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General research direction

Explore oligomorphic tensor categories.
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Universal properties

Deligne's category has a universal property, as does Knop's
Rep(GL:(F,)) by Entova-Aizenbud and Heidersdorf (2022).

Main question for this talk

Do other oligomorphic categories have a universal property?

Our work provides a positive answer:

e There is a universal property in general.

e For the Delannoy categories, we can make it more precise.

This talk will explain these results.
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Definition

A is an additive k-linear category ¥ equipped
with a k-bilinear symmetric monoidal structure. A

is a k-linear symmetric monoidal functor. (k is a field.)

Definition

A is a tensor category ¥ such that:
e T is abelian and all objects have finite length.
e All Hom spaces in ¥ are finite dimensional.
e T is rigid, i.e., every objects has a dual.

e End(1) = k, where 1 is the tensor unit.
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Definition
A in a tensor category is

an object A with maps
n1—>A eA—=1 mARA—->A A A—-ARA

such that:

e (A, m,n) is an associative commutative unital algebra
o (A A e)is a co-ACU co-algebra

o (u®id)o(id®A)=Aom=(id® u)o (A ®id)

e 1o A =idy (the special condition).

Warning: this is different from a bi-algebra or Hopf algebra!
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A construction of Frobenius algebras

Construction
Let X be a finite set, and put A = k[X] with basis {e,}. Put

n= Z Ex, =1, m(exy) =0xyex, Aex)= exx-
xeX

This is a Frobenius algebra in the category Vec.

Functorial behavior

If f: Y — X is a function, there is an algebra homomorphism

F o kX] = kY], fe)= ) e.
fy)=x

This is typically not a co-algebra homomorphism.
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Another construction of Frobenius algebras

Let G be an algebraic group.

Construction
If X is a finite G-set then k[X] is a Frobenius algebra in Rep(G).

Fact
Every Frobenius algebra in Rep(G) has the form k[X].

Remark

The identity component of G acts trivially on a finite G-set.
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Etale algebras

Definition

An in a tensor category is an ACU algebra A s.t.:
e Ais rigid, i.e., it has a dual.
e The trace pairing A® A — 1 is perfect.

Proposition

Etale algebras are the same as Frobenius algebras:

e If A is a Frobenius algebra then the underlying commutative
algebra is étale.

e If A is étale, dualizing the algebra structure wrt the trace
pairing gives a co-algebra structure, which makes A into a
Frobenius algebra.
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The category of étale algebras

Definition
Given a tensor category T, we let Et(T) be the category of étale
algebras in ¥, where morphisms are algebra homomorphisms.

Example
If T = Rep(G) then Et(T)°P is the category of finite G-sets.

Remark
In general, Et(%)°P is a “set-like” category: it is extensive, finitely
complete, and sub-objects have complements.
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Construction

Rep(&:) is the additive envelope of the following category:

e Objects are formal symbols A" with n € N.

e Morphisms are linear combinations of string diagrams built
from 7, €, m, and A with e oy = t and FA axioms.

Theorem (Deligne)

If char(k) = 0 and t ¢ N then the Karoubi envelope of Rep(&:)
is a semi-simple pre-Tannakian category.

Remark

There is also a pre-Tannakian category for char(k) = 0 and
t € N by work of Deligne and Comes—Ostrik.
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Universal property of Deligne’s category

The object A of Rep(S;) is an étale algebra of dimension t.
Let ¥ be an arbitrary tensor category.
Theorem

Giving a tensor functor ®: Rep(&;) — T is equivalent to giving
an étale algebra in T of dimension t, via ® <> ®(A).
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Oligomorphic groups

Definition
An is a permutation group (G, Q) such that
G has finitely many orbits on Q" for all n > 0.
Examples
e The infinite symmetric group acting on Q = {1,2,...}.
* GL(F,) acting on Q = F°.
e The group Aut(R, <) acting on 2 = R.
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Definition
Let S(G) be the category of finitary smooth G-sets:

° means finitely many orbits.
° means each orbit is a subquotient of some Q.
Remark

The category S(G) has all the same basic categorical properties
of the category of finite I-sets, for a finite group I'. In particular,
S(G) has finite products.
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A for G is a rule p that assigns to each morphism
f: Y — X in S(G), with X transitive, a quantity u(f) in k such

that certain axioms hold.

Convention
p(X) is defined to be pu(X — pt).

Intuition
p(f) is like the size of a fiber of f, and (X) is like the size of X.
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The main construction

Construction (Harman-Snowden)

Define a tensor category Perm(G, p):
e Objects are C(X) with X finitary smooth G-set.
e Morphisms C(X) — C(Y) are functions G\(Y x X) — k.

e Composition is convolution, defined using p.
e C(X)@C(Y)=C(XTIY)and C(X)®C(Y)=C(X xY).

The object C(X) is rigid, self-dual, of dimension p(X).

Intuition

C(X) is like a permutation representation with basis indexed by
X. Morphisms can be thought of as G-invariant matrices.
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Recovering Deligne’s category

Let (G, ) be the infinite symmetric group, and suppose

char(k) = 0.

For t € k, there is a unique measure p¢ such that p(2) = t. The
we account for all the measures for G.

We have Perm(G, 11;)*" = Rep(&;)*r.

In this way, the oligomorphic theory recovers Deligne's example.
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Fix an oligomorphic group G with measure L.

Fact
C(X) is naturally an étale algebra in Perm(G, ).

Consequence
There is a natural functor S(G) — Et(Perm(G, 11))°P.

