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Abstract

Let F be a finite extension of Qp, let G be the group GLn(F ) and let G′ be the multiplicative group

of a central simple division algebra algebra over F of rank n2. The Jacquet-Langlands correspon-

dence is a natural bijection between the set of isomorphism classes of finite dimensional irreducible

representations of G′ and the set of isomorphism classes of (essentially) square-integrable irreducible

admissible representations of G (all of which are infinite dimensional). This purely local result does

not have a local proof for n > 2. We give a new purely local proof in the n = 2 case which should

generalize at least to n = 3.

Our proof relies heavily on the Fourier transform. Let X ′ be the space of monic degree two

polynomials over F with non-zero constant term which are either irreducible or have a doubled root.

We identify X ′ with the space of conjugacy classes in G′ and also the space of elliptic conjugacy

classes in G. Using the Fourier transform on the 2 × 2 matrix algebra we construct a Fourier

transform on X ′ and show that this transform determines which functions on X ′ are characters of

cuspidal representations of G. Using the Fourier transform on the non-split quaternion algebra we

construct another Fourier transform on X ′, and show that it determines which functions on X ′ are

characters of irreducible representations of G′. Finally, we show that the two Fourier transforms on

X ′ agree (up to a sign) which gives the correspondence.
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Chapter 1

Introduction

(1.1) Let F be a finite extension of Qp, let G be the group GL2(F ) and let G′ be the group of

units in the unique non-split quaternion algebra over F . We write Irr◦G for the set of irreducible

admissible cuspidal representations of G and Irr◦G′ for the set of irreducible representations of G′ of

dimension at least two. (All representations are on complex vector spaces.) The Jacquet-Langlands

correspondence states that there is a bijection1

Irr◦G → Irr◦G′

characterized by π → π′ if χπ(g) = −χπ′(g′) whenever g is a regular elliptic element of G and g′ is an

element of G′ with the same characteristic polynomial as g. Here χπ and χπ′ denote the characters

of π and π′. Furthermore, if π corresponds to π′ then dπ = dπ′ and ε(s, π, ψ) = ε(s, π′, ψ) where dπ

is the formal degree of π, dπ′ the degree of π′ and the ε’s are the usual ε-factors. The purpose of

this thesis is to detail a new proof of this correspondence.

(1.2) We now briefly review the history of the correspondence. As given above, it was first established

by Jacquet and Langlands in the book [JL]. They established the correspondence by using a Weil

representation to construct a representation of G given a representation of G′, and then proving

that this construction satisfies the requisite properties. They also proved a global version of the

correspondence by making use of the Selberg trace formula. A version of the correspondence, both

local and global, for GLn was established by Rogawski [Rog] and independently by Deligne, Kazhdan

1In fact, the correspondence holds on a slightly larger set of representations, those which are essentially square
integrable. We will restrict ourselves to the cuspidal case, however.
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and Vigneras [DKV]. Both proofs work by first establishing the global result via trace formula

techniques and then obtaining the local version by embedding into a global situation. For n ≥ 3 there

is currently no purely local proof of the local correspondence2. The original proof of Jacquet and

Langlands does not generalize, as the existence of the Weil representation for GL2 is a consequence of

the exceptional isomorphism GL2 = GSp2. We should mention, however, that there is a purely local

construction of the correspondence. This construction, which makes use of non-abelian Lubin-Tate

theory, is due to some combination of Carayol, Deligne and Drinfeld. A proof that this construction

works was given by Harris and Taylor in their book [HT]. Their proof is global. For more details,

see the introduction of [HT].

(1.3) Our proof of the correspondence is purely local and makes no use of the Weil representation.

It does, however, use the local converse theorem, which states: if π and π′ are two cuspidal represen-

tations of G with the same central character and for which ε(s, ηπ, ψ) = ε(s, ηπ′, ψ) for all characters

η of F× then π ∼= π′. This form of the converse theorem is valid for GL2 and GL3 but not for GLn

with n ≥ 4 (in general one has to twist by representations of GLm with m > 1). No other steps

in our proof are specific to GL2, however (at least in theory). We therefore feel that our method

should generalize directly to GL3, and perhaps, with some modification, to other GLn. In fact, our

method of proof does reduce the proof of the correspondence for GL3 to a rather elementary integral

identity which makes no direct reference to representation theoretic concepts. We are not at this

time able to establish this identity, however.

(1.4) We should also mention that we only prove the correspondence for F/Qp with p odd. We make

the restriction that p be odd mainly for convenience: many computations become much more simple

in this situation. However, we believe that this restriction is unnecessary and that our approach

will work just as well when p = 2: we expect the computations that arise to be feasible, but slightly

more complicated than the ones we present here. Another direction of generalization would be to

consider that case when F is a local function field; we have not thought about this.

(1.5) We now give an outline of our proof. Let B = M2(F ) and let B′ be the unique non-split

quaternion algebra over F , so that G = B× and G′ = (B′)×. We let X (resp. X ′) be the space

of characteristic polynomials of elements of B (resp. B′). Thus X is the space of all monic degree

two polynomials over F while X ′ consists of those monic degree two polynomials which either have

a double root or are irreducible. There is a natural inclusion X ′ → X. We must prove that if
2Several experts (for instance G. Henniart) have told me that they believes this to be the case.
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π is a cuspidal representation of G then χπ|X′ is the character of an irreducible representation of

G′ (of course, characters are not defined on all of X or X ′, but a dense subset). The main idea

of our approach is to consider X and X ′ as the fundamental objects and to endow them with

enough structure so that one can determine which functions on them are characters of irreducible

representations. We then compare this structure to compare characters of representations. It turns

out that the extra structure needed is simply a Fourier transform defined on (a certain subspace of)

the functions on X or X ′.

(1.6) To be more specific, there are three steps that we carry out on each side (meaning in the split

and non-split case):

1. We define the Fourier transform on an appropriate space of functions on X or X ′.

2. We show that this is enough information to determine which functions are characters.

3. We express the Fourier transform in such a way that it is easy to compare.

After having accomplished these three steps on each side, we compare the two Fourier transforms.

These two transforms will be acting on more or less the same function space and we must show that

they are more or less equal. This will prove the correspondence.

(1.7) We now say a bit more about the first step. Let π : B → X and π′ : B′ → X ′ be the

characteristic polynomial maps. We will define a certain space of functions H(X) on X and H(X ′)

on X ′, called the cuspidal spaces. Restricting along X ′ → X gives an isomorphism H(X) → H(X ′).

The Fourier transforms on X and X ′ will be defined on these cuspidal spaces and map them into

themselves. (In fact, the Fourier transform will also be defined on the slightly larger space of functions

with regular elliptic support.) To define the Fourier transform, we use the usual Fourier transform

on B or B′ and push-forward. In other words, the Fourier transform is defined by requiring it to

commute with π∗ or π′∗. In the non-split case, it is straightforward to see that this is well-defined

and has the desired properties, owing to the fact that π′ is a proper map. We denote the resulting

Fourier transform by FX′,ψ. In the split case, π is not proper and things become more difficult.

We end up defining two Fourier transforms, F
(1)
X,ψ and F

(2)
X,ψ. The first of these is defined on the

space of functions with regular elliptic support and is better suited for the comparison step, but its

analytic properties (such as L2-continuity) and interaction with representation theory are not clear.

The second is defined on the cuspidal space and has better analytic and representation theoretic

properties, but could not be used to make the comparison. A key result (§4.4.8) shows that F
(1)
X,ψ
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and F
(2)
X,ψ agree on a dense subspace of the cuspidal space. The main comparison step (discussed

below) shows that F
(1)
X,ψ and FX′,ψ agree. From this we see that F

(2)
X,ψ and FX′,ψ agree on a dense

subspace and as both are continuous they must be equal.

(1.8) We now say more about the second step. For an additive character ψ of F and a character η

of F× we define an operator Aψ,η on the cuspidal space of X or X ′ by the formula

Aψ,ηf = η−1Fψ(| · |−2
F η−1f∨).

Here f∨ is the function x 7→ f(x−1) and η is regarded as a function on X by composing with the

determinant. The form of this operator is motivated by the local functional equation. In fact, the

local functional equation shows that if π is a cuspidal representation then χπ is an eigenvector of

each of the operators Aψ,η. The eigenvalue is closely related to the ε-factor ε(s, ηπ, ψ). Using this

insight, we analyze the cuspidal space as a module over the algebra generated by the Aψ,η. We

find that it is semi-simple, multiplicity free and that its simple constituents are naturally indexed

by the unramified twist classes of cuspidal representations of G or G′. The multiplicity freeness

here is equivalent to the local converse theorem mentioned above. We take this result further in the

non-split case and give a precise criterion for determining when a function on X ′ is a character of

an irreducible representation.

(1.9) We now elaborate on the third step. The Fourier transforms we define on X and X ′ would be

difficult to compare directly. To compare them, we break them into simpler pieces. The main idea

is to regard X or X ′ as being built out of the degree two field extensions K of F and try to relate

the Fourier transform on X or X ′ to the Fourier transform on these fields. This, it turns out, is not

difficult to do. If f is a function on K (which we can essentially regard as a function on X) then its

Fourier transform is by definition π∗(FB,ψ f̃) where f̃ is a function on B for which π∗f̃ = f . It turns

out that one can essentially take for f̃ the function f ⊗ δ where δ is the δ-function in the direction

orthogonal to K (with respect to the trace pairing). The Fourier transform of f ⊗ δ is (FK,ψf)⊗ 1

(up to a constant), where here FK,ψf is the Fourier transform on K. We can thus factor the Fourier

transform on X as a Fourier transform on K followed by the operation f 7→ π∗(f ⊗ 1). We denote

this operation by p∗. The same analysis holds on the non-split case and we denote the operation

f 7→ π′∗(f ⊗ 1) by p′∗. We thus see that to compare the Fourier transforms on X and X ′ it suffices

to compare p∗ and p′∗.
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(1.10) We now discuss the comparison of p∗ and p′∗. Our comparison of these two operators is by

brute force calculation. We show that p∗ and p′∗ are both given by integrating against a kernel which

is expressed in terms of the integral I2 defined in §3.2. The ultimate comparison amounts to the

fact that

I2(ax, b) + I2(x, b)

is independent of x if (b,−a/b) = −1, where (, ) denotes the Hilbert symbol. We prove this fact by

explicit evaluation of I2.

(1.11) We now say a word about future directions for the ideas presented here. Naturally, as already

indicated, the most obvious problem to attempt next is the Jacquet-Langlands correspondence for

GL3. Everything presented here should carry over directly to GL3 except for our comparison of p∗

and p′∗. We have not yet found a way to carry out this comparison for GL3. Moving beyond GL3,

much of what we do here in fact works for GLn: one can still define Fourier transforms and factor

them via p∗ like operators. A natural problem is to try to compare the Fourier transforms (or,

equivalently, the p∗ operators) coming from division algebras and GLn. For n > 3 this would not

imply the Jacquet-Langlands correspondence, but it would give some sort of first order approximation

to it. For further discussion along these lines, see §7. Looking in a different direction, it may be

possible to prove other instances of Langlands functoriality using our approach: in particular, we

have in mind base change for GL2.
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Chapter 2

Notation

Throughout F denotes a fixed extension of Qp of finite degree, where p is an odd prime. The

following are the most important pieces of notation on the split side:

• B is the matrix algebra M2(F ).

• G is the group of units in B, namely GL2(F ).

• X is the set of all monic degree two polynomials.

• X̃ is the disjoint union of the four degree two étale algebras over F (the three quadratic field

extensions of F and the split algebra F ⊕ F ).

• K typically denotes one of the four degree two algebras over F .

• π : B → X is the map which assigns to a matrix its characteristic polynomial.

• p : X̃ → X is the map which assigns to an element of X̃ its characteristic polynomial.

• i : X̃ → B is a fixed map such that i|K : K → B is an injection of algebras, for each component

K of X̃.

The following are the most important pieces of notation on the non-split side:

• B′ is the unique non-split quaternion algebra over F .

• G′ is the group of units in B′.

• X ′ is the set of all monic degree two polynomials which are either irreducible or have a double

root.
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• X̃ ′ is the disjoint union of the three quadratic extensions of F .

• K typically denotes one of the three quadratic field extensions of F .

• π′ : B′ → X ′ is the map which assigns to an element of B′ its characteristic polynomial.

• p′ : X̃ ′ → X ′ is the map which assigns to an element of X̃ ′ its characteristic polynomial.

• i′ : X̃ ′ → B′ is a fixed map such that i′|K : K → B′ is an injection of algebras, for each

component K of X̃ ′.

Notation related to F :

• OF is the ring of integers in F .

• q is the cardinality of the residue field κF of OF .

• pF is the maximal ideal of OF .

• UF is the group of units of OF .

• U
(n)
F is the group 1 + pn.

• $F is a uniformizer for OF .

• η : F× → {±1} is 1 on squares and −1 on non-squares.

• (, ) is the Hilbert symbol on F .

More notation on the split side:

• We write elements of X as x2 − tx+ ν. We regard t and ν as functions X → F . They give an

isomorphism X → F 2.

• We let ∆ : X → F be the function t2 − 4ν. We write still ∆ for its pull-back to B, X̃ or K.

• Xreg is the set of polynomials in X with distinct roots.

• Xell is the set of polynomials in X which are either irreducible or have a double root.

• Xre is the set Xreg ∩Xell.

• Xns is the subset of X where ν 6= 0 (ns meaning “non-singular”).

• Xn is the subset of X where ν has valuation n.
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• X∗,n is X∗ ∩Xn; for example, we have Xre,n.

• We write B∗, X̃∗ or K∗ for the inverse image of X∗. For example, Bns = G. Also, Gn denotes

the set of elements in G whose determinant has valuation n.

• Z is the center of G. It is isomorphic to F×.

More notation on the non-split side:

• We use much of the same notation for B′ as for F . Thus OB′ is the maximal order in B′, $B′

is a uniformizer, etc.

• We regard X ′ as a subset of X in the obvious way and use much of the same notation, e.g., t,

ν, ∆, X ′
ns, etc. Note that X ′ = X ′

ell = Xell.

• We write B′
∗, X̃

′
∗ or K∗ for the inverse of X ′

∗. For example, B′
ns = G′ and G′

0 = UB′ .

• Z ′ is the center of G′. It is isomorphic to F×.

Degree two étale algebras:

• We use the letter K to denote degree two étale algebras over F . There are four: the three

quadratic fields extensions of F and the split algebra F ⊕ F .

• We write dK for the discriminant of K, which we treat as an element of F . This is defined to

be 1 in the split case.

• We write dK for |dK |F . This is 1 if K is split or an unramified field extension and q−1

otherwise.

Norms, traces, absolute values:

• We let N (resp. tr) be the norm (resp. trace) map on B, B′ or K to F . In all cases Nx = xx

(resp. trx = x + x), where x is the conjugate of x. We also, at times, use the same notation

on X or X ′; of course, N = ν and tr = t in those settings.

• For a topological ring A we let | · |A be the absolute value given by |a|A = d(ax)/dx where dx

is a Haar measure on A. If A is B or B′ then |x|A = |Nx|2F . If A = K is a degree two étale

algebra then |x|A = |Nx|F .
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Haar measures:

• If A is one of the algebras F , K, B, or B′ then we let dµA be the unique Haar measure on A

which gives maximal orders volume 1.

