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§1. Overview



Background

Finding new symmetric tensor categories is a challenging problem.

Deligne (2006) gave an interesting example Rep(St).

Knop (2006) gave some additional examples.

Harman–Snowden (2022) gave a general construction using

oligomorphic groups. It includes the above, but produces many

truly new examples, such as the Delannoy categories.

General research direction

Explore oligomorphic tensor categories.
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Universal properties

Deligne’s category has a universal property, as does Knop’s

Rep(GLt(Fq)) by Entova-Aizenbud and Heidersdorf (2022).

Main question for this talk

Do other oligomorphic categories have a universal property?

Our work provides a positive answer:

• There is a universal property in general.

• For the Delannoy categories, we can make it more precise.

This talk will explain these results.
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§2. Étale and Frobenius algebras



Tensor categories

Definition

A tensor category is an additive k-linear category T equipped

with a k-bilinear symmetric monoidal structure. A tensor functor

is a k-linear symmetric monoidal functor. (k is a field.)

Definition

A pre-Tannakian category is a tensor category T such that:

• T is abelian and all objects have finite length.

• All Hom spaces in T are finite dimensional.

• T is rigid, i.e., every objects has a dual.

• End(1) = k, where 1 is the tensor unit.
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Frobenius algebras

Definition

A (special commutative) Frobenius algebra in a tensor category is

an object A with maps

η : 1 → A, ϵ : A → 1, m : A⊗ A → A, ∆: A → A⊗ A

such that:

• (A,m, η) is an associative commutative unital algebra

• (A,∆, ϵ) is a co-ACU co-algebra

• (µ⊗ id) ◦ (id⊗∆) = ∆ ◦m = (id⊗ µ) ◦ (∆⊗ id)

• µ ◦∆ = idA (the special condition).

Warning: this is different from a bi-algebra or Hopf algebra!
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A construction of Frobenius algebras

Construction

Let X be a finite set, and put A = k[X ] with basis {ex}. Put

η =
∑
x∈X

ex , ϵ(ex) = 1, m(ex ,y ) = δx ,yex , ∆(ex) = ex ,x .

This is a Frobenius algebra in the category Vec.

Functorial behavior

If f : Y → X is a function, there is an algebra homomorphism

f ∗ : k[X ] → k[Y ], f ∗(ex) =
∑

f (y)=x

ey .

This is typically not a co-algebra homomorphism.
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Another construction of Frobenius algebras

Let G be an algebraic group.

Construction

If X is a finite G -set then k[X ] is a Frobenius algebra in Rep(G ).

Fact

Every Frobenius algebra in Rep(G ) has the form k[X ].

Remark

The identity component of G acts trivially on a finite G -set.
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Étale algebras

Definition

An étale algebra in a tensor category is an ACU algebra A s.t.:

• A is rigid, i.e., it has a dual.

• The trace pairing A⊗ A → 1 is perfect.

Proposition

Étale algebras are the same as Frobenius algebras:

• If A is a Frobenius algebra then the underlying commutative

algebra is étale.

• If A is étale, dualizing the algebra structure wrt the trace

pairing gives a co-algebra structure, which makes A into a

Frobenius algebra.
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Étale algebras

Definition

An étale algebra in a tensor category is an ACU algebra A s.t.:

• A is rigid, i.e., it has a dual.

• The trace pairing A⊗ A → 1 is perfect.

Proposition
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The category of étale algebras

Definition

Given a tensor category T, we let Et(T) be the category of étale

algebras in T, where morphisms are algebra homomorphisms.

Example

If T = Rep(G ) then Et(T)op is the category of finite G -sets.

Remark

In general, Et(T)op is a “set-like” category: it is extensive, finitely

complete, and sub-objects have complements.
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§3. Deligne’s category



Definition of the category

Construction

Rep(St) is the additive envelope of the following category:

• Objects are formal symbols A⊗n with n ∈ N.

• Morphisms are linear combinations of string diagrams built

from η, ϵ, m, and ∆ with ϵ ◦ η = t and FA axioms.

Theorem (Deligne)

If char(k) = 0 and t ̸∈ N then the Karoubi envelope of Rep(St)

is a semi-simple pre-Tannakian category.

Remark

There is also a pre-Tannakian category for char(k) = 0 and

t ∈ N by work of Deligne and Comes–Ostrik.



Definition of the category

Construction

Rep(St) is the additive envelope of the following category:

• Objects are formal symbols A⊗n with n ∈ N.

