semantic value. So treating
leftmost as a one-place predicate as above can’t be right.

c. JleftmostK = [λf⟨e,t⟩ . [λxe . f(x) = 1 and x is the leftmost element of {y ∶ f(y) = 1}]]
d. Jthe leftmost dark apple-in-the-rowK

= (by FA)JtheK(Jleftmost dark apple-in-the-rowK)
= (by FA)JtheK(JleftmostK(Jdark apple-in-the-rowK))
= (by PM)JtheK(JleftmostK([λxe . JdarkK(x) = Japple-in-the-rowK(x) = 1]))
= (by lexical entries for dark, apple-in-the-row)JtheK(JleftmostK([λxe . [λye . y is dark](x) = [λze . z is an apple-in-the-row](x) = 1]))
= (by λ-reduction)JtheK(JleftmostK([λxe . x is dark and x is an apple-in-the-row]))
= (by lexical entry for leftmost)JtheK([λf⟨e,t⟩ . [λye . f(y) = 1 and y is the leftmost element of {z ∶ f(z) = 1}]]

([λxe . x is dark and x is an apple-in-the-row]))
= (by λ-reduction)JtheK([λye . [λxe . x is dark and x is an apple-in-the-row](y) = 1 and y is the leftmost

element of {z ∶ [λxe . x is dark and x is an apple-in-the-row](z) = 1}])
= (by λ-reduction)JtheK([λye . y is dark and y is an apple-in-the-row and

y is the leftmost element of {z ∶ z is dark and z is an apple-in-the-row}])
= (by lexical entry for the)

[λf⟨e,t⟩ ∶ there is exactly one v s.t. f(v) = 1 . the unique x s.t. f(x) = 1]
([λye . y is dark and y is an apple-in-the-row and
y is the leftmost element of {z ∶ z is dark and z is an apple-in-the-row}])

= (by λ-reduction)
the unique x s.t. [λye . y is dark and y is an apple-in-the-row and
y is the leftmost element of {z ∶ z is dark and z is an apple-in-the-row}](x) = 1,
provided that there is exactly one v s.t. [λye . y is dark and y is an apple-in-the-row
and y is the leftmost element of {z ∶ z is dark and z is an apple-in-the-row}](v) = 1

= (by λ-reduction)
the unique x s.t. x is dark and x is an apple-in-the-row and
x is the leftmost element of {z ∶ z is dark and z is an apple-in-the-row},
provided that there is exactly one v s.t. v is dark and v is an apple-in-the-row and
v is the leftmost element of {z ∶ z is dark and z is an apple-in-the-row}

= (by given scenario)

3

the unique x s.t. x is dark and x is an apple-in-the-row and x is the leftmost element of
{b2, b4, b5}

= (by given scenario)
b2

4

Alex Silk
Heim & Kratzer, Chapter 5 selected exercises

(1) Chapter 5, p. 95
a. J[Bob [invited t]]Km = (by FA)J[invited t]Km (JBobKm) = (by FA)JinvitedKm (JtKm) (JBobKm) = (by convention (9))JinvitedK (JtKm) (JBobK) = (by lexical entries for invited, Bob)
[λxe . [λye . y invited x]](JtKm)(Bob) = (by (8), p. 92)
[λxe . [λye . y invited x]](m)(Bob) = (by λ-reduction)
[λye . y invited m](Bob) = (by λ-reduction)
1 iff Bob invited m

b. b, j, and m
c. J(i)K is undefined because it’s not the case that for all assignments a and b, J(i)Ka = J(i)Kb

(per Definition (9) on p. 94). For example, J(i)Km = 1, but J(i)Ks = 0 (since it’s not the
case that b invites s).