• For such A we let dµA× be | · |−1
A dµA. It is a Haar measure on A×.

We call the above Haar measures the normalized Haar measures. Let Y be a topological space. All

function spaces below deal with complex valued functions.

• S (Y ) is the space of Schwartz (=locally constant and compact support) functions on Y .

• C∞(Y ) is the space of smooth (=locally constant) functions on Y .

• We typically put support conditions in subscripts. For example, Sre(X) (resp. C∞
re (X)) de-

notes the subspace of S (X) (resp. C∞(X)) consisting of those functions whose support is

contained in Xre. Note Sre(X) = S (Xre) but C∞
re (X) 6= C∞(Xre).

• We will define more function spaces below. The most important of these are the cuspidal

spaces H(X) and H(X ′).

Let Y be a topological space with a measure dµ.

• We write L2(Y ) for the standard L2 function space.

• We let ‖ · ‖Y be the L2-norm.

• For f, g ∈ L2(Y ) we put 〈f, g〉Y =
∫
Y
fgdµ.

• For f, g ∈ L2(Y ) we put (f, g)Y = 〈f, g〉Y where g is the conjugate of g. Note (f, f)Y = ‖f‖2Y .

Fourier transforms:

• ψ = ψF is a non-trivial additive character on F .

• If A is one of the algebras B, B′ or K we let ψA be the character of A given by ψF ◦ trA/F .

• We let m = m(ψ) be the largest integer for which ψ is trivial on p−m.

• When we have defined a Fourier transform on a space Y with respect to ψ we denote it by

something like FY,ψ. For example, FF,ψ is the usual Fourier transform on F .
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Representations:

• Irr◦G is the set of isomorphism classes of irreducible admissible representations of G which are

cuspidal.

• Irr◦G′ is the set of isomorphism classes of finite dimensional irreducible “cuspidal” representa-

tions of G′, where here “cuspidal” simply means having dimension at least two.

• Irr
◦
G is the quotient of Irr◦G by the twisting action of the group of unramified characters;

similarly for G′.

• Irr◦G,ω is the subset of Irr◦G consisting of those representations with central character ω; similarly

for G′.

• Irr
◦
G,ω is the image in Irr

◦
G of Irr◦G,ω. Similarly for G′. The map Irr◦G,ω → Irr

◦
G,ω is 2-1.

• ξ denotes the character of F× (or G or G′ by composing with the norm) given by x 7→ (−1)val x.

• A representation π of G or G′ is even if ξ ⊗ π ∼= π and odd otherwise.

• For a representation π of G or G′ we denote by n(π) its conductor.

• For a representation π of G of G′ we denote by ωπ its central character.
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Chapter 3

Some integrals

(3.1) For a, b ∈ F× define

I1(a, b) =
∣∣∣∣ ba

∣∣∣∣1/2
F

∫
F

(1 + η(a+ bx2))dx.

Here dx is the normalized Haar measure on F . If b is not a square then the integrand has compact

support and so the integral makes sense. One easily sees that its value only depends on a and b

modulo squares. We now compute its value.

Proposition. Let a and b be as above. Then

I1(a, b) =



1 + q−1 − 1+η(−b/a)
q+1 val a and val b even

0 val a odd and val b even

(1 + η(a))q−1/2 val a even and val b odd

1+η(−b/a)
q+1 val a and val b odd

Proof. Without loss of generality, we assume a and b have valuation 0 or 1. We proceed by cases.

Case 1: a and b have valuation 0. For a + bx2 to be a square we must have x ∈ OF . We thus

regard I1 as an integral over OF and then break it up over the cosets of p as follows:

I1(a, b) = ε

∫
±α+p

(1 + η(a+ bx2))dx+
∑
x∈S

∫
x+p

2dx.

Here S is the set of x in the residue field κ such that a+bx2 is a non-zero square, ε is 1 if a+bx2 = 0
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has a solution in κ and zero otherwise and α is a solution to a+ bx2 = 0 if one exists. The second

term above is of course equal to 2q−1#S. We thus have to compute #S and the integral.

We begin with the computation of #S. Consider the projective variety over κ defined by y2 =

az2 + bx2. This is smooth and has a rational point and so is isomorphic to P1. It therefore has q+1

solutions in κ. As b is not a square, there are no solutions when z = 0. Thus y2 = a+ bx2 has q+ 1

solutions. Now, if ε = 0 then there are no solutions with y = 0. Therefore, if (x, y) is a solution then

(x,−y) is a distinct solution; thus #S = (q + 1)/2. On the other hand, if ε = 1 then there are two

solutions with y = 0; removing these, we find #S = (q − 1)/2. Thus we have

#S = (q + 1)/2− ε

in all situations.

We now handle the integral, assuming α exists. First we lift α to a solution to a+bx2 = 0 in OF .

We now make the change of variables x = α+y, so that the integral takes place with y ∈ p. We have

a+ bx2 = 2bαy+ by2. As the first term has strictly smaller valuation, we find η(a+ bx2) = η(2bαy).

We therefore have

∫
α+p

(1 + η(a+ bx2))dx =
∫

p

(1 + η(2bαy))dy =
∞∑
n=1

∫
$nUF

(1 + η(2bαy))dy.

Now, for 2bαy to be a square y must have even valuation. Thus only the even terms in the above

series contribute. The function y 7→ η(2bαy) is a non-trivial character of $2nUF and so has integral

zero. Thus the above series is equal to

∞∑
n=1

Vol($2nUF ) =
q−2

1 + q−1
.

Of course, we get the same result for −α as for α.

Putting everything together, we find

I1(a, b) = 2ε
q−2

1 + q−1
+ 2q−1((q + 1)/2− ε) = 1 + q−1 − 2ε

q + 1

The identity 2ε = 1 + η(−b/a) gives the stated result.

Case 2: a has valuation 1 and b valuation 0. It is impossible for a + bx2 to be a square and so

the integrand is identically zero.

Case 3: a has valuation 0 and b valuation 1. In this case, a+ bx2 is a square if and only if a is

12



a square and x belongs to OF . We thus find

I1(a, b) = q−1/2

∫
OF

(1 + η(a))dx = (1 + η(a))q−1/2.

Case 4: a and b have valuation 1. For a+bx2 to be a square it is necessary for x to have valuation

0. Since a + bx2 must have even valuation, and it has valuation at least 1, we find a + bx2 = 0

modulo p2, which implies x2 = −a/b modulo p. Thus if −a/b is not a square then I1(a, b) = 0. We

therefore assume from now on that −a/b = α2. Of course, α belongs to UF .

Now, for a+ bx2 to be a square we must have x = ±α modulo p. Thus

I1(a, b) =
∫
±α+p

(1 + η(a+ bx2))dx.

We consider the +α integral, the other one going much the same. Make the change of variables

x = α+ y so that the integral varies over y ∈ p. We have a+ bx2 = 2bαy + by2. As the first term is

dominant, η(a+ bx2) = η(2bαy) and so the integral equals

∫
p

(1 + η(2bαy))dy =
∞∑
n=1

q−n
∫
UF

(1 + η(2bα$ny))dy

As b has valuation 1, only the terms with n odd contribute. As in Case 1, when n is odd η is a

non-trivial character and its integral vanishes. We thus find that the above equals

∞∑
n=0

q−(2n+1) Vol(UF ) =
1

q + 1
.

The −α integral is equal to this as well. Thus I1(a, b) is 2/(q + 1) if −a/b is a square and zero

otherwise.

(3.2) For a, b ∈ F× define

I2(a, b) = |b|1/2F

∫
F

1 + η(a+ bx2)

|a+ bx2|1/2F

dx.

Here dx is the normalized Haar measure on F . If b is not a square then the integrand has compact

support and so the integral makes sense. One easily finds that I2(a, b) only depends on a and b

modulo squares. We now explicitly compute its value.
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Proposition. Let a and b be as above. Then

I2(a, b) =



1 + q−1 val a and val b even

0 val a odd and val b even

(1 + η(a))q−1/2 val a even and val b odd

(1 + η(−a/b))q−1/2 val a and val b odd

Proof. Without loss of generality, we assume a and b have valuation 0 or 1. We proceed by cases,

much like the proof in §3.1.

Case 1: a and b have valuation 0. The same reasoning as in Case 1 in §3.1 gives

I2(a, b) = ε

∫
±α+p

1 + η(a+ bx2)

|a+ bx2|1/2F

dx+
∑
x∈S

∫
x+p

2dx

using the same notation as there. The second term is 2q−1((q + 1)/2− ε), as it was in §3.1.

We now compute the integral, which is different from the one occurring in §3.1. Write x = α+ y

so that η(a+ bx2) = η(2bαy) and |a+ bx2|F = |y|F . We then have

∫
α+p

1 + η(a+ bx2)

|a+ bx2|1/2F

dx =
∫

p

1 + η(2bαy)

|y|1/2F

dy =
∞∑
n=1

q−n/2
∫
UF

(1 + η(2bα$ny))dy

Only the terms with n even contribute. When n is even the η term is a non-trivial character and

thus has integral zero. We thus find that the integral is equal to

∞∑
n=1

q−(2n)/2 Vol(UF ) = q−1.

The −α integral is equal to q−1 as well.

Putting it all together, we find

I2(a, b) = 2εq−1 + 2q−1((q + 1)/2− ε) = 1 + q−1.

which completes this case.

Case 2: a has valuation 1 and b valuation 0. As in Case 2 of §3.1, the integrand vanishes

identically.

Case 3: a has valuation 0 and b valuation 1. This proceeds like Case 3 of §3.1. Note that if

a+ bx2 is a square then |a+ bx2|F = |a|F = 1.
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Case 4: a has valuation 1 and b valuation 0. As in Case 4 of §3.1 we find that I2(a, b) = 0 unless

−a/b is a square, in which case

I2(a, b) = q−1/2

∫
±α+p

1 + η(a+ bx2)

|a+ bx2|1/2F

dx

where α2 = −a/b. We evaluate the +α integral. Writing x = α+ y gives η(a+ bx2) = η(2bαy) and

|a+ bx2|F = |by|F . Therefore the integral is equal to

∫
p

1 + η(2bαy)

|by|1/2F

dy =
∞∑
n=1

q−(n−1)/2

∫
UF

(1 + η(2bα$ny))dy.

Only the terms with n odd contribute and, as usual, in these terms the η term vanishes. We thus

obtain
∞∑
n=0

q−n Vol(UF ) = 1.

The −α integral is the same, so I2(a, b) = 2q−1/2. Thus I2(a, b) = (1 + η(−a/b))q−1/2 in all cases,

as stated.

(3.3) For a, b, c ∈ F× define

I3(a, b, c) =
∣∣∣∣bca

∣∣∣∣1/2
F

∫
F 2

1 + η(a+ bx2 + cy2)

|a+ bx2 + cy2|1/2F

dxdy

where dx and dy are normalized Haar measures on F . If (b, c) = −1 then the integrand has compact

support and so the integral makes sense. One easily finds that I3(a, b, c) only depends on a, b and c

modulo squares. We now explicitly compute its value.

Proposition. Let a, b and c be as above. Then

I3(a, b, c) =



(1 + η(a))q−1 val a even, val b odd, val c odd

(1 + q−1)q−1/2 val a odd, val b odd, val c odd

(1 + q−1)q−1/2 val a even, val b odd, val c even

(1 + η(−a/b))q−1 val a odd, val b odd, val c even

Proof. To begin with, we have

I3(a, b, c) =
∣∣∣∣ ba

∣∣∣∣1/2
F

∫
F

I2(a+ bx2, c)dx.
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We now proceed in cases.

Case 1: val b and val c both odd. Using our formula for I2, we find

I3(a, b, c) = q−1/2

∣∣∣∣ ba
∣∣∣∣1/2
F

∫
F

(1 + η(a+ bx2))dx+ q−1/2

∣∣∣∣ b′a′
∣∣∣∣1/2
F

∫
F

(1 + η(a′ + b′x2))dx.

Here a′ = −a/c and b′ = −b/c. We can rewrite this as

I3(a, b, c) = q−1/2I1(a, b) + q−1/2I1(a′, b′).

Using our formula for I1 gives the stated result.

Case 2: val b odd and val c even. Using our formula for I2 we find

I3(a, b, c) = (1 + q−1)
∣∣∣∣ ba

∣∣∣∣1/2 Vol(Ω)

where Ω is the set of x for which a+ bx2 has even valuation. If a has even valuation then a+ bx2 has

even valuation if and only if |bx2| < |a| and so Vol(Ω) = |a/b|1/2F q−1/2, which gives the stated result.

Now say that a has odd valuation. Then a+ bx2 will have even valuation for some x if and only if

−a/b is a square. Assume this is the case and write α2 = −a/b. Then a+ bx2 has even valuation if

and only if x = ±α(1 + ε$2k+1) for ε ∈ UF and a non-negative integer k. We thus find

Vol(Ω) = 2|α|F
∞∑
k=0

Vol($2k+1UF ) =
∣∣∣a
b

∣∣∣1/2 2
q + 1

and the stated result follows.
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Chapter 4

The split side

The goals of §4 are as follows:

• Define a Fourier transform F
(1)
X,ψ on the space of Schwartz functions on X with regular elliptic

support.

• Factor F
(1)
X,ψ into two steps, the first of which involves the Fourier transform on quadratic

extensions of F and the second of which is a relatively easy operation.

• Define a Fourier transform F
(2)
X,ψ on the space of cuspidal functions H(X).

• Relate the two Fourier transforms.

• Use F
(2)
X,ψ to define a family of operators A on H(X) and determine the structure of H(X)

as an A -module in terms of the representation theory of G.

The first two goals are accomplished in §4.2 while the final three are accomplished in §4.4. The

odd numbered sections §4.1 and §4.3 carry out a number of rather routine calculations. The reader

should keep the following diagram in mind throughout the section.

X̃
i //

p
��@

@@
@@

@@
B

π
����

��
��

��

X

Recall that B is the matrix algebra M2(F ), X is the space of monic degree two polynomials over F ,

X̃ is the disjoint union of the four degree two étale algebras over F , p and π are the characteristic

polynomial maps and i is a chosen map which restricts to an algebra injection on each component

of X̃.
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4.1 Measures and push-forwards

(4.1.1) The purpose of §4.1 is to define measures on the spaces B, K, K⊥, X and X̃, push-forwards

along the maps p and π and compute all of these things explicitly. Here is an overview of the section:

• In §4.1.2 and §4.1.3 we introduce a certain class of bases of B and K which we call standard

bases.

• In §4.1.4 we give an elementary change of variables formula that we will often need.

• In §4.1.5 we define the push-forward p∗.

• In §§4.1.6–4.1.10 we define and compute the measures on B, K, K⊥, X and X̃. The measures

on the first three spaces are just Haar measures, on the latter two they are defined in a

somewhat ad hoc manner, but are motivated by the Weyl integration formula.

• In §4.1.11 we define the map π∗. Roughly, π∗(f) is defined to be the Radon-Nikodym derivative

of π∗(fdµB) with respect to dµX .

• In §§4.1.12–4.1.15 we relate π∗ to certain orbital integrals and π∗π∗ to certain averaging oper-

ators.

• In §4.1.16 we produce natural liftings of functions on X to functions on B. These will be

important when we factor the Fourier transform.