• Morphisms are linear combinations of string diagrams built

from η, ϵ, m, and ∆ with ϵ ◦ η = t and FA axioms.

Theorem (Deligne)

If char(k) = 0 and t ̸∈ N then the Karoubi envelope of Rep(St)

is a semi-simple pre-Tannakian category.

Remark

There is also a pre-Tannakian category for char(k) = 0 and

t ∈ N by work of Deligne and Comes–Ostrik.



Definition of the category

Construction

Rep(St) is the additive envelope of the following category:

• Objects are formal symbols A⊗n with n ∈ N.

• Morphisms are linear combinations of string diagrams built

from η, ϵ, m, and ∆ with ϵ ◦ η = t and FA axioms.

Theorem (Deligne)

If char(k) = 0 and t ̸∈ N then the Karoubi envelope of Rep(St)

is a semi-simple pre-Tannakian category.

Remark

There is also a pre-Tannakian category for char(k) = 0 and

t ∈ N by work of Deligne and Comes–Ostrik.



Definition of the category

Construction

Rep(St) is the additive envelope of the following category:

• Objects are formal symbols A⊗n with n ∈ N.

• Morphisms are linear combinations of string diagrams built

from η, ϵ, m, and ∆ with ϵ ◦ η = t and FA axioms.

Theorem (Deligne)

If char(k) = 0 and t ̸∈ N then the Karoubi envelope of Rep(St)

is a semi-simple pre-Tannakian category.

Remark

There is also a pre-Tannakian category for char(k) = 0 and

t ∈ N by work of Deligne and Comes–Ostrik.



Definition of the category

Construction

Rep(St) is the additive envelope of the following category:

• Objects are formal symbols A⊗n with n ∈ N.

• Morphisms are linear combinations of string diagrams built

from η, ϵ, m, and ∆ with ϵ ◦ η = t and FA axioms.

Theorem (Deligne)

If char(k) = 0 and t ̸∈ N then the Karoubi envelope of Rep(St)

is a semi-simple pre-Tannakian category.

Remark

There is also a pre-Tannakian category for char(k) = 0 and

t ∈ N by work of Deligne and Comes–Ostrik.



Universal property of Deligne’s category

The object A of Rep(St) is an étale algebra of dimension t.

Let T be an arbitrary tensor category.

Theorem

Giving a tensor functor Φ: Rep(St) → T is equivalent to giving

an étale algebra in T of dimension t, via Φ ↔ Φ(A).
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§4. Oligomorphic tensor categories



Oligomorphic groups

Definition

An oligomorphic group is a permutation group (G ,Ω) such that

G has finitely many orbits on Ωn for all n ≥ 0.

Examples

• The infinite symmetric group acting on Ω = {1, 2, . . .}.
• GL∞(Fq) acting on Ω = F∞

q .

• The group Aut(R, <) acting on Ω = R.
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G -sets

Let (G ,Ω) be an oligomorphic group.

Definition

Let S(G ) be the category of finitary smooth G -sets:

• finitary means finitely many orbits.

• smooth means each orbit is a subquotient of some Ωn.

Remark

The category S(G ) has all the same basic categorical properties

of the category of finite Γ-sets, for a finite group Γ. In particular,

S(G ) has finite products.
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Measures

Definition (Harman–Snowden)

A measure for G is a rule µ that assigns to each morphism

f : Y → X in S(G ), with X transitive, a quantity µ(f ) in k such

that certain axioms hold.

Convention

µ(X ) is defined to be µ(X → pt).

Intuition

µ(f ) is like the size of a fiber of f , and µ(X ) is like the size of X .
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The main construction

Construction (Harman–Snowden)

Define a tensor category Perm(G , µ):

• Objects are C(X ) with X finitary smooth G -set.

• Morphisms C(X ) → C(Y ) are functions G\(Y × X ) → k .

• Composition is convolution, defined using µ.

• C(X )⊕ C(Y ) = C(X ⨿ Y ) and C(X )⊗ C(Y ) = C(X × Y ).

The object C(X ) is rigid, self-dual, of dimension µ(X ).

Intuition

C(X ) is like a permutation representation with basis indexed by

X . Morphisms can be thought of as G -invariant matrices.
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Recovering Deligne’s category

Let (G ,Ω) be the infinite symmetric group, and suppose

char(k) = 0.

For t ∈ k , there is a unique measure µt such that µt(Ω) = t. The

µt account for all the measures for G .