This functor is often an equivalence, but not always.
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Suppose ®: Perm(G, 1) — ¥ is a tensor functor.

Define W to be the composition
S(G) — Et(Perm(G, p))°? — Et(%)°P
Observations:

e U is additive, i.e., it commutes with finite co-products.
e VU js |eft-exact, i.e., it commutes with finite limits.

e VU is compatible with 4, e.g., the dimension of W(X) is u(X).
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The main theorem

Let T be an arbitrary tensor category.

Theorem

Giving a tensor functor ®: Perm(G, u) — ¥ is equivalent to
giving a functor V: S(G) — Et(T)°P that is additive, left-exact,
and compatible with .

Remark

We think of ® as an algebraic object, but W as a combinatorial
object. This is why the theorem is useful.

Remark

The theorem recovers the universal property of Rep(Gy:).



§6. Delannoy categories




The categories

Let G = Aut(R, <), which acts oligomorphically on R.

Fact

G has exactly four measures 1, g2, 13 and pa.



The categories

Let G = Aut(R, <), which acts oligomorphically on R.

Fact

G has exactly four measures 1, g2, 13 and pa.

Definition
The ith is €; = Perm(G, ;).



The categories

Let G = Aut(R, <), which acts oligomorphically on R.

Fact

G has exactly four measures 1, g2, 13 and pa.

Definition
The ith is €; = Perm(G, ;).

Remark

Qfll‘ar is semi-simple pre-Tannakian. It was studied in depth by
Harman, Snowden, Snyder (2022), and found to have many
remarkable properties. The other €;'s have been mysterious.
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Let R(" < R" be the set of increasing tuples. The following
provides an essentially complete picture of S(G).
Fact

e The R(" are the transitive objects in S(G).

e Any G-map R(" — R(™ is a projection.

Notation

Write C;(R(M) for C(R(") in the category €;.
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Universal property of S(G)

Let S be an extensive category with finite limits, e.g., Et(%)°P.

Definition
An of 8 is an object X equipped with a subobject
of X x X satisfying the axioms of a total order.

Example
R is an ordered object in S(G).

Theorem
Giving an additive left-exact functor V: S(G) — 8 is equivalent
to giving an ordered object of 8§, via W <+ W(R).
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Ordered étale algebras

Let ¥ be a tensor category.

Definition
An is an ordered object in Et(T)°P.

(Non-)example

In Rep(G) (G = alg. gp.), an ordered étale algebra A corresponds
to a finite G-set X equipped with a G-invariant total order. The
action of G on such an X is trivial = A =197

Simplest example

C;i(R) is an ordered étale algebra in €;.
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Let A be an ordered étale algebra. There is an étale algebra A" of
“ordered n-tuples,” and n (co-)projection maps A — A(").

Definition
Ais of type /, for 1 < j < 4, if it satisfies the following

three numeric conditions:

e dim A = p;(R).
o dimy A® = 11;(R® — R), for both choices of maps.

Here dimy is dimension in the tensor category of A-modules.

Example
Ci(R) is Delannic of type i.
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The main theorem

Let ¥ be an arbitrary tensor category.

Theorem
Giving a tensor functor ®: €; — ¥ is equivalent to giving a
Delannic algebra of type i in T, via ® <> ®(C;(R)).

Proof
By our general theorem, ® corresponds to W: S(G) — Et(%)°P
that is additive, left-exact, and compatible with ;.

By the universal property of S(G), giving WV with the first two
conditions is equivalent to giving an ordered étale algebra in ¥.

Compatibility with p; is the Delannic condition; this is non-trivial,
since the former is an infinite list of numeric conditions.
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Other universal properties

There has been other work on universal properties for €;:

e S. Kriz (2023) gave a universal property based on the simple
decomposition of C1(R), and not using the order structure.

e Khovanov and Snyder (see next talk!) give a variant of Kriz's
universal property (among other things).

Not clear if there is a Kriz-style universal property for the other €;.
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If A and B are OEA then so is A@® B (lexicographic sum).

e Ci1(R) ® 1 is Delannic of type 2 — €, — ¢;.
e 13 C1(R) is Delannic of type 3 = €3 — ;.
e 1® C1(R) ® 1 is Delannic of type 4 — €4 — ;.

Significance

Each ¢; admits a map to a pre-Tannakian category.
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More examples

If A and B are OEA then so are A® B and A",

C1(R®) is Delannic of type 4 — €4 — ;.
C1(R) @ €1(R®) is Delannic of type 2 = €5 — €.

o More generally, C1(R(") is Delannic of type 1 if n is odd, and
type 4 if nis even = many functors ¢; — ¢; and ¢; — ¢;.

Can use ®, ®, and (—)(") to obtain many more functors.
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Local abelian envelopes

Let T be a tensor category with finite Hom's and End(1) = k.

Theorem (Coulembier)

There exists {®;: T — ;};e; where each L; is pre-Tannakian
such that any faithful ®: T — Al (pre-Tannakian) factors
uniquely as W o ®; with V: Ll; — $l exact and faithful.

Definition
The &(; are the of T.

Definition
If #2/ = 1 the unique 4; is the of ¥.
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Local envelopes for Delannoy

Theorem

&5 has at least two local abelian envelopes.

Proof
The functors €, — €; provided by the Delannic algebras

Ci(R)®1 and  Cy(R) & € (RP)

belong to different local abelian envelopes.

Remark

Forthcoming work of Coulembier and Snowden: €5 has exactly
two local abelian envelopes. One is equivalent to @ll‘ar, the other
is a new pre-Tannakian category.
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