(4.1.2) By a standard basis of B we mean a basis 1, i, j, k of B as an F -vector space where:

• 1 is the unit of B.

• i, j and k anti-commute.

• i, j and k square to elements of F .

• ij = k.

We will typically write i2 = α, j2 = β and k2 = γ. The above conditions imply αβ = −γ. Given a

standard basis and an element x of B we write x = x0 + ix1 + jx2 + kx3.

(4.1.3) Let K be a degree two étale algebra over F . By a standard basis of K we mean a basis 1, i

of K as an F -vector space where 1 is the unit and i2 belongs to F . We will typically write i2 = α.

Given a standard basis and an element x of K we write x = x0 + ix1.
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(4.1.4) Before continuing, we give the following elementary change of variables formula, which we

shall have often have the occasion to employ.

Proposition. Let f ∈ S (F ). Then

∫
F

f(x)dx =
∫
F

f(±
√
x)

1 + η(x)

|x|1/2F

dx

where f(±
√
x) = 1

2 (f(
√
x) + f(−

√
x)) and dx is a Haar measure on F .

(4.1.5) For a function f on X̃ we define p∗f to be the function on X given by

(p∗f)(x) =
1

#p−1(x)

∑
p(y)=x

f(y)

Of course, we have p∗p∗f = f . In general, if f belongs to S (X̃) then p∗f will not belong to S (X).

However, since p| eXreg
: X̃reg → Xreg is étale, p∗ does induce a map

p∗ : Sreg(X̃) → Sreg(X).

In fact, p∗ and p∗ give mutually inverse isomorphisms between S inv
reg (X̃) and Sreg(X) where the

former space is the subspace of Sreg(X̃) consisting of those functions which are Galois invariant.

(4.1.6) Recall that dµB is the Haar measure on B which assigns volume 1 to any maximal order.

We now compute it in a standard basis.

Proposition. Identifying B with F 4 via a standard basis, we have

dµB(x) = |αβγ|1/2F dx0dx1dx2dx3

where dxi = dµF (xi) are normalized Haar measures on F .

Proof. We first remark that the proposition is true for a standard basis 1, i, j and k if and only if

it is so for the basis 1, ai, bj, ck where a, b and c belong to F×. Similarly, it is true for 1, i, j and

k if and only if it is for 1, σiσ−1, σjσ−1 and σkσ−1 with σ ∈ B×. We are thus free to scale and

conjugate our basis.

Consider the case where one of α, β or γ is a square. It suffices to treat the case where α is. By

rescaling, we may then assume α = 1. It is then not hard to see that we can conjugate our basis so
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that

i =

 1

−1

 , j =

 1

β

 , k =

 1

−β

 .

From this, we see that an element x0 + ix1 + jx2 + kx3 belongs to M2(OF ) if and only if each of

x0 + x1, x0 − x1, x2 + x3, β(x2 − x3)

belongs to OF . As the measure dx0dx1dx2dx3 gives this set volume |β|−1
F it follows that

|β|F dx0dx1dx2dx3

is the normalized Haar measure on B. Finally, observe that |β|F = |αβγ|1/2F . The proposition is

thus established in this case.

Now consider the case where α, β and γ are all non-squares. It follows that they must all

belong to the square class of −1, which is therefore not a square. By rescaling we may then assume

α = β = γ = −1. It is then not hard to see that we may conjugate our basis so that

i =

 1

−1

 , j =

 a b

b −a

 , k =

 b −a

−a −b


with a2 + b2 = −1. From this, we see that an element x = x0 + ix1 + jx2 + kx3 belongs to M2(OF )

if and only if each of

x0 + ax2 + bx3, x1 + bx2 − ax3, −x1 + bx2 − ax3, x0 − ax2 − bx3

belongs to OF . Clearly, this is equivalent to each of

x0, x1, ax2 + bx3, bx2 − ax3
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belonging to OF . Now, note that a and b must each have valuation 0. Therefore,

ax2 + bx3 and bx2 − ax3 belong to OF

⇐⇒ a2x2 + abx3 and b2x2 − abx3 belong to OF

⇐⇒ (a2 + b2)x2 and abx3 belong to OF

⇐⇒ x2 and x3 belong to OF

We have therefore shown that x belongs to M2(OF ) if and only if each xi belongs to OF . Thus

dx0dx1dx2dx3 is the normalized Haar measure on B. Since |αβγ|1/2F = 1 this proves the proposition.

(4.1.7) Let K be a degree two étale algebra over F . We have defined dµK to be the Haar measure

on K which gives volume 1 to the unique maximal order OK of K. We now compute this measure

in a standard basis.

Proposition. Identifying K with F 2 via a standard basis we have

dµK(x) = |α/dK |1/2F dx0dx1

where dxi = dµF (xi) are normalized Haar measures on F .

Proof. We have OK = OF + cOF i where c =
√

dK/α. Under the isomorphism K = F 2 the lattice

OK corresponds to OF ⊕ cOF . The measure dx0dx1 on F 2 gives this lattice volume |c|F . Therefore

the normalized Haar measure dµK on K corresponds to the measure |c|−1
F dx0dx1 on F 2.

(4.1.8) Let K ⊂ B be a degree two étale algebra over F and let K⊥ denote its orthogonal comple-

ment. There is a unique Haar measure dµK⊥ on K such that dµB = dµKdµK⊥ . We now compute

dµK⊥ in coordinates.

Proposition. Let 1, i, j, k be a standard basis for B such that 1, i is a standard basis for K. Then

j, k is a basis for K⊥ and under the resulting identification K⊥ = F 2 we have

dµK⊥ = |dKβγ|1/2F dx2dx3

where dxi = dµF (xi) is a normalized Haar measure on F .

Proof. This follows immediately from the computations of §4.1.6 and §4.1.7.
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(4.1.9) We now define a measure dµX on X by

dµX = |∆|1/2F A(∆)dµF (ν)dµF (t)

where we have identified X with F 2 via (t, ν) and A is given by:

A(∆) =


2 ∆ has even valuation

q1/2 + q−1/2 ∆ has odd valuation

This formula may look somewhat arbitrary. However, we shall see that it is quite a natural choice

of measure. Perhaps the most convincing reason for this is that the push-forward measure π′∗dµB′ is

given by the same formula — see §5.1.8. (One cannot form the push-forward π∗dµB since the map

π∗ is not proper.)

(4.1.10) We define a measure on X̃ by dµ eX = p∗dµX . Thus, by definition, we have

∫
eX f dµ eX =

∫
X

(p∗f) dµX .

We now compute this measure in coordinates.

Proposition. We have dµ eX |K = 1
2 (1 + dK)|∆|F dµK . Explicitly, this means that for f ∈ S (X̃) we

have ∫
eX f dµ eX = 1

2

∑
K

(1 + dK)
∫
K

f |∆|F dµK

where the sum is the four degree two étale algebras K.

Proof. We first compute (pK)∗dµK . Pick a normalized basis for K so that α = dK . For f ∈ S (X)

we have

∫
K

(p∗Kf) dµK =
∫
F 2
f(2x0, x

2
0 − dKx

2
1)dx0dx1 = d−1

K

∫
F 2
f(t, ν)

1 + η(∆/dK)

|∆/dK |1/2F

dνdt

where the measures above are the normalized Haar measures on F . In the first step we have used

§4.1.7 and in the second §4.1.4. Replacing f by |∆|1/2F f gives

d
1/2
K

∫
K

(p∗Kf)|∆|1/2F dµK =
∫
F 2
f(t, ν)(1 + η(∆/dK))dνdt

22



Summing over K and using the fact that
∑
K(1 + η(∆/dK)) = 2 gives

∫
X

f(t, ν)dνdt = 1
2

∑
K

d
1/2
K

∫
K

(p∗Kf)|∆|1/2F dx.

Replacing f by f |∆|1/2F A(∆) and using the fact that for (t, ν) ∈ im pK we have A(∆)d1/2
K = 1 + dK

gives ∫
X

f dµX = 1
2

∑
K

(1 + dK)
∫
K

(p∗Kf)|∆|F dµK .

Finally, replacing f with p∗f gives

∫
eX f dµ eX = 1

2

∑
K

(1 + dK)
∫
K

(p∗Kp∗f)|∆|F dµK .

The result follows since p∗Kp∗f and f have the same integral over K.

(4.1.11) We now study the push-forward map π∗ on functions. For a measurable function f of

compact support on B we can form the push-forward measure π∗(fdµB) on X. It follows from

general theory that this measure is absolutely continuous with respect to dµF (t)dµF (ν). It follows

immediately from this that π∗(fdµB) is absolutely continuous with respect to dµX on Xreg. We

define π∗f to be the function on Xreg given by the Radon-Nikodym derivative of π∗(fdµB) with

respect to dµX .

Proposition. We have the following:

1. If f belongs to Sreg(B) then π∗f belongs to Sreg(X).

2. If f belongs to S (B) then π∗f belongs to L2(X).

3. For f ∈ S (B) and g ∈ S (X) we have 〈π∗f, g〉X = 〈f, π∗g〉B.

4. We have

(π∗f)(t, ν) =
1

|∆|1/2F A(∆)

∫
F 2
f( 1

2 t+ x1i+ x2j ±
√
u k)

1 + η(u)

|u|1/2F

dx1dx2

where 1, i, j, k is a standard basis for B, dx1 and dx2 are normalized Haar measures on F

and

u =
∆/4− αx2

1 − βx2
2

γ
.

Proof. If f belongs to Sreg(B) then π∗f clearly has compact support; it is locally constant because

23



π : Breg → Xreg is smooth. This proves (1). For (2) note that π∗f can be written as |∆|−1/2
F f ′ where

f ′ is a continuous function of compact support on X. Thus |π∗f |2dµX = A(∆)|∆|−1/2
F |f ′|2dνdt and

the result follows from the local integrability of |∆|−1/2
F on F 2. As for (3), we have

〈π∗f, g〉X =
∫
X

g(x)(π∗f)(x)dµX(x) =
∫
X

g(x)(π∗(fdµB))(x)

=
∫
B

(π∗g)(x)f(x)dµB(x) = 〈f, π∗g〉B .

Finally, we come to (4). Let f be a function on B and g a Schwartz function on X. We then have,

by §4.1.6,

〈f, π∗g, 〉B = q|αβγ|1/2F

∫
F 4
f(x0 + ix1 + jx2 + kx3)g(t, ν)dx0dx1dx2dx3.

We now apply §4.1.4 to change the x3 integral to an integral over ν. The result is

q

∣∣∣∣αβγ
∣∣∣∣1/2 ∫

F 4
f( 1

2 t+ ix1 + jx2 ±
√
u k)g(t, ν)

1 + η(u)

|u|1/2F

dx1dx2dtdν

where u is as in the statement of the proposition. As αβ = −γ the absolute value in front of the

integral is equal to 1. We thus have

〈f, π∗g〉B =
∫
F 2
f ′(t, ν)g(t, ν)A(∆)|∆|1/2F dtdν = 〈f ′, g, 〉X

where

f ′(t, ν) =
q

A(∆)|∆|1/2F

∫
F 2
f( 1

2 t+ ix1 + jx2 ±
√
u k)

1 + η(u)

|u|1/2F

dx1dx2.

We have thus shown

〈π∗f, g〉X = 〈f ′, g〉X

for any g, which proves π∗f = f ′

(4.1.12) We now recall the Weyl integration formula for G. First we define some measures. We

define dµG = | · |−1
B dµB . It is a Haar measure on the group G. If K is a degree two étale extension

of F and T its group of units then we put dµT = | · |−1
K dµK . Finally, if we embed K into B so

that T can be regarded as a maximal torus of G then we put dµG/T = dµG/dµT . It is the unique
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left-invariant measure on G/T having the property that

∫
G

f(g)dµG(g) =
∫
G/T

∫
T

f(gt)dµT (t)dµG/T (g)

for any f ∈ S (G). The Weyl integration formula is then the identity

∫
G

f(g)dµG(g) = 1
2

∑
T

∫
T

∫
G/T

∣∣∣∣∆(t)
det t

∣∣∣∣
F

f(gtg−1)dµG/T (g)dµT (t)

valid for any f ∈ S (G), where the sum is over a set of representatives of the conjugacy classes of

maximal tori in G. We can also phrase the formula in a more additive manner, as follows:

∫
B

f(x)dµB(x) = 1
2

∑
K

∫
K

∫
G/T

|∆(x)|F f(σxσ−1)dµG/T (σ)dµK(x)

where f belongs to S (B), the sum is over isomorphism classes of degree two étale algebras over F

(regarded as embedding into B) and T = K×.

(4.1.13) We now give a formula for π∗ as an orbital integral.

Proposition. Let f belong to S (B), let x be a regular element of G, let K be the maximal com-

mutative subalgebra of B containing x and let T = K×. Then

(π∗π∗f)(x) =
1

1 + dK

∫
G/T

f(σxσ−1)dµG/T (σ).

Proof. Let g belong to S (X). Then

〈π∗g, f〉B =
∫
B

(π∗g)(x)f(x)dµB(x)

= 1
2

∑
K

∫
K

|∆(x)|F (p∗Kg)(x)

[∫
G/T

f(σxσ−1)dµG/T (σ)

]
dµK(x)

where in the second step we applied the Weyl integration formula of §4.1.12 and used the fact that

for x ∈ K ⊂ B we have (π∗g)(σxσ−1) = (p∗Kg)(x). On the other hand, by §4.1.10 we have

〈g, π∗f〉X =
∫
X

g(x)(π∗f)(x)dµX(x)

= 1
2

∑
K

(1 + dK)
∫
K

|∆(x)|F (p∗Kg)(x)(π
∗π∗f)(x)dµK(x).

Here we are using the fact that for x ∈ K ⊂ B we have (p∗Kπ∗f)(x) = (π∗π∗f)(x). Comparing the
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two expressions gives the stated result.

(4.1.14) We now give an improvement of the previous formula at the elliptic elements. First some

definitions. We write Z for the center of the group G; it is identified with F×. We let dµZ = |·|−1
F dµF

and we let dµG/Z be the quotient measure dµG/dµZ . Our formula is then:

Proposition. Let f belong to S (B), let x be a regular elliptic element of G, let K be the maximal

commutative subalgebra of B containing x and let T = K×. Then

(π∗π∗f)(x) = c

∫
G/Z

f(σxσ−1)dµG/Z(σ)

where c = 1
2q/(q + 1).

Proof. We have

∫
G/Z

f(σxσ−1)dµG/Z(σ) =
∫
G/T

∫
T/Z

f(σxσ−1)dµT/Z(σ′)dµG/T (σ)

= (1 + dK) Vol(T/Z)(π∗π∗f)(x)

where in the second step we used §4.1.13. We therefore need only show

Vol(T/Z) = 2 · 1 + q−1

1 + dK
.

Now, if K/F is unramified then K×/F× = UK/UF and so Vol(T/Z) = Vol(UK)/Vol(UF ). By our

normalizations, Vol(UK) = 1 − q−2 and Vol(UF ) = 1 − q−1 and so we have the stated result. If

K/F is ramified then UK/UF has index two in K×/F×. Thus Vol(T/Z) = 2 Vol(UK)/Vol(UF ). As

Vol(UK) = Vol(UF ) = 1− q−1 we have the stated result.