(2) Chapter 5, p. 112

g = [1 → “Barriers′′
2 → Joe]

J[he2 [wrote [t1]]]Kg = (by FA)J[wrote [t1]]Kg (Jhe2Kg) = (by FA)JwroteKg (Jt1Kg) (Jhe2Kg) = (by convention (9) and lexical entry for write)
[λxe . [λye . y wrote x]](Jt1Kg)(Jhe2Kg) = (by PT)
[λxe . [λye . y wrote x]](g(1))(Jhe2Kg) = (by PT)
[λxe . [λye . y wrote x]](g(1))(g(2)) = (by g)
[λxe . [λye . y wrote x]](“Barriers”)(Joe) = (by λ-reduction)
[λye . y wrote “Barriers”](Joe) = (by λ-reduction)
1 iff Joe wrote “Barriers”

(3) Chapter 5, p. 113

⎡⎢⎢⎢⎢⎢⎣

2 → Joe
5 → Mary
7 → Ann

⎤⎥⎥⎥⎥⎥⎦

Mary/2

=
⎡⎢⎢⎢⎢⎢⎣

2 → Mary
5 → Mary
7 → Ann

⎤⎥⎥⎥⎥⎥⎦

(4) Chapter 5, p. 115
[λxe .Mary reviewed the unique y s.t. y is a book and Jwh1 he2 wrote t1K[2→x](y) = 1]

= (by PA)
[λxe .Mary reviewed the unique y s.t. y is a book and [λze . Jhe2 wrote t1K[2→x]z/1](y) = 1]

= (by Defn. 13 (assignment modification))

[λxe .Mary reviewed the unique y s.t. y is a book and [λze . Jhe2 wrote t1K[1→ z
2→ x]](y) = 1]

= (by FA)

1

[λxe .Mary reviewed the unique y s.t. y is a book and [λze . Jwrote t1K[1→ z
2→ x](Jhe2K[1→ z

2→ x])](y) = 1]
= (by FA)

[λxe .Mary reviewed the unique y s.t. y is a book

and [λze . JwroteK[1→ z
2→ x](Jt1K[1→ z

2→ x])(Jhe2K[1→ z
2→ x])](y) = 1]

= (by convention (9) and lexical entry for write)
[λxe .Mary reviewed the unique y s.t. y is a book

and [λze . [λue . [λve . v wrote u]](Jt1K[1→ z
2→ x])(Jhe2K[1→ z

2→ x])](y) = 1]
= (by PT x2)

[λxe .Mary reviewed the unique y s.t. y is a book and [λze . [λue . [λve . v wrote u]](z)(x)](y) = 1]
= (by λ-reduction)

[λxe .Mary reviewed the unique y s.t. y is a book and [λze . [λve . v wrote z](x)](y) = 1]
= (by λ-reduction)

[λxe .Mary reviewed the unique y s.t. y is a book and [λze . x wrote z](y) = 1]
= (by λ-reduction)

[λxe .Mary reviewed the unique y s.t. y is a book and x wrote y]

2

Alex Silk
Heim & Kratzer, Chapters 5, 6 exercises

(1) ‘Every painting vanished’
t

⟨⟨e, t⟩, t⟩

every
⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩⟩

painting
⟨e, t⟩

vanished
⟨e, t⟩

Jevery painting vanishedK
= (by FA)Jevery paintingK (JvanishedK)
= (by FA)JeveryK (JpaintingK) (JvanishedK)
= (by lexical entry for ‘every’)

[λf⟨e,t⟩ . [λg⟨e,t⟩ . for all xe s.t. f(x) = 1, g(x) = 1]](JpaintingK) (JvanishedK)
= (by λ-reduction)

[λg⟨e,t⟩ . for all xe s.t. JpaintingK(x) = 1, g(x) = 1](JvanishedK)
= (by λ-reduction)

1 iff for all xe s.t. JpaintingK(x) = 1, JvanishedK(x) = 1
iff (by lexical entry for ‘painting’)

for all xe s.t. [λye . y is a painting](x) = 1, JvanishedK(x) = 1
iff (by lexical entry for ‘vanished’)

for all xe s.t. [λye . y is a painting](x) = 1, [λze . z vanished](x) = 1
iff (by λ-reduction)

for all xe s.t. x is a painting, [λze . z vanished](x) = 1
iff (by λ-reduction)

for all xe s.t. x is a painting, x vanished

1

(2) ‘Every pig who Penny likes danced.’
t

⟨⟨e, t⟩, t⟩

every
⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩⟩

⟨e, t⟩

pig
⟨e, t⟩

⟨e, t⟩

wh1 t

Penny
e

⟨e, t⟩

likes
⟨e, ⟨e, t⟩⟩

t1
e

danced
⟨e, t⟩

Jevery pig wh1 Penny likes t1 dancedK
= (by FA)Jevery pig wh1 Penny likes t1K(JdancedK)
= (by FA)JeveryK(Jpig wh1 Penny likes t1K)(JdancedK)
= (by lexical entry for ‘every’)