We have Perm(G , µt)
kar = Rep(St)

kar.

In this way, the oligomorphic theory recovers Deligne’s example.
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§5. Universal properties



Étale algebras

Fix an oligomorphic group G with measure µ.

Fact

C(X ) is naturally an étale algebra in Perm(G , µ).

Consequence

There is a natural functor S(G ) → Et(Perm(G , µ))op.

This functor is often an equivalence, but not always.
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Tensor functors

Suppose Φ: Perm(G , µ) → T is a tensor functor.

Define Ψ to be the composition

S(G ) → Et(Perm(G , µ))op → Et(T)op

Observations:

• Ψ is additive, i.e., it commutes with finite co-products.

• Ψ is left-exact, i.e., it commutes with finite limits.

• Ψ is compatible with µ, e.g., the dimension of Ψ(X ) is µ(X ).



Tensor functors

Suppose Φ: Perm(G , µ) → T is a tensor functor.

Define Ψ to be the composition

S(G ) → Et(Perm(G , µ))op → Et(T)op

Observations:

• Ψ is additive, i.e., it commutes with finite co-products.

• Ψ is left-exact, i.e., it commutes with finite limits.

• Ψ is compatible with µ, e.g., the dimension of Ψ(X ) is µ(X ).



Tensor functors

Suppose Φ: Perm(G , µ) → T is a tensor functor.

Define Ψ to be the composition

S(G ) → Et(Perm(G , µ))op → Et(T)op

Observations:

• Ψ is additive, i.e., it commutes with finite co-products.

• Ψ is left-exact, i.e., it commutes with finite limits.

• Ψ is compatible with µ, e.g., the dimension of Ψ(X ) is µ(X ).



Tensor functors

Suppose Φ: Perm(G , µ) → T is a tensor functor.

Define Ψ to be the composition

S(G ) → Et(Perm(G , µ))op → Et(T)op

Observations:

• Ψ is additive, i.e., it commutes with finite co-products.

• Ψ is left-exact, i.e., it commutes with finite limits.

• Ψ is compatible with µ, e.g., the dimension of Ψ(X ) is µ(X ).



Tensor functors

Suppose Φ: Perm(G , µ) → T is a tensor functor.

Define Ψ to be the composition

S(G ) → Et(Perm(G , µ))op → Et(T)op

Observations:

• Ψ is additive, i.e., it commutes with finite co-products.

• Ψ is left-exact, i.e., it commutes with finite limits.

• Ψ is compatible with µ, e.g., the dimension of Ψ(X ) is µ(X ).



The main theorem

Let T be an arbitrary tensor category.

Theorem

Giving a tensor functor Φ: Perm(G , µ) → T is equivalent to

giving a functor Ψ: S(G ) → Et(T)op that is additive, left-exact,

and compatible with µ.

Remark

We think of Φ as an algebraic object, but Ψ as a combinatorial

object. This is why the theorem is useful.

Remark

The theorem recovers the universal property of Rep(St).
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§6. Delannoy categories



The categories

Let G = Aut(R, <), which acts oligomorphically on R.

Fact

G has exactly four measures µ1, µ2, µ3 and µ4.

Definition

The ith Delannoy category is Ci = Perm(G, µi ).

Remark

Ckar
1 is semi-simple pre-Tannakian. It was studied in depth by

Harman, Snowden, Snyder (2022), and found to have many

remarkable properties. The other Ci ’s have been mysterious.
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G-sets

Let R(n) ⊂ Rn be the set of increasing tuples. The following

provides an essentially complete picture of S(G).

Fact

• The R(n) are the transitive objects in S(G).

• Any G-map R(n) → R(m) is a projection.

Notation

Write Ci (R
(n)) for C(R(n)) in the category Ci .
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Universal property of S(G)

Let S be an extensive category with finite limits, e.g., Et(T)op.

Definition

An ordered object of S is an object X equipped with a subobject

of X × X satisfying the axioms of a total order.

Example

R is an ordered object in S(G).

Theorem

Giving an additive left-exact functor Ψ: S(G) → S is equivalent

to giving an ordered object of S, via Ψ ↔ Ψ(R).
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Ordered étale algebras

Let T be a tensor category.

Definition

An ordered étale algebra is an ordered object in Et(T)op.

(Non-)example

In Rep(G ) (G = alg. gp.), an ordered étale algebra A corresponds

to a finite G -set X equipped with a G -invariant total order. The

action of G on such an X is trivial =⇒ A ∼= 1⊕n.