(4.1.15) Let U be a compact open subset of G/Z. For a function f on B we put

avgU f = c

∫
G/Z

fσ dµG/Z(σ).

Here fσ is the function x 7→ f(σxσ−1). We also define

avg f = c

∫
G/Z

fσ dµG/Z(σ).

We regard avg f as a function on the regular elliptic elements of B and extend it by zero to all of B.

The integral defining avg f will not exist for all functions f ; it does, however, for all f in Sre(B).
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In fact, for f ∈ Sre(B) the results of §4.1.14 gives avg f = π∗(π∗f). One easily verifies that avgU is

adjoint to avgU−1 and that avg is self-adjoint (on Sre(B)). Furthermore, we have:

Proposition. Let f belong to Sre(B) and let W be a compact subset of Bre. Then for U sufficiently

large we have (avg f)(x) = (avgU f)(x) for all x ∈W . Thus avgU f → avg f pointwise as U → G/Z

Proof. The map i : G/Z ×W → G given by (σ, x) 7→ σxσ−1 is proper since W is a compact set of

regular elliptic elements. Thus i−1(supp f) is a compact subset of G/Z ×W and so we can pick a

compact subset V of G/Z such that V ×W contains it. We then have

∫
G/Z

f(σxσ−1)dµG/Z(σ) =
∫
V

f(σxσ−1)dµG/Z(σ)

for all x ∈W . Thus (avg f)(x) = (avgU f)(x) whenever U contains V .

(4.1.16) We now show how one can lift regular Schwartz functions on X to regular Schwartz

functions on B. This is one of the key ingredients that goes into the factorization of the Fourier

transform we will give later in this section.

Proposition. Let K ⊂ B be a degree two étale algebra and let f belong to Sreg(K). For any

sufficiently small compact open set a of K⊥ containing 0 we have

π∗(f ⊗ δa) =
2

1 + dK
|∆|−1

F (pK)∗f.

Here δa = 1
Vol(a)χa where χa is the characteristic function of a and Vol(a) is the volume of a with

respect to dµK⊥ .

Proof. Pick a standard basis for B so that 1, i is a standard basis for K. Take a to be the set of

x ∈ K⊥ with x2 ∈ pn and x3 ∈ pm, for fixed integers n and m. (It suffices to consider such sets for

a.) We have Vol(a) = |dKβγ|1/2F q−n−m. Using our formula for π∗ from §4.1.11, we find

(π∗(f ⊗ δa)(t, ν) =
1

Vol(a)
· 1

A(∆)|∆|1/2F

∫
F 2
f( 1

2 t+ ix1)χpn(x2)χpm(
√
u)

1 + η(u)

|u|1/2F

dx1dx2

where

u =
∆/4− αx2

1 − βx2
2

γ
.

Denote by I the integral in the above expression. We now use §4.1.4 to change variables so that we
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integrate over u instead of x1. Putting

v = ∆/4α+ βu− βα−1x2
2

we obtain

I = |β|F
∫
F 2
f( 1

2 t± i
√
v)χpn(x2)χpm(

√
u)

1 + η(v)

|v|1/2F

1 + η(u)

|u|1/2F

dudx2.

Pick an integer N such that f(x+ iy) only depends on y modulo pN . Since f is regular, f(x+ iy)

will vanish for y ∈ pN . We now take n and m so large that βα−1p2n ⊂ p2N and βpm ⊂ p2N . We

thus have v = ∆/4α modulo p2N . Thus if ∆/4α belongs to p2N then the integral will vanish. This

shows that π∗(f ⊗ δa) has regular support. Now, if ∆/4α does not belong to p2N then we see that

v is a square if and only if ∆/4α is and also |v|F = |∆/α|F . Thus if ∆/4α is not a square then the

integral vanishes. This shows that π∗(f ⊗ δa) is supported on im pK . Now assume that ∆/4α is a

square, so that v is as well. The value of f( 1
2 t± i

√
v) is then independent of u and x2 as they vary

in p2m and pn. We thus find f( 1
2 t± i

√
u) = ((pK)∗f)(t, ν). Therefore

I =
2|β|F

|∆/α|1/2F

((pK)∗f)(t, ν)
∫
F 2
χpn(x2)χpm(

√
u)

1 + η(u)

|u|1/2F

dudx2

The x2 integral here is just q−n. The u integral is easily evaluated and found to be q−m. We thus

obtain

I =
2|β|F q−n−m

|∆/α|1/2F

((pK)∗f)(t, ν).

Putting this into our formula for (π∗(f ⊗ δa))(t, ν) and using our formula for Vol(a) gives

π∗(f ⊗ δa) =
1

A(∆)|∆|1/2F

· 1

|dKβγ|1/2F q−n−m
· 2|β|F q−n−m

|∆/α|1/2F

(pK)∗f

which after simplification gives

π∗(f ⊗ δa) =
2

A(∆)d1/2
K |∆|F

(pK)∗f.

Finally the identity A(∆)d1/2
K = 1 + dK gives the stated result.

Corollary. Let f ∈ Sreg(K). For any sufficiently small compact open set a of K⊥ containing 0 we

have

(pK)∗f = 1
2 (1 + dK)π∗(|∆|F f ⊗ δa).
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Proof. Apply the proposition to |∆|F f , which belongs to Sreg(K).

Corollary. The map π∗ : Sreg(B) → Sreg(X) is surjective.

Proof. It suffices to show that for f ∈ Sreg(K) and a a sufficiently small subset of K⊥ the function

f ⊗ δa belongs to Sreg(B). This was essentially proven in the course of proving the proposition and

in any case is easy enough that it is left to the reader.

4.2 The Fourier transform F
(1)
X,ψ

(4.2.1) The purpose of §4.2 is to define a Fourier transform on the space of Schwartz functions on

X with regular elliptic support and prove a factorization result for it. Here is an overview:

• In §§4.2.2–4.2.4 we recall the Fourier transforms on B, K and K⊥.

• In §4.2.5 we establish the fundamental result that allows for the definition of the Fourier

transform. This result says, roughly, that the Fourier transform commutes with the operator

π∗π∗ on the space of Schwartz functions on B with regular elliptic support.

• In §4.2.6 we define the Fourier transform F
(1)
X,ψ by the formula F

(1)
X,ψ(π∗f) = π∗(FB,ψf) where

f is a Schwartz function on B with regular elliptic support.

• In §4.2.7 we factor the Fourier transform F
(1)
X,ψ as p∗F ′eX , where F ′eX is essentially the usual

Fourier transform on the various K’s and p∗ is some operator which has a fairly simple form.

This factorization results from taking the Fourier transform of the identity given in §4.1.16.

• In §4.2.8 we compute an explicit formula for p∗. It is this formula which we will ultimately

use in the comparison step.

(4.2.2) Let ψ = ψF be a non-trivial additive character of F . Define ψB to be the additive character

of B given by ψF ◦ trB/F . For a function f on B we put

(FB,ψf)(x) = q−2m

∫
B

f(y)ψB(xy)dµB(y).

Here m = m(ψ) is the largest integer for which ψ is trivial on p−m. It is a standard fact (and easy

to prove) that FB,ψ induces an isomorphism S (B) → S (B) and can be extended to a continuous

isomorphism L2(B) → L2(B). By our normalization, FB,ψ is self-adjoint with respect to 〈, 〉B , an

isometry with respect to (, )B and has inverse FB,ψ,
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(4.2.3) Let K/F be a degree two étale algebra. Define ψK to be the additive character of K given

by ψF ◦ trK/F . For a function f on K we put

(FK,ψf)(x) = q−md
1/2
K

∫
K

f(y)ψK(xy)dµK(y)

Again, FK,ψ maps S (K) into itself isomorphically and extends to a continuous automorphism of

L2(K). By our normalization, FK,ψ is self-adjoint with respect to 〈, 〉K , an isometry with respect

to (, )K and has inverse FK,ψ.

(4.2.4) Let K ⊂ B be a degree two étale algebra and let K⊥ be its orthogonal complement. For a

function f on K⊥ we put

(FK⊥,ψf)(x) = q−md
−1/2
K

∫
K⊥

f(y)ψB(xy)dµK⊥(y).

As usual, FK⊥,ψ takes S (K⊥) to itself and extends to L2(K⊥). The key property of the above

definition is the following: for f ∈ S (K) and g ∈ S (K⊥) we have

FB,ψ(f ⊗ g) = (FK,ψf)⊗ (FK⊥,ψg)

where f ⊗ g is the function on B given by (x, y) 7→ f(x)g(y), where B is identified with K ×K⊥.

(4.2.5) We now give the fundamental result which will allow us to define a Fourier transform on X.

Proposition. For f, g ∈ Sre(B) we have

〈avg f,FB,ψg〉B = 〈FB,ψf, avg g〉B .

Proof. We have

avgU (FB,ψf) =
∫
U

(FB,ψf)σ dµG/Z(σ) =
∫
U

FB,ψ(fσ
−1

) dµG/Z(σ) = FB,ψ (avgU−1 f) .

We therefore have

〈avgU f,FB,ψg〉B = 〈FB,ψf, avgU g〉B .

If we now take U so large such that avgU f = avg f holds on the support of FB,ψg and avgU−1 g =

avg g holds on the support of FB,ψf then we obtain the stated identity. (It is possible to choose U
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as such by §4.1.15.)

(4.2.6) We now define a Fourier transform

F
(1)
X,ψ : S (Xre) → C∞(Xre)

by F
(1)
X,ψf = π∗(FB,ψ f̃)|Xre where f̃ is any element of Sre(B) such that π∗f̃ = f . The following

proposition shows that this is well-defined.

Proposition. The map F
(1)
X,ψ is well-defined. Furthermore, the Fourier transform commutes with

pull-back in the sense that for f ∈ Sre(X) and g ∈ Sre(B) we have

〈π∗(F (1)
X,ψf), g〉B = 〈FB,ψ(π∗f), g〉B .

Here FB,ψ(π∗f) is the Fourier transform of π∗f in the sense of distributions.

Proof. Let f̃ and g be two elements of Sre(B). We have

〈π∗π∗f̃ ,FB,ψg〉B = 〈FB,ψ f̃ , π
∗π∗g〉B = 〈π∗FB,ψ f̃ , π∗g〉X .

Here we have used §4.2.5 and the identity π∗π∗ = avg on Sre(B), c.f. §4.1.15. This shows that if

π∗f̃ = 0 then π∗(FB,ψ f̃) pairs to zero with each element of Sre(B), since every element of Sre(B)

is of the form π∗g by §4.1.16. Thus if π∗f̃ = 0 then π∗(Fψ f̃)|Xre = 0 and so F
(1)
X,ψ is well-defined.

Writing f = π∗f̃ , the above equation and some adjointness relations give

〈π∗f,FB,ψg〉B = 〈π∗(F (1)
X,ψf), g〉B ,

which proves the statement about the Fourier transform commuting with π∗.

(4.2.7) We now prove a factorization result for the Fourier transform. For a degree two étale algebra

K/F let S0(K) be the set of functions f in S (K) which satisfy

∫
F

f(x0 + ix1)dx1 = 0

for all x0. In words, these functions have integral 0 on “purely imaginary” vertical strips. The

Fourier transform on K gives an isomorphism FK,ψ : Sreg(K) → S0(K). We let S0(X̃ell) be

the space of f ∈ S (X̃ell) for which f |K belongs to S0(K) for all quadratic fields K. It will be
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convenient to have a slight modification of the Fourier transform in what follows. We define the

modified Fourier transform on S (K), denoted F ′
K,ψ by

F ′
K,ψf = 1

2q
−m(d1/2

K + d
−1/2
K )FK,ψ(|∆|F f).

As multiplication by |∆|F gives an isomorphism Sreg(K) → Sreg(K) the modified Fourier transform

still gives an isomorphism F ′
K,ψ : Sreg(K) → S0(K). We let F ′eXell,ψ

be the Fourier transform on

X̃ell gotten from the F ′
K,ψ. We now have our main result:

Proposition. There is a unique map p∗ : S0(X̃ell) → C∞(Xre) such that the diagram

S (X̃re)
p∗ //

F ′fXell,ψ

��

S (Xre)

F
(1)
X,ψ

��
S0(X̃ell)

p∗ // C∞(Xre)

commutes. For f ∈ S0(K) we have

(pK)∗f = π∗(f ⊗ χa)

where a is any sufficiently large compact open subset of K⊥. Here (pK)∗ is just the restriction of p∗

to S0(K).

Proof. The map p∗ exists and is unique since the arrow labeled F ′eXell,ψ
in the diagram is an isomor-

phism. The point of the proposition is the formula for p∗. We have

FX,ψ((pK)∗f) = 1
2 (1 + dK)FX,ψ(π∗(|∆|F f ⊗ δa))

= 1
2 (1 + dK)π∗(FK,ψ(|∆|F f)⊗FK⊥,ψ(δa))

In the first step we used §4.1.16 and in the second §4.2.4, together with the fact that FX,ψπ∗ =

π∗FB,ψ. One easily verifies that FK⊥,ψ(δa) = q−md
−1/2
K χa′ where a′ is a large compact open. The

proposition follows.

(4.2.8) We now explicitly compute the map p∗.

Proposition. Let f belong to S0(K). Then

((pK)∗f)(t, ν) =
d
1/2
K

|∆|1/2F A(∆)

∫
F

f( 1
2 t+ ix)I2(∆− 4dKx2,dK)dµF (x)
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where i ∈ K is such that i2 = dK .

Proof. Pick a standard basis for B so that 1, i is a standard basis for K. We take this basis so

that α = dK , β = −dK and γ = d2
K . Let a be the open set of K⊥ consisting of those x for which

x2 ∈ p−n and x3 ∈ p−m for large integers n and m. Our formula for π∗ from §4.1.11 then gives

(π∗(f ⊗ χa))(t, ν) =
1

|∆|1/2F A(∆)

∫
F 2
f( 1

2 t+ ix1)χp−n(x2)χp−m(
√
u)

1 + η(u)

|u|1/2F

dx1dx2

with

u =
∆/4− αx2

1 − βx2
2

γ
.

Let t and ν be given. We are free to enlarge n and m as this will not change the value of the integral.

The condition that f( 1
2 t + ix1)χp−n(x2) be non-zero puts a bound on |u|F (since f has compact

support). Thus by taking m to be sufficiently large, the non-vanishing of f( 1
2 t + ix1)χp−n(x2) will

imply
√
u ∈ p−m. We can therefore remove the χp−m(

√
u) from the integrand without changing the

value of the integral.

Now, for u to be a square it must be that |βx2
2|F ≤ |∆/4 − αx2

1|F as −β = dK is not a square.

Thus if u is a square then |βx2
2|F ≤ max(|∆|F , |αx2

1|F ). As f( 1
2 t+ ix1) vanishes for |x1|F large, we

see that the condition that u be a square forces x2 to belong to p−n if n is sufficiently large. It

follows that we can pick n sufficiently large so that u being a square implies x2 ∈ p−n. Therefore

we can remove the χp−n(x2) from the integrand without changing the value of the integral.

We have thus shown that

(π∗(f ⊗ χa))(t, ν) =
1

|∆|1/2F A(∆)

∫
F 2
f( 1

2 t+ ix1)
1 + η(u)

|u|1/2F

dx1dx2.