[λf⟨e,t⟩ . [λg⟨e,t⟩ . for all xe s.t. f(x) = 1, g(x) = 1]](Jpig wh1 Penny likes t1K)(JdancedK)
= (by λ-reduction)

[λg⟨e,t⟩ . for all xe s.t. Jpig wh1 Penny likes t1K(x) = 1, g(x) = 1](JdancedK)
= (by λ-reduction)

1 iff for all xe s.t. Jpig wh1 Penny likes t1K(x) = 1, JdancedK(x) = 1
iff (by lexical entry for ‘danced’)

for all xe s.t. Jpig wh1 Penny likes t1K(x) = 1, [λye . y danced](x) = 1
iff (by λ-reduction)

for all xe s.t. Jpig wh1 Penny likes t1K(x) = 1, x danced
iff (by PM)

for all xe s.t. [λye . JpigK(y) = 1 and Jwh1 Penny likes t1K(y) = 1](x) = 1, x danced
iff (by lexical entry for ‘pig’)

for all xe s.t. [λye . [λze . z is a pig](y) = 1 and Jwh1 Penny likes t1K(y) = 1](x) = 1, x danced
iff (by λ-reduction)

for all xe s.t. [λye . y is a pig and Jwh1 Penny likes t1K(y) = 1](x) = 1, x danced
iff (by λ-reduction)

for all xe s.t. x is a pig and Jwh1 Penny likes t1K(x) = 1, x danced
iff (by convention (11))

for all xe s.t. x is a pig and Jwh1 Penny likes t1K∅(x) = 1, x danced
iff (by PA)

2

for all xe s.t. x is a pig and [λye . JPenny likes t1K∅y/1](x) = 1, x danced
iff (by assignment modification)

for all xe s.t. x is a pig and [λye . JPenny likes t1K[1→y]](x) = 1, x danced
iff (by FA)

for all xe s.t. x is a pig and [λye . Jlikes t1K[1→y](JPennyK[1→y])](x) = 1, x danced
iff (by convention (9) and lexical entry for ‘Penny’)

for all xe s.t. x is a pig and [λye . Jlikes t1K[1→y](Penny)](x) = 1, x danced
iff (by FA)

for all xe s.t. x is a pig and [λye . JlikesK[1→y](Jt1K[1→y])(Penny)](x) = 1, x danced
iff (by PT)

for all xe s.t. x is a pig and [λye . JlikesK[1→y](y)(Penny)](x) = 1, x danced
iff (by convention (9) and lexical entry for ‘likes’)

for all xe s.t. x is a pig and [λye . [λze . [λbe . b likes z]](y)(Penny)](x) = 1, x danced
iff (by λ-reduction)

for all xe s.t. x is a pig and [λye . [λbe . b likes y](Penny)](x) = 1, x danced
iff (by λ-reduction)

for all xe s.t. x is a pig and [λye .Penny likes y](x) = 1, x danced
iff (by λ-reduction)

for all xe s.t. x is a pig and Penny likes x, x danced

3

Alex Silk
Heim & Kratzer, Chapter 7 samples

(1) ‘Two babies petted every cat which purred.’
● intended: “for every x such that x is a cat which purred, there are two babies which petted x”
● (ignore singular/plural differences re ‘baby’/‘babies’)

γ
t

α
⟨⟨e, t⟩, t⟩

every
⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩⟩

⟨e, t⟩

cat
⟨e, t⟩

⟨e, t⟩

wh
∅

⟨e, t⟩

1 t

t1
e

purred
⟨e, t⟩

⟨e, t⟩

2 t

⟨⟨e, t⟩, t⟩

two
⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩⟩

babies
⟨e, t⟩

⟨e, t⟩

petted
⟨e, ⟨e, t⟩⟩

t2
e

Sample derivation using a subproof :