Simplest example

Ci (R) is an ordered étale algebra in Ci .
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Delannic algebras

Let A be an ordered étale algebra. There is an étale algebra A(n) of

“ordered n-tuples,” and n (co-)projection maps A → A(n).

Definition

A is Delannic of type i , for 1 ≤ i ≤ 4, if it satisfies the following

three numeric conditions:

• dimA = µi (R).

• dimA A(2) = µi (R
(2) → R), for both choices of maps.

Here dimA is dimension in the tensor category of A-modules.

Example

Ci (R) is Delannic of type i .
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The main theorem

Let T be an arbitrary tensor category.

Theorem

Giving a tensor functor Φ: Ci → T is equivalent to giving a

Delannic algebra of type i in T, via Φ ↔ Φ(Ci (R)).

Proof

By our general theorem, Φ corresponds to Ψ: S(G) → Et(T)op

that is additive, left-exact, and compatible with µi .

By the universal property of S(G), giving Ψ with the first two

conditions is equivalent to giving an ordered étale algebra in T.

Compatibility with µi is the Delannic condition; this is non-trivial,

since the former is an infinite list of numeric conditions.
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Other universal properties

There has been other work on universal properties for C1:

• S. Kriz (2023) gave a universal property based on the simple

decomposition of C1(R), and not using the order structure.

• Khovanov and Snyder (see next talk!) give a variant of Kriz’s

universal property (among other things).

Not clear if there is a Kriz-style universal property for the other Ci .
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Examples

If A and B are OEA then so is A⊕ B (lexicographic sum).

• C1(R)⊕ 1 is Delannic of type 2 =⇒ C2 → C1.

• 1⊕ C1(R) is Delannic of type 3 =⇒ C3 → C1.

• 1⊕ C1(R)⊕ 1 is Delannic of type 4 =⇒ C4 → C1.

Significance

Each Ci admits a map to a pre-Tannakian category.
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More examples

If A and B are OEA then so are A⊗ B and A(n).

• C1(R(2)) is Delannic of type 4 =⇒ C4 → C1.

• C1(R)⊕ C1(R(2)) is Delannic of type 2 =⇒ C2 → C1.

• More generally, C1(R(n)) is Delannic of type 1 if n is odd, and

type 4 if n is even =⇒ many functors C1 → C1 and C4 → C1.

• Can use ⊕, ⊗, and (−)(n) to obtain many more functors.
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Local abelian envelopes

Let T be a tensor category with finite Hom’s and End(1) = k .

Theorem (Coulembier)

There exists {Φi : T → Ui}i∈I where each Ui is pre-Tannakian

such that any faithful Φ: T → U (pre-Tannakian) factors

uniquely as Ψ ◦ Φi with Ψ: Ui → U exact and faithful.

Definition

The Ui are the local abelian envelopes of T.

Definition

If #I = 1 the unique Ui is the abelian envelope of T.



Local abelian envelopes

Let T be a tensor category with finite Hom’s and End(1) = k .

Theorem (Coulembier)

There exists {Φi : T → Ui}i∈I where each Ui is pre-Tannakian

such that any faithful Φ: T → U (pre-Tannakian) factors

uniquely as Ψ ◦ Φi with Ψ: Ui → U exact and faithful.

Definition

The Ui are the local abelian envelopes of T.

Definition

If #I = 1 the unique Ui is the abelian envelope of T.



Local abelian envelopes

Let T be a tensor category with finite Hom’s and End(1) = k .

Theorem (Coulembier)

There exists {Φi : T → Ui}i∈I where each Ui is pre-Tannakian

such that any faithful Φ: T → U (pre-Tannakian) factors

uniquely as Ψ ◦ Φi with Ψ: Ui → U exact and faithful.

Definition

The Ui are the local abelian envelopes of T.

Definition

If #I = 1 the unique Ui is the abelian envelope of T.



Local envelopes for Delannoy

Theorem

C2 has at least two local abelian envelopes.

Proof

The functors C2 → C1 provided by the Delannic algebras

C1(R)⊕ 1 and C1(R)⊕ C1(R
(2))

belong to different local abelian envelopes.

Remark

Forthcoming work of Coulembier and Snowden: C2 has exactly

two local abelian envelopes. One is equivalent to Ckar
1 , the other

is a new pre-Tannakian category.
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