The x2 integral is now equal to |b|−1/2
F I2(a, b) (see §3.2) with

a =
∆/4− αx2

1

γ
=

∆− 4dKx2
1

4d2
K

, b = −β
γ

= d−1
K .

We thus find (using some basic properties of I2)

((pK)∗f)(t, ν) =
d
1/2
K

|∆|1/2F A(∆)

∫
F

f( 1
2 t+ ix)I2(∆− 4dKx2,dK)dx,

which is the stated result.
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4.3 The cuspidal space H(X)

(4.3.1) The purpose of §4.3 is to compute push-forwards and inner products of matrix coefficients

of cuspidal representations and introduce the cuspidal space. Here is an overview:

• Is §4.3.2 and §4.3.3 we introduce the matrix coefficients φπ,v,v∗ of cuspidal representations and

recall the Schur orthogonality relations.

• In §4.3.4 we introduce certain truncated matrix coefficient functions φπ,v,v∗,n and prove a Schur

orthogonality type result for them. The φπ,v,v∗,n, unlike the φπ,v,v∗ , have compact support.

• In §4.3.5 we recall the definition of the character of an irreducible admissible representation.

• In §4.3.6 we relate the push-forwards of matrix coefficients to characters. The result is that

π∗(φπ,v,v∗,n) is given by d−1
π 〈v, v∗〉φπ,n where dπ is the formal degree of π and φπ,n is a certain

truncation of the character of π.

• In §4.3.7 we prove a Schur orthogonality type result for the φπ,n.

• In §4.3.8 we define the space H(X) of cuspidal functions on X as the L2-closure of the space

spanned by the φπ,n.

• In §4.3.9 we give a characterization of H(X) which is independent of representation theory.

(4.3.2) Let π be an cuspidal representation of G (by which we will always mean an irreducible

admissible representation which is cuspidal). Let V be the representation space of π and V ∨ the

space of the contragredient π∨. For v ∈ V and v∗ ∈ V ∨ we define

φπ,v,v∗(g) = 〈π(g)v, v∗〉.

The function φπ,v,v∗ is called a matrix coefficient of π. As π is cuspidal, such functions have compact

support modulo the center. The matrix coefficients satisfy the Schur orthogonality relations, which

we now recall. Let π1 and π2 be cuspidal representations whose central characters are inverse to

each other. Then φπ1,v1,v∗1
· φπ2,v2,v∗2

transforms trivially under the center and defines a Schwartz

function on G/Z. We then have

〈φπ1,v1,v∗1
, φπ2,v2,v∗2

〉G/Z = 0
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if π1 and π2 are not contragredient to each other. If π1 and π2 are contragredient then

〈φπ1,v1,v∗1
, φπ2,v2,v∗2

〉G/Z = d−1
π1
〈v1, v2〉〈v∗1 , v∗2〉.

We now explain the right side. First, dπ1 is a non-negative real number, called the formal degree of

π1. Fix an isomorphism α : π2 → π∨1 . We then have an isomorphism (α∨)−1 : π∨2 → π1. The right

side of the above equation is to be interpreted as

d−1
π1
〈v1, α(v2)〉〈v∗1 , (α∨)−1(v∗2)〉

This is independent of the choice of α. If π2 is equal to the contragredient of π1 then one can take

α to be the identity map and the above formula looks a bit more pretty.

(4.3.3) Now let π be a unitary cuspidal representation. Let (, ) be the invariant Hermitian form on

the representation space V of π. We always use the convention that such forms are linear in the

first variable and conjugate linear in the second. For v and v′ in V we define

φ′π,v,v′(g) = (π(g)v, v′).

As (−, v′) is an element of the contragredient of V the above is just a matrix coefficient of π. However

it will be convenient to use this kind of matrix coefficients at times. Schur orthogonality for these

functions can be written as follows: if π1 and π2 have the same central character then

(φ′π1,v1,v′1
, φ′π2,v2,v′2

)G/Z = 0

if π1 and π2 are not isomorphic. Furthermore,

(φ′π,v1,v′1 , φ
′
π,v2,v′2

)G/Z = d−1
π (v1, v2)(v′2, v

′
1).

In particular,

‖φ′π,v,v′‖2G/Z = d−1
π |(v, v′)|2

These orthogonality relations easily deduced from the ones in §4.3.2.

(4.3.4) Let π be a cuspidal representation of G on the space V . For v ∈ V , v∗ ∈ V ∨ and n ∈ Z

we let φπ,v,v∗,n be the function which is equal to the matrix coefficient φπ,v,v∗ on the locus Gn in
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G where the determinant has valuation n and 0 off of this locus. For unitary π we define φ′π,v,v′,n

in the analogous manner. These belong to the Schwartz space S (B). Recall that ξ : G → {±1} is

the character g 7→ (−1)val(det g). We call a representation π even if π is equivalent to ξ ⊗ π and odd

otherwise. We now have the following:

Proposition. We have

〈φπ1,v1,v∗1 ,n
, φπ2,v2,v∗2 ,m

〉G = 0

unless n = m and π1 is isomorphic to an unramified twist of π∨2 . We have

〈φπ,v1,v∗1 ,n, φπ∨,v2,v∗2 ,n〉G = 1
2 (1− q−1)d−1

π 〈v1, v2〉〈v∗1 , v∗2〉

if π is odd, while

〈φπ,v1,v∗1 ,n, φπ∨,v2,v∗2 ,n〉G = 1
2 (1− q−1)d−1

π

(
〈v1, v2〉〈v∗1 , v∗2〉+ (−1)n〈Av1, v2〉〈A∨v∗1 , v2∗〉

)
if π is even, where A : ξ ⊗ π → π is an intertwining operator with A2 = 1. Similarly, we have

(φ′π1,v1,v′1,n
, φ′π2,v2,v′2,m

)G = 0

unless n = m and π1 is isomorphic to an unramified twist of π2. For π unitary cuspidal we have

(φ′π,v1,v′1,n, φ
′
π,v2,v′2,n

)G = 1
2 (1− q−1)d−1

π (v1, v2)(v′2, v
′
1)

if π is odd, while

(φ′π,v1,v′1,n, φ
′
π,v2,v′2,n

)G = 1
2 (1− q−1)d−1

π

(
(v1, v2)(v′2, v

′
1) + (−1)n(Av1, v2)(Av′2, v

′
1)

)
if π is even and A : ξ ⊗ π → π is an intertwining operator with A2 = 1.

Before proving the proposition we need a lemma.

Lemma. Let f be a function on G which is supported on Gn and invariant under UF ⊂ Z. Let f ′

be the function on G which is equal to f on Gn, invariant under Z and vanishes off of GnZ. Then

∫
G

fdµG = (1− q−1)
∫
G/Z

f ′dµG/Z .
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Proof. We have ∫
G

fdµG =
∫
G/Z

∫
Z

f(gz)dµZ(z)dµG/Z(g).

One finds that ∫
Z

f(gz)dµZ(z) = Vol(UF )f ′(g),

which proves the lemma.

We now prove the proposition.

Proof of proposition. Put f = φπ1,v1,v∗1 ,n
· φπ2,v2,v∗2 ,m

. Note that

〈φπ1,v1,v∗1 ,n
, φπ2,v2,v∗2 ,m

〉G =
∫
G

f dµG

Now, f is identically zero unless n = m. Thus assume n = m. If the central characters of π1 and

π2, restricted to UF ⊂ Z, are not inverse to each other then f transforms by a non-trivial character

under UF and its integral over G is zero. Thus assume that ωπ1ωπ2 = | · |sF . We now have that f is

supported on Gn and invariant by UF . Let f ′ be the function used in the lemma. One finds that

f ′(g) =
(

1 + (−1)nξ(g)
2

)
q−ns/2|det g|−s/2F φπ1,v1,v∗1

(g)φπ2,v2,v∗2
(g)

where here ξ(g) = (−1)val(det g). The lemma now gives

〈φπ1,v1,v∗1 ,n
, φπ2,v2,v∗2 ,n

〉G = 1
2 (1− q−1)q−ns/2

(
〈φ|·|−s/2F π1,v1,v∗1

, φπ2,v2,v∗2
〉G/Z

+ (−1)n〈φ|·|−s/2F ξπ1,v1,v∗1
, φπ2,v2,v∗2

〉G/Z
)
.

If π1 is not an unramified twist of π2 then the Schur orthogonality relations of §4.3.2 show that both

terms on the right vanish. Now take π1 = π and π2 = π∨, so that s = 0. The first term in the

parentheses is d−1
π 〈v1, v2〉〈v∗1 , v∗2〉. If ξ⊗π 6= π then the second term vanishes; otherwise it is equal to

(−1)nd−1
π 〈Av1, v2〉〈A∨v∗1 , v∗2〉 where A is an endomorphism of π satisfying A(g)π(g) = ξ(g)π(g)A(g)

and A2 = 1. This gives the stated formula. The proofs for the φ′ go in the same way.

(4.3.5) Let π be an irreducible admissible representation of G on a vector space V . For a Schwartz

function φ on G we define an operator π(φ) on V by

π(φ)v =
∫
G

φ(g)π(g)v dµG(g).
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It is not difficult to see that the operator π(φ) has finite rank and thus a well-defined trace. There is

a unique continuous function χπ defined on Greg, called the character of π, which has the property

trπ(φ) = 〈φ, χπ〉G.

It is easily seen that χπ is conjugation invariant, and thus defines a continuous function on Xreg.

(4.3.6) Let π be a cuspidal representation of G and let n be an integer. We define φπ,n to be the

function on Xreg which is equal to χπ on the locus Xre,n where N has valuation n and 0 off of this

locus. Note that φπ,n, by definition, vanishes on regular non-elliptic elements of X. We now relate

this function to the matrix coefficients of π.

Proposition. For a cuspidal representation π we have

π∗(φπ,v,v∗,n) = cd−1
π 〈v, v∗〉φπ,n.

Similarly, for a unitary cuspidal representation π we have

π∗(φ′π,v,v′,n) = cd−1
π (v, v′)φπ,n.

Here c = 1
2q/(q + 1).

Proof. We first show that π∗(φπ,v,v∗,n) vanishes on regular non-elliptic elements. For this, it suffices

to show (π∗π∗φπ,v,v∗,n)(t) = 0 for t a regular element of the group T of diagonal matrices with det t

of valuation n. Let N be the group of upper triangular unipotent matrices and let K be a maximal

compact subgroup of G. If f is a compactly supported function on G/T then

∫
G/T

f dµG/T =
∫
K

∫
N

f(kn)dndk

for suitable Haar measures dk and dn on K and N . We thus find

(π∗π∗φπ,v,v∗,n)(t) =
∫
K

∫
N

〈π(kntn−1k−1)v, v∗〉dndk.
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Writing t =

 a

b

 and n =

 1 x

1

 gives ntn−1 =

 a (a− b)x

b

. We may thus write

(π∗π∗φπ,v,v∗,n)(t) =
∫
K

Ak(v∗)dk

with

Ak(v∗) =
∫
F

〈
π

k
 a (a− b)x

b

 k−1

 v, v∗

〉
dx.

The function v∗ 7→ Ak(v∗) defines a linear map V ∨ → C which is invariant by kNk−1. Thus

v∗ 7→ Ak(v∗) factors through the Jacquet module of V ∨ which is zero since V ∨ is cuspidal. We thus

find that Ak(v∗) = 0, which proves that (π∗π∗φπ,v,v∗,n)(t) = 0.

We now need to determine π∗(φπ,v,v∗,n) on Xell. Of course, it is supported on the locus where N

has valuation n. Let φ be a Schwartz function on B whose support is regular elliptic and contained

in the locus where the determinant has valuation n. We then have

〈π∗(φπ,v,v∗,n), π∗(φ)〉X = 〈φπ,v,v∗ , avg(φ)〉B

where we have used §4.1.15 to replace π∗π∗φ by avg φ. Let U be a compact open subset of G/Z.

Then

〈φπ,v,v∗ , avgU (φ)〉B = c

∫
U

∫
B

〈π(x)v, v∗〉φ(σxσ−1)dµB(x)dµG/Z(σ)

= cq−2n

∫
U

∫
G

〈π(xσ)v, π∨(σ)v∗〉φ(x)dµG(x)dµG/Z(σ)

= cq−2n

∫
U

〈π(φ)π(σ)v, π∨(σ)v∗〉dG/Z(σ)

where c = 1
2q/(q+1). The factor of q−2n comes from replacing dµB with dµG = |det |−2

F dµB . Pick a

basis vi of V and let v∗i be the dual basis of V ∨. (The dual basis of V belongs to the contragredient,

rather than the dual, because some twist of V is unitary.) We have

π(σ)v =
∑

〈π(σ)v, v∗i 〉vi, π∨(σ)v∗ =
∑

〈vj , π∨v∗〉v∗j

and so

〈π(φ)π(σ)v, π∨(σ)v∗〉 =
∑

〈π(φ)vi, v∗j 〉φπ,v,v∗i (σ)φπ∨,v∗,vj (σ).
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We thus find

〈φπ,v,v∗ , avgU (φ)〉B = cq−2n
∑

〈π(φ)vi, v∗j 〉
∫
U

φπ,v,v∗i (σ)φπ∨,v∗,vj (σ)dµG/Z(σ).

The quantities above are independent of U for U sufficiently large, and equal to the corresponding

quantity with U changed to G/Z. We thus find

〈π∗(φπ,v,v∗), π∗(φ)〉X = cq−2n
∑

〈π(φ)vi, v∗j 〉〈φπ,v,v∗i , φπ∨,v∗,vj 〉G/Z

= cq−2nd−1
π 〈v, v∗〉

∑
〈π(φ)vi, v∗j 〉〈vi, v∗j 〉

= cq−2nd−1
π 〈v, v∗〉

∑
〈π(φ)vi, v∗i 〉

= cq−2nd−1
π 〈v, v∗〉 trπ(φ)

= cq−2nd−1
π 〈v, v∗〉〈χπ, φ〉G

In the second step above we used the Schur orthogonality relations of §4.3.2. As φ is supported

on the set where the determinant has valuation n, the last line is not changed if we replace χπ by

π∗(φπ,n). We can also get rid of q−2n by changing back to the measure dµB . We thus find

〈π∗(φπ,v,v∗,n), π∗(φ)〉X = cd−1
π 〈v, v∗〉〈φπ,n, π∗(φ)〉X .

This now gives the stated result for π∗(φπ,v,v∗,n). The unitary case goes similarly.

Corollary. The function φπ,n belongs to L2(Xre).

Proof. The function φπ,v,v∗,n belongs to S (B) and so its push-forward by π belongs to L2(X) by

§4.1.11.

(4.3.7) We now compute the inner products of the functions φπ,n.

Proposition. We have

〈φπ1,n, φπ2,m〉X = 0

unless n = m and π1 is isomorphic to an unramified twist of π∨2 . We have

〈φπ,n, φπ∨,n〉 = (1− q−2)q−2n

if π is odd, while

〈φπ,n, φπ∨,n〉 = 2(1− q−2)q−2n
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if π is even and n is even. If π is even then φπ,n = 0 for n odd. Similarly, we have

(φπ1,n, φπ2,m)X = 0

unless n = m and π1 is isomorphic to an unramified twist of π1. For π unitary cuspidal we have

‖φπ,n‖2X = (1− q−2)q−2n.

if π is odd, while

‖φπ,n‖2X = 2(1− q−2)q−2n.

if π is even and n is even.