Subproof A:JαK
= (by FA)JeveryK(Jcat wh 1 t1 purredK)
= (by PM)JeveryK([λxe . JcatK(x) = 1 and Jwh 1 t1 purredK(x) = 1])
= (by lexical entry for ‘cat’)JeveryK([λxe . [λye . y is a cat](x) = 1 and Jwh 1 t1 purredK(x) = 1])
= (by λ-reduction)JeveryK([λxe . x is a cat and Jwh 1 t1 purredK(x) = 1])
= (by vacuity of ‘wh’)JeveryK([λxe . x is a cat and J1 t1 purredK(x) = 1])
= (by convention (11) and PA)JeveryK([λxe . x is a cat and [λye . Jt1 purredK∅y/1](x) = 1])
= (by assignment modification)JeveryK([λxe . x is a cat and [λye . Jt1 purredK[1→y]](x) = 1])
= (by FA)

1

JeveryK([λxe . x is a cat and [λye . JpurredK[1→y](Jt1K[1→y])](x) = 1])
= (by PT)JeveryK([λxe . x is a cat and [λye . JpurredK[1→y](y)](x) = 1])
= (by convention (9) and lexical entry for ‘purred’)JeveryK([λxe . x is a cat and [λye . [λze . z purred](y)](x) = 1])
= (by λ-reduction)JeveryK([λxe . x is a cat and [λye . y purred](x) = 1])
= (by λ-reduction)JeveryK([λxe . x is a cat and x purred])
= (by lexical entry for ‘every’)

[λf⟨e,t⟩ . [λg⟨e,t⟩ . for all y such that f(y) = 1, g(y) = 1]]([λxe . x is a cat and x purred])
= (by λ-reduction)

[λg⟨e,t⟩ . for all y such that [λxe . x is a cat and x purred](y) = 1, g(y) = 1]
= (by λ-reduction)

[λg⟨e,t⟩ . for all y such that y is a cat and y purred, g(y) = 1]

JγK
= (by FA)JαK(J2 two babies petted t2K)
= (by convention (11) and PA)JαK([λxe . Jtwo babies petted t2K∅x/2])
= (by assignment modification)JαK([λxe . Jtwo babies petted t2K[2→x]])
= (by FA)JαK([λxe . Jtwo babiesK[2→x](Jpetted t2K[2→x])])
= (by FA)JαK([λxe . Jtwo babiesK[2→x](JpettedK[2→x](Jt2K[2→x]))])
= (by PT)JαK([λxe . Jtwo babiesK[2→x](JpettedK[2→x](x))])
= (by convention (9) and lexical entry for ‘petted’)JαK([λxe . Jtwo babiesK[2→x]([λue .[λve . v petted u]](x))])
= (by λ-reduction)JαK([λxe . Jtwo babiesK[2→x]([λve . v petted x])])
= (by FA)JαK([λxe . JtwoK[2→x](JbabiesK[2→x])([λve . v petted x])])
= (by convention (9) and lexical entry for ‘baby’)JαK([λxe . JtwoK[2→x]([λze . z is a baby])([λve . v petted x])])
= (by convention (9) and lexical entry for ‘two’)JαK([λxe . [λf⟨e,t⟩ . [λg⟨e,t⟩ . there are at least twom such that f(m) = 1 and g(m) = 1]]
([λze . z is a baby])([λve . v petted x])])
= (by λ-reduction)JαK([λxe . [λg⟨e,t⟩ . there are at least twom such that [λze . z is a baby](m) = 1 and g(m) = 1]
([λve . v petted x])])
= (by λ-reduction)

2

JαK([λxe . [λg⟨e,t⟩ . there are at least twom such thatm is a baby and g(m) = 1]
([λve . v petted x])])
= (by λ-reduction)JαK([λxe . there are at least twom such thatm is a baby and [λve . v petted x](m) = 1])
= (by λ-reduction)JαK([λxe . there are at least twom such thatm is a baby andm petted x])
= (by Subproof A)

[λg⟨e,t⟩ . for all y such that y is a cat and y purred, g(y) = 1]([λxe . there are at least twom such thatm
is a baby andm petted x])

= (by λ-reduction)
1 iff for all y such that y is a cat and y purred, [λxe . there are at least twom such thatm is a baby and

m petted x](y) = 1
iff (by λ-reduction)

for all y such that y is a cat and y purred, there are at least twom such thatm is a baby andm
petted y

3

	Overview
	Ch 1
	Ch 2-3
	Ch 4
	Ch 5
	Ch 6-7