Proof. It is clear that all these inner products vanish unless n = m, so we only work in that situation.

Using §4.3.6 we find

〈φπ1,n, φπ2,n〉X =
c−1dπ1

〈v, v∗〉
〈π∗(φπ1,v,v∗,n), χπ2〉X =

c−1q−2ndπ1

〈v, v∗〉
trπ2(φπ1,v,v∗,n)

where here v and v∗ are any vectors such that 〈v, v∗〉 is non-zero. The factor of q−2n comes in

because the pairing 〈, 〉X uses an additive measure, while the trace of π(φ) is given by integrating

φ against χπ using a multiplicative measure. Note that in the above we have used the fact that

π∗(φπ1,v,v∗,n) vanishes on regular non-elliptic elements, since the character χπ2 does not vanish on

such elements. Now, let ui be a basis for π2 and let u∗i be the dual basis of π∨2 . We then have

trπ2(φπ1,v,v∗,n) =
∑

〈π2(φπ1,v,v∗,n)ui, u
∗
i 〉

=
∑ ∫

G

φπ1,v,v∗,n(g)〈π2(g)ui, u∗i 〉dµG

=
∑

〈φπ1,v,v∗,n, φπ2,ui,u∗i
〉G

Of course, we can change the φπ2,ui,u∗i
in the above to φπ2,ui,u∗i ,n

without changing the result. By

the Schur orthogonality relations of §4.3.2, we see that the trace vanishes unless π1 is isomorphic to

an unramified twist of π2. Taking π1 = π and π2 = π∨, we find

trπ2(φπ1,v,v∗,n) = 1
2 (1− q−1)d−1

π

∑
〈v, ui〉〈v∗, u∗i 〉 = 1

2 (1− q−1)d−1
π 〈v, v∗〉
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if π is odd, while we get

trπ2(φπ1,v,v∗,n) =1
2 (1− q−1)d−1

π

∑ [
〈v, ui〉〈v∗, u∗i 〉+ (−1)n〈Av, ui〉〈A∨v∗, u∗i 〉

]
= 1

2 (1− q−1)d−1
π

(
〈v, v∗〉+ (−1)n〈Av,A∨v∗〉

)
= 1

2 (1− q−1)d−1
π 〈v, v∗〉(1 + (−1)n)

if π is even and A : ξ ⊗ π → π is an intertwining operator with A2 = 1. Putting this back into our

above formula gives the stated result. The computation for (, )X goes exactly the same. Note that

if ξ⊗π = π then the character of π is forced to vanish on elements of G whose determinant has odd

valuation, and this gives φπ,n = 0 for n odd.

(4.3.8) We now come to an important definition. We define the space of cuspidal functions H(X)

to be the closure in L2(Xre) of the space spanned by the φπ,n with π a cuspidal representation. We

also define S ◦(B) to be the subspace of S (B) spanned by the φπ,v,v∗,n. By our above computa-

tions, π∗ carries S ◦(B) into H(X) and has dense image. Our definitions of the spaces H(X) and

S ◦(B) are very representation theoretic. However, one can define these spaces without mentioning

representations. For instance, S ◦(B) is the subspace of S (B) consisting of those functions f which

are supported on non-singular elements and which satisfy

∫
N

f(gn)dn = 0

for any g ∈ G and any unipotent subgroup N ⊂ G. (That this description of S ◦(B) is equivalent

to our definition of S ◦(B) follows from Harish-Chandra’s Plancherel formula.) We will give a

characterization of H(X) below.

(4.3.9) We now characterize the space H(X).

Proposition. The space H(X) consists of those elements of L2(Xre) which are orthogonal to func-

tions factoring through N.

Proof. Let V be the subspace of L2(Xre) consisting of those functions which factor through the

norm. We first prove the following statement: the functions φπ,n, with π a special representation,

span a dense subspace of V . (Here φπ,n is the function on Xre which is equal to χπ on Xre,n and

0 off this set. We extend φπ,n by zero to all of X.) First observe that functions of the form φ ◦N

with φ ∈ S (F×) span a dense subspace of V . By basic Fourier analysis on F×, we can write φ as

a sum of functions of the form φη,n where η is a character of F× and φη,n is the function which is
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η on $n
FUF and 0 off that set. Thus the functions φη,n ◦N span a dense subspace of V . Now, if π

is the special representation associated to η then χπ|Xre = (η ◦N)|Xre (see the discussion following

[JL, Theorem 7.7]). This shows that φη,n ◦N and φπ,n agree on Xre and the claim follows.

Now, we have only stated the Schur orthogonality relations for cuspidal representations. However,

they are valid for all square integrable representations. Thus they hold for cuspidal and special

representations. From this it follows that H(X) is orthogonal to V , that is, H(X) ⊂ V ⊥. We must

prove that this containment is an equality. It suffices, therefore, to show that H(X)⊕ V is equal to

all of L2(Xre). In other words, we must show that the φπ,n|Xre , as π varies over square integrable

representations, span a dense subspace of L2(Xre). To do this, it suffices to prove the following

statement: if f ∈ S (Xre) is orthogonal to all the φπ,n with π square integrable then f vanishes.

We now prove the above statement. Thus let f be given. Let f̃ be a function on B with regular

elliptic support such that π∗f̃ = f . (We can find f̃ by §4.1.16.) If π is an infinite dimensional

principal series representation then

trπ(f̃) = 〈π∗(χπ), f̃〉B = 〈χπ, f〉X = 0

since χπ has non-elliptic support (see [JL, Proposition 7.6]) but f has elliptic support. If π is square

integrable then

trπ(f̃) = 〈χπ, f〉X =
∑
n∈Z

〈φπ,n, f〉X = 0

by hypothesis. We thus see that trπ(f̃) vanishes for any infinite dimensional irreducible admissible

representation π of G. The density of characters (which can be proved using the local trace formula,

see [Vig, §3.1]) implies that the integral of f̃ on any conjugacy class vanishes. We thus see that

f = π∗f̃ vanishes, which proves the proposition.

4.4 The Fourier transform F
(2)
X,ψ and the A -structure on H(X)

(4.4.1) In §4.4 we introduce a Fourier transform F
(2)
X,ψ on the cuspidal space H(X), use this Fourier

transform to define a family of operators A on H(X) and then determine the structure of H(X) as

a module over A . Here is an overview:

• In §4.4.2 we compute the Fourier transform (onB) of our truncated matrix coefficients φπ,v,v∗,n.

• In §4.4.3 we determine the modulus of ε-factors.
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• In §4.4.4 we show that the ε-factor of π can be obtained from integrating one of the truncated

character functions φπ,n against an additive character. We will ultimately use this result to

determine the proper sign in the Jacquet-Langlands correspondence.

• In §4.4.5 we give some characterizations of even representations.

• In §4.4.6 we show that in certain families of representations the formal degree becomes large.

This is an important input into the results of §4.4.8.

• In §4.4.7 we define the Fourier transform F
(2)
X,ψ by the formula F

(2)
X,ψ(π∗f) = π∗(FB,ψf) where

f is a linear combination of truncated matrix coefficients. We prove this is well-defined using

the explicit computations of §4.4.2.

• In §4.4.8 we prove that F
(1)
X,ψ and F

(2)
X,ψ agree on a dense subspace of H(X). This is a very

important result as certain properties are easier to establish for F
(1)
X,ψ and others for F

(2)
X,ψ,

and this result allows one to transfer these properties. The proof of this result is a bit tricky!

• In §4.4.9 we introduce an operation f 7→ f∨ on functions on X.

• In §4.4.10 we introduce the operators Aψ,η and the algebra A they generate. We also introduce

another algebra of operators T , which is much less interesting but still needed.

• In §4.4.11 we determine the structure of H(X) as a module over the coproduct A ∗ T . It is

semi-simple and multiplicity free. Its simple constituents are in bijective correspondence with

unramified twist classes of cuspidal representations.

(4.4.2) We now compute the Fourier transform on S ◦(B) in terms of the spanning set φπ,v,v∗,k.

Proposition. We have

FB,ψ(φπ,v,v∗,k) = ε( 3
2 , π, ψ)φ|·|−2

F π∨,v∗,v,−k−n(π)−2m(ψ)

where ε(s, π, ψ) is the ε-factor of π, n(π) is the conductor of π and m(ψ) is the largest integer for

which ψF is trivial on p−m(ψ). Similarly, for π unitary we have

FB,ψ(φ′π,v,v′,k) = ε( 3
2 , π, ψ)q−2(n(π)+2m(ψ)+k)φ

′
π,v′,v,−k−n(π)−2m(ψ)

where the bar denotes complex conjugation.
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Proof. Take π in Kirillov form (with respect to the character ψ), so that its representation space is

S (F×). By [JL, Lemma 13.1.1] we have that the Fourier transform of

x 7→ φ(detx)|detx|−1
F 〈v, π∨(x)v∗〉

is equal to

x 7→ φ′(detx)|detx|−1
F ω−1

π (detx)〈π(x)v, v∗〉.

Here φ is an element of S (F×), φ′ is π(w)φ where w =

 1

−1

 and ωπ is the central character

of π. For a character η of F× and an integer k let Φk,η be the function which is η on $kUF and 0

of this set. Applying the above formula with φ = Φk,1 gives

qk(FB,ψφπ∨,v∗,v,k)(x) = φ′(detx)|detx|−1
F ω−1

π (detx)φπ,v,v∗(x)

where φ′ = π(w)Φk,1. In [JL] it is explained how to compute π(w) in the Kirillov model by using

formal Mellin transforms. This involves certain power series which are denoted there by C(ν, t). For

cuspidal representations, these series have only a single non-zero term. Working through the details

shows that

π(w)Φk,η = C(η)ΦN(η)−k,ωη−1

whereN(η) is some integer and C(η) some constant. One can relate the series C(ν, t) to the constants

appearing in the local functional equation. The result is

ε(s, ω−1
π ηπ, ψ) = C(η)q(s−1/2)N(η).

Now, by [Cas] one knows that ε(s, π, ψ) is a constant times qNs where N = −n(π) − 2m(ψ). It

follows that N(η) = −n(ηπ∨)− 2m(ψ). (Note that ω−1
π π = π∨.) From this we find

C(η) = ε(s, ηπ∨, ψ)q−(s−1/2)(n(ηπ∨)+2m(ψ)),

for any value of s. This gives

π(w)Φk,η = ε(s, ηπ∨, ψ)q−(s−1/2)(n(ηπ∨)+2m(ψ))Φ−n(ηπ∨)−2m(ψ)−k,ωη−1 .
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Taking η = 1 gives a formula for φ′. We thus have

qk(FB,ψφπ∨,v∗,v,k)(x)

=ε(s, π∨, ψ)q−(s−1/2)(n(π)+2m(ψ))Φ−n(π)−2m(ψ)−k,ω(detx)|detx|−1
F ω−1(detx)φπ,v,v∗(x)

=ε(s, π∨, ψ)q−(s−1/2)(n(π)+2m(ψ))q−n(π)−2m(ψ)−kφπ,v,v∗,−n(π)−2m(ψ)−k(x).

Thus, taking s = 3/2, we find

FB,ψ(φπ∨,v∗,v,k) =ε( 3
2 , π

∨, ψ)q−2(n(π)+2m(ψ)+k)φπ,v,v∗,−n(π)−2m(ψ)−k

=ε( 3
2 , π

∨, ψ)φ|·|−2
F π,v,v∗,−n(π)−2m(ψ)−k.

Changing π to π∨ now gives the stated result. The identity for φ′ can be derived from the one from

for φ by observing φ′π,v,v′,n = φπ,v,v∗,n where v∗ = (−, v′).

Remark. The proposition shows that the space S ◦(B) is closed under FB,ψ. In fact, one can give a

more conceptual proof of this using the characterization of S ◦(B) as the space of functions whose

integrals on unipotent cosets vanish. For this, see [JL, Lemma 13.1.2].

(4.4.3) We can now use the fact that the Fourier transform is an isometry to compute the size of

ε-factors.

Proposition. For π unitary we have |ε( 3
2 , π, ψ)| = qn(π)+2m(ψ).

Proof. As FB,ψ preserves ‖ · ‖2B , we find

‖φ′π,v,v′,k‖2B = |ε( 3
2 , π, ψ)|2q−4(n(π)+2m(ψ)+k)‖φ′π∨,v,v′,−k−n(π)−2m(ψ)‖

2
B .

We have previously computed these norms (see §4.3.4), but with respect to the multiplicative Haar

measure. Changing to the additive Haar measure, we find ‖φ′π,v,v′,k‖2B = 1
2q

−2k(1−q−1)d−1
π |(v, v′)|2,

if π is odd or π and k are both even (the difference between this and the previous formula is the

factor of q−2k that is now present). For π odd, this gives the stated result. If π is even, we take k

to be even. The left side is non-zero, which implies the right side is non-zero, which implies n(π) is

even. The stated formula now follows from the computation of the norms.

(4.4.4) Define ψX : X → C by ψX = ψF ◦ tr.
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Proposition. We have

ε( 3
2 , π, ψ) = cd−1

π q−2m(ψ)〈φπ,−n(π)−2m(ψ), ψX〉X .

Proof. Observe that π∗ψX = ψB and 〈f, ψB〉B = q2m(ψ)(FB,ψf)(1). Thus

〈φπ,k, ψX〉X =
dπ

c〈v, v∗〉
〈φπ,v,v∗,k, ψB〉B

=
dπq

2m

c〈v, v∗〉
(FB,ψ(φπ,v,v∗,k))(1)

=
dπq

2m

c〈v, v∗〉
ε( 3

2 , π, ψ)〈v, v∗〉δk,−n(π)−2m(ψ)

which gives the stated result. Here we have used our formula for the Fourier transform, c.f. §4.4.2.

(4.4.5) We now give some characterizations of even representations.

Proposition. Let π be a cuspidal representation of G. The following are equivalent:

1. π is even.

2. ξ ⊗ π = π.

3. φπ,k = 0 for k odd.

4. n(ηπ) is even for any character η of F×.

Proof. (1) and (2) are equivalent by definition. That (2) implies (3) is immediate, as we have already

remarked. Now assume (3) holds. Then φηπ,k = 0 for any character η and any odd integer k. As

ε( 3
2 , ηπ, ψ) is non-zero, we see from §4.4.4 that n(ηπ) is even. Thus (4) holds. Now assume (4) holds.

Then by §4.4.4 we have

ε( 3
2 , ηξπ, ψ) = 〈φηξπ,−n(ηπ)−2m(ψ), ψX〉X = 〈φηπ,−n(ηπ)−2m(ψ), ψX〉X = ε( 3

2 , ηπ, ψ)

as φξπ,k = φπ,k for k even. Since ξπ and π have the same conductor, we see ε(s, ηξπ, ψ) = ε(s, ηπ, ψ)

for all η and ψ. Thus, by the local converse theorem [JL, Corollary 2.19], we find ξ ⊗ π = π and so

(2) holds.

(4.4.6) We now study the behavior of the formal degree in certain families of representations.

Proposition. Let ω be a character of F× and let S be a section of Irr◦G,ω → Irr
◦
G,ω. Then

∑
d2
π = ∞,

the sum taken over π ∈ S.

47



Proof. We first note that the truth of the proposition is unchanged if we multiply ω by the square

of another character. We can and do therefore assume that ω is unitary and its restriction to UF is

non-trivial.

Let L2
ω(Xell) be the subspace of L2(Xell) consisting of those functions which transform under

UF ⊂ Z by ω. If ω is not a square then this space has for a basis the functions φπ,k with π ∈ S.

If ω = ω2
0 then the functions φω0,k, defined to be ω0 ◦N on Xell,k and 0 off this set, also belong to

L2
ω(Xell) and together with the φπ,k form a basis. These statements follow easily from §4.3.9.

Define a function F : Xell → C by

F (x) = c|Nx|−1
F

∫
UF

ω−1(ε)ψX(εx)dε. (4.1)

Here dε is the Haar measure on UF with total volume 1. Note that ψX(εx) = ψF (ε trx). The usual

evaluation of Gaussian sums shows that

F (x) = C0ω(trx)|Nx|−1
F δval(tr x),N (4.2)

where N is an integer and C0 a constant. Let Fk be the function which is F on Xell,k and 0 off

of this set. The function Fk belongs to L2
ω(Xell). For π ∈ S a simple computation using (4.1) and

§4.4.4 gives

(φπ,k, Fk)X = aπdπδk,−n(π)−2m(ψ)

where aπ = q−n(π)−2m(ψ)ε( 3
2 , π, ψ). If ω is a square then using (4.2) and the definition of dµX (c.f.

§4.1.9) we find

(φω0,k, Fk)X = qkC0

∫
$NUF

∫
$kUF

ω−1(t)ω0(ν)|∆|1/2F

(
1− η(∆)

2

)
dνdt

The 1− η(∆) ensures that the integral is really over a subset of Xell. If k 6= 2N then |∆| and η(∆)

are independent of ν and so the integral over the coset of UF is zero, as ω0|UF is non-trivial. Thus

(φω0,k, Fk)X is non-zero only for k = 2N and so we have

Fk =
∑

dπaπ
φπ,k

‖φπ,k‖X
+ C1δk,2N

φω0,k

‖φω0,k‖X
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where the sum is over those π ∈ S for which n(π) = −k − 2m(ψ). Therefore

‖Fk‖2X =
∑

d2
π + C2 · δk,2N

the sum taken over the same set of π. (Note |aπ| = 1.) Summing over k now gives

∑
k∈Z

‖Fk‖2X = C2 +
∑
π∈S

d2
π.

The proposition will follow if we can show that the left side is infinite.

We now estimate ‖Fk‖2X . Using (4.2) and the definition of dµX gives

‖Fk‖2X = |C0|2qk
∫
$NUF

∫
$kUF

A(∆)|∆|1/2F

(
1− η(∆)

2

)
dνdt

where dν and dt are additive Haar measures on F . The quantity A(∆) is never zero and assumes

only two values. If k < 2N then |∆|1/2F equals q−k/2. We thus find, under this hypothesis,

‖Fk‖2X ≥ C3q
kq−k/2 Vol($NUF ) Vol($kUF ) ≥ C4q

−k/2.

We therefore see that ‖Fk‖X increases without bound as k → −∞. This proves the proposition.

(4.4.7) We now define a Fourier transform on the cuspidal space H(X).

Proposition. There is a unique map F
(2)
X,ψ : H(X) → H(X) which is an isometry and satisfies

FX,ψ(π∗f) = π∗(FB,ψf) for f ∈ S ◦(B). Explicitly, we have

F
(2)
X,ψ(φπ,k) = ε( 3

2 , π, ψ)φ|·|−2
F π∨,−k−n(π)−2m(ψ).

Proof. Let S be a set of cuspidal representations such that any cuspidal representation is an un-

ramified twist of exactly one element of S. We can, and do, assume that S consists of unitary

representations. The φπ,k with π ∈ S then form a basis for H(X) (excluding the φπ,k with π even

and k odd) and are mutually orthogonal. From this and our explicit computation of π∗(φπ,v,v∗,k)

(c.f. §4.3.6) one easily sees that the kernel of π∗ : S ◦(B) → H(X) is spanned by functions of the

form
∑
aiφπ,vi,v∗i ,k with

∑
ai〈vi, v∗i 〉 = 0. Our explicit computation of FB,ψ(φπ,v,v∗,k) (c.f. §4.4.2)

thus shows that this kernel is mapped into itself. It follows that we have a unique well-defined linear
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map

F
(2)
X,ψ : π∗(S ◦(B)) → π∗(S ◦(B))

given by F
(2)
X,ψ(π∗f) = π∗(FB,ψf). Our computation of FB,ψ(φπ,v,v∗,k) and π∗(φπ,v,v∗,k) now gives

the stated formula for F
(2)
X,ψ(φπ,k). To finish off the proof, it suffices to show that F

(2)
X,ψ is an

isometry on π∗(S ◦(B)). For this, it is enough to show that

(φπ,k, φπ′,k′)X = (F (2)
X,ψ(φπ,k),F

(2)
X,ψ(φπ′,k′))X

for π, π′ ∈ S. If π 6= π′ or k 6= k′ then the left side is zero and our formula for F
(2)
X,ψ shows that the

right side is zero. (Here we have used the orthogonality relations of §4.3.7.) We are thus reduced to

showing

‖φπ,k‖2X = ‖F (2)
X,ψ(φπ,k)‖2X

Assume first that π is odd. Then the left side is (1− q−2)q−2k by §4.3.7. On the other hand,

‖F (2)
X,ψ(φπ,k)‖2X =|ε( 3

2 , π, ψ)|2‖φ|·|−2
F π∨,−k−n(π)−2m(ψ)‖

2
X

=|ε( 3
2 , π, ψ)|2q−4(k+n(π)+2m(ψ))‖φπ∨,−k−n(π)−2m(ψ)‖2X

=|ε( 3
2 , π, ψ)|2q−4(k+n(π)+2m(ψ))(1− q−2)q2(k+n(π)+2m(ψ))

=|ε( 3
2 , π, ψ)|2q−2(k+n(π)+2m(ψ))(1− q−2).

This is equal to (1− q−2)q−2k by our computation of |ε( 3
2 , π, ψ)| (c.f. §4.4.3). Now consider the case

where π is even. The key point is that n(π) is even by §4.4.5, so that k and −k−n(π)−2m(ψ) have

the same parity. The above analysis of the odd case thus carries over nearly unchanged to the even

case.

(4.4.8) We now compare the two Fourier transforms we have defined. This is a crucial result in our

proof of the Jacquet-Langlands correspondence.

Proposition. There exists a subspace V ⊂ S (Xre)∩H(X) which is dense in H(X) and for which

F
(1)
ψ f = F

(2)
ψ f for all f ∈ V .

Proof. We take V to be the space spanned by functions of the form

Φπ,π′,k = d−1
π φπ,k − d−1

π′ φπ′,k

where π and π′ are cuspidal representations with the same central character and k is any integer. We
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must show that F
(1)
ψ and F

(2)
ψ agree on V (implicit in which is the statement that V is contained

in S (Xre)) and that V is dense in H(X). We first handle the latter task. Assume that V is

not dense in H(X) and let φ be a non-zero element of the orthogonal complement. We can write

φ =
∑
k∈Z

∑
ω∈bUF φω,k where φω,k transforms under UF ⊂ Z by the character ω and is supported

on Xell,k. Each φω,k belongs to the orthogonal complement of V in H(X), so it suffices to handle

the case where φ itself transforms under UF by a character ω and is supported on Xell,k. Extend ω

to a unitary character of Z. The map

Irr◦G,ω → Irr
◦
G,ω

is 2-1; let S ⊂ Irr◦G,ω be a section. We can then write φ =
∑
π∈S aπφπ,k, in a unique way. As

‖φπ,k‖2 = (1−q−2)q−2k and the φπ,k are orthogonal to each other (c.f. §4.3.7), we see that
∑
π∈S |aπ|2

must converge. However, if π and π′ belong to S then

0 = 〈φ,Φπ,π′,k〉X =
aπ
dπ

− aπ′

dπ′
.

We thus see that aπ = cdπ for some non-zero constant c. As the series
∑
π∈S d

2
π does not converge

(c.f. §4.4.6), we have a contradiction. Thus V is dense in H(X).

We now show that F
(1)
X,ψ and F

(2)
X,ψ agree on V and that V ⊂ S (Xre). Consider the statement

(∗) Given two unitary cuspidal representations π and π′ with the same central character there

exists Φ̃ in S ◦(B) ∩Sre(B) for which π∗(Φ̃) = Φπ,π′,k.

It is enough to prove (∗), as π∗(Φ̃) belongs to S (Xre) and π∗(FB,ψ(Φ̃π,π′,k)) computes both

F
(1)
X,ψ(Φπ,π′,k) and F

(2)
X,ψ(Φπ,π′,k). We now prove (∗). Thus let π, π′ and k be given. To find

Φ̃ we take π and π′ in their Kirillov form. Thus both π and π′ have for their representation space

the Schwartz space S (F×). Furthermore, if for v1 and v2 in S (F×) we put

(v1, v2) =
∫
F×

v1(x)v2(x)dµF×(x)

then (, ) is a Hermitian form which is invariant under both π and π′ (see [JL, Proposition 2.21.2]).

Let v be a non-zero element of S (F×). Put

Φ̃0 = φ′π,v,v,k − φ′π′,v,v,k
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Of course, Φ̃ belongs to S ◦(B). Since the group P of upper triangular matrices in G acts on S (F×)

in the same manner under π and π′, we see that Φ̃ vanishes on P . Let K be a maximal compact

subgroup of G and put

Φ̃ =
1

c2 Vol(K)‖v‖2
avgKZ/Z(Φ̃0)

where c = 1
2q/(q + 1). We have

Φ̃(g) =
1

cVol(KZ/Z)‖v‖2

∫
KZ/Z

[
φ′π,π(g)v,π(g)v,k − φ′π′,π′(g)v,π′(g)v,k

]
dµG/Z(g)

and so Φ̃ vanishes on P for the same reason that Φ̃0 did. Let g be an arbitrary element of G and

let p0 be an element of P . We can write g as kp where k ∈ K and p ∈ P . We then have

Φ̃(gp0g
−1) = Φ̃(pp0p

−1) = 0.

It follows that Φ̃ has regular elliptic support since any element which is not regular elliptic belongs

to some conjugate of P . We have thus shown that Φ̃ belongs to S ◦(B) ∩ Sre(B). Finally, using

§4.3.6, we have

π∗(Φ̃) =
1

c‖v‖2
π∗(Φ̃0) = Φπ,π′,k.

This proves (∗) and thus the proposition.

(4.4.9) Define a map Xns → Xns, denoted x 7→ x−1, by (t, ν) 7→ (tν−1, ν−1). This map corresponds

to inversion in G if we regard Xns as the set of semi-simple conjugacy classes in G. For a function

f on X we let f∨ denote the function x 7→ f(x−1). (This function is really only defined on Xns.)

Proposition. The map f 7→ | · |−2
F f is self-adjoint for 〈, 〉X and an isometry for (, )X .

Proof. This is a simple computation with dµX .

(4.4.10) For a non-trivial additive character ψ of F and a unitary character η of F× define an

operator

Aψ,η : H(X) → H(X), Aψ,η(f) = η−1F
(2)
X,ψ(| · |−2

F η−1f∨).

Here η is regarded as a function on X by composing with the norm. Since |η| = 1, multiplying

by η−1 is an isometry; the Fourier transform F
(2)
X,ψ is an isometry by §4.4.7 while f 7→ | · |−2

F f is

an isometry by §4.4.9. It follows that Aψ,η is an isometry. We will see shortly that various Aψ,η

commute. We let A be the polynomial ring over C generated by the symbols Aψ,η, so that the
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above definitions give H(X) the structure of an A -module.

We will need a few more operators as well. For an integer n we define an operator

Tn : H(X) → H(X)

by letting Tn(f) be the function which is equal to f on the locus where N has valuation n and 0 off

this set. Of course, the Tn are idempotent operators. We let T be the polynomial ring over C in the

Tn. We have thus give H(X) the structure of a T -module. The Aψ,η and Tn do not commute with

each other. We write A ∗ T for the coproduct of A and T in the category of non-commutative

algebras. Thus H(X) is a module over this ring.

(4.4.11) We now explicitly calculate the A -module structure on H(X) in terms of the basis φπ,k.

Proposition. We have

Aψ,η(φπ,k) = λψ,η(π)φπ,k−n(ηπ)−2m(ψ)

where λψ,η(π) = ε( 3
2 , ηπ, ψ).

Proof. This is a simple calculation using the formula for F
(2)
X,ψ(φπ,k) from §4.4.2.

(4.4.12) We now determine the structure of H(X) as a (A ∗ T )-module. For a cuspidal represen-

tation π, let Vπ be the closure in H(X) of the space spanned by the φπ,k. It is clear that Vπ does

not change if π is replaced by an unramified twist. The main structure theorem we are after is the

following:

Proposition. We have the following:

1. Each Vπ is stable under A ∗T and simple as an (A ∗T )-module.

2. If π and π′ are distinct elements of Irr
◦
G then Vπ and Vπ′ are not isomorphic as (A ∗ T )-

modules.

3. We have H(X) =
⊕
Vπ, the direct sum taken over π ∈ Irr

◦
G.

In particular, H(X) is semi-simple and multiplicity-free as an (A ∗T )-module.

Proof. It is clear from the formula for Aψ,η(φπ,k) given in §4.4.11 that Vπ is stable for the action of

A ∗T . Now, let V be a non-zero (A ∗T )-stable subspace of Vπ. Since V is T -stable, it is spanned

by the φπ,k which it contains. Say that V contains φπ,k0 6= 0. If π is odd then by §4.4.5 we can pick

η such that n(πη) is odd. Since m(ψ) takes on every integer value as ψ varies, it follows that we can
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pick ψ so that Aψ,η(φπ,k0) is a non-zero multiply of φπ,k, for any given k. Thus V = Vπ. If π is even

then k0 must be even since φπ,k0 6= 0. We can therefore pick ψ appropriately so that Aψ,η(φπ,k0) is

a non-zero multiple of φπ,k, for any given even k. Thus V = Vπ. This proves (1).

We now prove (2). Let π and π′ be elements of Irr
◦
G and let F : Vπ → Vπ′ be an isomorphism of

(A ∗ T )-modules. It suffices to show π = π′. Since F is T -linear, we have F (φπ,k) = akφπ′,k for

some scalar ak. Using the A -linearity of F , we find that n(ηπ) = n(ηπ′) for all η and that

ak−n(ηπ)−2m(ψ) =
λψ,η(π′)
λψ,η(π)

ak.

First consider the case where π is odd. The above equation then implies that ak = abk for non-zero

constants a and b. Scaling F by a−1 and replacing π′ by an unramified twist determined by b, it

follows that we can take the ak to all be 1. This shows that λψ,η(π′) = λψ,η(π) for all η and ψ.

Combining this with the equality n(ηπ) = n(ηπ′) shows that ε(s, ηπ, ψ) = ε(s, ηπ′ψ) for all η and

ψ. The local converse theorem [JL, Corollary 2.19] now implies that π = π′. The case with π even

is similar: just restrict attention to k even. This completes the proof of (2).

Statement (3) follows immediately from the definitions of H(X) and Vπ.
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Chapter 5

The non-split side

The goals of §5 are as follows:

• Define a Fourier transform FX′,ψ on S (X ′).

• Factor FX′,ψ into two steps, as we did with F
(1)
X,ψ.

• Use FX′,ψ to define a family of operators A on the cuspidal space H(X ′) and determine the

structure of H(X ′) as an A -module.

• Use the A -structure on H(X ′) to determine which functions on X ′ are the characters of

cuspidal representations.

The first two goals are accomplished in §5.2. The third and fourth are realized in §5.3 and §5.4,

respectively. Section §5.1 carries out a number of routine calculations. The reader should keep the

following diagram in mind throughout the section.

X̃ ′ i′ //

p′   A
AA

AA
AA

A B′

π′~~}}
}}

}}
}}

X ′

Recall that B′ is the unique non-split quaternion algebra over F with center F , X ′ is the space of

monic degree two polynomials over F which are either irreducible or have a double root, X̃ ′ is the

disjoint union of the three quadratic extensions of F , p′ and π′ are the characteristic polynomial

maps and i′ is a chosen map which restricts to an algebra injection on each component of X̃ ′.
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5.1 Measures and push-forwards

(5.1.1) The purpose of §5.1 is to define measures on the spaces B′, K, K⊥, X ′ and X̃ ′, push-

forwards along the maps p′ and π′ and compute all of these things explicitly. Here is a more detailed

overview:

• In §5.1.2 we define a class of bases on B′ which we call the standard bases.

• In §5.1.3 we define the push-forward p′∗.

• In §5.1.4 we show that (π′)∗ gives an isomorphism between the space of Schwartz functions on

X and the space of conjugation invariant Schwartz functions on B′.

• In §§5.1.5–5.1.9 we define and compute the measures on B′, K, K⊥, X ′ and X̃ ′. (Actually,

the relevant measures on K were defined and computed in §4.1.7.)

• In §5.1.10 and §5.1.11 we define and study the push-forward π′∗ and relate (π′)∗π′∗ to a certain

averaging operator.

• In §5.1.12 we produce certain natural liftings of functions on X ′ to functions on B′. As before,

these will be important when we factor the Fourier transform.

(5.1.2) By a standard basis of B′ we mean a basis 1, i, j, k of B′ as an F -vector space where:

• 1 is the unit of B′.

• i, j and k anti-commute.

• i, j and k square to elements of F .

• ij = k.

We will typically write i2 = α, j2 = β and k2 = γ. The above conditions imply αβ = −γ. Given a

standard basis and an element x of B′ we write x = x0 + ix1 + jx2 + kx3. We have previous defined

what is meant by a standard basis of a quadratic extension K/F .

(5.1.3) For a function f on X̃ ′ we define p′∗f to be the function on X ′ given by

(p′∗f)(x) =
1

#(p′)−1(x)

∑
p′(y)=x

f(y)
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much like our previous definition of p∗. The map p′∗ has the same properties as p∗ (in fact, they are

basically the same thing). In particular, p′∗ maps Sreg(X̃) surjectively onto Sreg(X).

(5.1.4) Write S inv(B′) for the subspace of S (B′) consisting of those functions which are invariant

under the conjugation action of G′. The following result is a consequence of π being proper and

open.

Proposition. The pull-back map (π′)∗ : S (X ′) → S inv(B′) is an isomorphism. Under this iso-

morphism, Sreg(X ′) is identified with S inv
reg (B′).

Proof. Since π′ is proper, it induces a map (π′)∗ : S (X ′) → S (B′). It is clear that this map is

injective and has image contained in S inv(B′). Let f be an element of S inv(B′). As two elements

of B′ are conjugate by an element of G′ if and only if their images in X ′ are equal, we see that f

can be written as f ′ ◦ π′ for some function f ′ on X ′. Since π′ is open and f is locally constant we

see that f ′ too is locally constant. It is clear that f ′ has compact support. Thus f = (π′)∗f ′ with

f ′ ∈ S (X ′), which proves the proposition.

(5.1.5) Recall that dµB′ is the Haar measure on B′ giving the unique maximal order OB′ of B′

volume 1. We now compute it in a standard basis. This is similar to §4.1.6.

Proposition. Identifying B′ with F 4 via a standard basis, we have

dµB′(x) = q|αβγ|1/2F dx0dx1dx2dx3

where dxi = dµF (xi) are normalized Haar measures on F .

Proof. It is clear that dµB(x) = c · dx0dx1dx2dx3 for some constant c, so we need only compute x.

We do this by computing the volume of OB′ using the measure dx0dx1dx2dx3. To do this, note that

x ∈ B′ belongs to OB′ if and only if Nx belongs to OF . Furthermore, Nx belongs to OF if and

only if each of x2
0, αx

2
1, βx

2
2 and γx2

3 do. We thus have

∫
OB

dx0dx1dx2dx3 = Vol(
√

OF ) Vol(
√
α−1OF ) Vol(

√
β−1OF ) Vol(

√
γ−1OF )

where for Ω ⊂ F we use the notation
√

Ω to denote the set of elements x ∈ F for which x2 belongs

to Ω and Vol Ω to denote the volume of Ω with respect to the normalized Haar measure. Now, one

of α, β and γ has even valuation and the other two odd valuations. Assume α has even valuation.

Then Vol(
√
α−1OF ) = |α|−1/2

F . As β has odd valuation, we find Vol(
√
β−1OF ) = q−1/2|β|−1/2

F , and
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similarly for γ. We thus have

∫
OB′

dx0dx1dx2dx3 = q−1|αβγ|−1/2
F .

The constant c is the inverse of this quantity, and so the proposition follows.

(5.1.6) Recall that for a quadratic extension K/F we have defined dµK to be the Haar measure

on K giving the ring of integers OK volume 1. We have previously (in §4.1.7) computed this in a

standard basis. We recall the result:

Proposition. Identifying K with F 2 via a standard basis we have

dµK = |α/dK |1/2F dx0dx1

where dxi = dµF (xi) are normalized Haar measures on F .

(5.1.7) Let K be a quadratic extension and choose an embedding iK : K → B′. Let K⊥ denote the

orthogonal complement to K in B′ under the trace pairing. There is then a unique Haar measure

dµK⊥ on K⊥ so that dµB′ = dµKdµK⊥ . We now compute dµK⊥ in coordinates. (Note that we have

previously in §4.1.8 defined a measure dµK⊥ but this was for a subspace K⊥ of B.)

Proposition. Let 1, i, j, k be a standard basis for B′ so that 1, i is a standard basis for K ⊂ B′.

Then j, k is a basis for K⊥ and under the resulting identification K⊥ = F 2 we have

dµK⊥(x) = q|dKβγ|1/2F dx2dx3

where dxi = dµF (xi) are normalized Haar measures on F .

Proof. This follows immediately from §5.1.5 and §5.1.6.

(5.1.8) We define dµX′ to be the measure on X ′ given by π′∗(dµB′). We now compute it in coordi-

nates. Note that this computation is one of the reasons for defining the measure dµX as we did in

§4.1.9.

Proposition. We have

dµX′(x) = |∆|1/2F A(∆)dνdt

where we have identified X ′ with its image in F 2, dν and dt are normalized Haar measures on F

and A(∆) is as previously (c.f. §4.1.9). Explicitly, the formula for dµX′ means that for f ∈ S (X ′)
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we have ∫
B

((π′)∗f)(x)dµB′(x) =
∫
X

f(t, ν)|∆|1/2F A(∆)dνdt.

Proof. Pick a standard basis for B′ such that α has even valuation and β and γ have odd valuation.

In the resulting coordinates, we have t = 2x0 and ν = x2
0 − αx2

1 − βx2
2 − γx2

3. By §5.1.5 we have

∫
B′
f(π′(x))dx = q|αβγ|1/2F

∫
F 4
f(2x0, x

2
0 − αx2

1 − βx2
2 − γx2

3)dx0dx1dx2dx3.

We now apply §4.1.4 and make the change of variables x3 =
√
u where

u =
∆/4− αx2

1 − βx2
2

γ

to obtain ∫
B′
f(π′(x))dx = q

∣∣∣∣αβγ
∣∣∣∣1/2
F

∫
F 4
f(t, ν)

1 + η(u)

|u|1/2F

dx1dx2dtdν.

As αβ/γ = −1, the absolute value in front of the integral is equal to one. We can thus write

∫
B′
f(π′(x))dx =

∫
F 2
f(t, ν)A′(∆)dtdν

with

A′(∆) = q

∫
F 2

1 + η(u)

|u|1/2F

dx1dx2.

Now, one easily sees that if ∆ = 0 then the integrand vanishes identically, and so A′(0) = 0. If

∆ 6= 0 then we have

A′(∆) = q|∆|1/2F I3(∆/4γ,−α/γ,−β/γ).

The results of §3.3 now shows that A′(∆) = |∆|1/2F A(∆) when ∆ is not a square while A′(∆) = 0 if

∆ is a square. This gives the stated result.

(5.1.9) We define dµ eX′ to be the measure on X̃ ′ given by (p′)∗dµX′ . We now compute it in

coordinates.

Proposition. We have dµ̃ eX |K = 1
2 (1+dK)|∆|F dµK . Explicitly, this means that for f ∈ S (X̃ ′) we

have ∫
eX′
f dµ eX′ = 1

2

∑
K

(1 + dK)
∫
K

f |∆|F dµK

where the sum is over the three degree two field extensions K/F .
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Proof. This goes just like the proof in §4.1.10.

(5.1.10) For σ ∈ G′ and f ∈ S (B′) we let fσ be the function x 7→ f(σxσ−1). Define a map

avg : S (B′) → S inv(B′), avg f =
1

Vol(G′/Z ′)

∫
G′/Z′

fσ dσ

where dσ is any Haar measure on G′/Z ′ (Z ′ being the center of G′). The function avg f is easily

seen to be independent of the choice of Haar measure. Since f belongs to S (B′) its stabilizer in

G′/Z ′ is open, and so the above integral is really a finite sum. Thus avg f is well-defined and a

Schwartz function. It is clear that avg is a projector, that is, avg2 = avg.

(5.1.11) We now define and study the map π′∗.

Proposition. We have the following:

1. The map (π′)∗ : S (X ′) → S (B′) has a unique adjoint π′∗ : S (B′) → S (X ′).

2. We have π′∗(π
′)∗ = id and (π′)∗π′∗ = avg.

3. We have ‖π′∗f‖X′ ≤ ‖f‖B′ . The map (π′)∗ is an L2-isometry.

4. The map π′∗ carries Sreg(B′) into Sreg(X ′).

5. Pick a standard basis. For f ∈ Sreg(B′) we have

(π′∗f)(t, ν) =
q

|∆|1/2F A(∆)

∫
F 2
f( 1

2 t+ x1i+ x2j ±
√
u k)

1 + η(u)

|u|1/2F

dx1dx2

where f(±
√
u) means 1

2 (f(
√
u) + f(−

√
u)) and

u =
∆/4− αx2

1 − βx2
2

γ
.

Proof. If an adjoint exists then it is unique since the pairings are non-degenerate. Now, let f ∈

S (X ′). Then the measure fdµB′ is absolutely continuous with respect to dµB′ . It follows that

π′∗(fdµB′) is absolutely continuous with respect to π′∗(dµB′) = dµX′ . Thus by the Radon-Nikodym

theorem we can find a function π′∗f on X ′ such that π′∗(fdµB′) = (π′∗f)dµX′ . It is clear that π′∗f

has compact support, but maybe not clear that it is locally constant; we will prove that shortly.

Nonetheless, the formula

〈f, (π′)∗g〉B′ = 〈π′∗f, g〉X′
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holds for f ∈ S (B′) and g ∈ S (X ′).

For f and g in S (X ′) we have

〈π′∗(π′)∗f, g〉X′ = 〈(π′)∗f, (π′)∗g〉B′ =
∫
B′

((π′)∗f)((π′)∗g)dµB′

=
∫
B′

((π′)∗fg)dµB′ =
∫
X′
fg dµX′ = 〈f, g〉X′ .

The non-degeneracy of 〈, 〉X′ now gives f = π′∗(π
′)∗f for any f ∈ S (X ′). Now, for f ∈ S (B′) and

σ ∈ G′ we have

〈π′∗(fσ), g〉X′ = 〈fσ, (π′)∗g〉B′ = 〈f, (π′)∗g〉B′ = 〈π′∗f, g〉X′

and so π′∗(f
σ) = π′∗f . (The middle equality above follows from the fact that (π′)∗g belongs to

S inv(B′).) It follows that π′∗(avg f) = π′∗f . As avg f belongs to S inv(B′) we can, by §5.1.4, find

f ′ ∈ S (B′) such that avg f = (π′)∗f ′. We thus have

π′∗f = π′∗(avg f) = π′∗(π
′)∗f ′ = f ′.

In particular, this shows that π′∗f belongs to S (X ′) and thus establishes (1). Applying (π′)∗ to

each side of the above gives (π′)∗π′∗ = avg and thus establishes (2).

We have seen already that for f, g ∈ S (X ′) we have 〈(π′)∗f, (π′)∗g〉B′ = 〈f, g〉X′ and so (π′)∗ is

an L2-isometry. Now let f be an element of S (B′). We then have

‖π′∗f‖2X′ = 〈π′∗f, π′∗f〉X′ = 〈avg f, f〉B′

=
1

Vol(G′/Z ′)

∫
G′/Z′

〈fσ, f〉B′dσ

≤ 1
Vol(G′/Z ′)

∫
G′/Z′

‖fσ‖B′‖f‖B′dσ = ‖f‖2B′

the last step following from ‖fσ‖B′ = ‖f‖B′ . We thus have ‖π′∗f‖X′ ≤ ‖f‖B′ , establishing (3).

Let f ∈ Sreg(B′). Then for any σ ∈ G′ the function fσ still belongs to Sreg(B′). It follows

that avg f ∈ S inv
reg (B′). We can thus find f ′ ∈ Sreg(X ′) such that avg f = (π′)∗f ′. We then have

π′∗f = π′∗ avg f = f ′ and so π′∗f belongs to Sreg(X ′). This establishes (4). The proof of (5) goes

just like the proof of part (4) of §4.1.11.

(5.1.12) We now prove the following result, which is directly analogous to §4.1.16.

Proposition. Let f belong to Sreg(K) with K ⊂ B′. For any sufficiently small compact open set a

61



of K⊥ containing 0 we have

π′∗(f ⊗ δa) =
2

1 + dK
|∆|−1

F (pK)∗f.

Here δa = χa/Vol(a) where χa is the characteristic function of a and Vol(a) the volume of a with

respect to the normalized Haar measure on K⊥.

Proof. The proof goes exactly like the proof given in §4.1.16.

Corollary. Let f ∈ Sreg(K). For any sufficiently small compact open set a of K⊥ containing 0 we

have

(p′K)∗f = 1
2 (1 + dK)π′∗(|∆|F f ⊗ δa).

Proof. The proof is just the like the corresponding corollary in §4.1.16.

5.2 The Fourier transform FX ′,ψ

(5.2.1) The purpose of §5.2 is to introduce a Fourier transform on the Schwartz space S (X ′) and

prove a factorization result for it. Here is an overview:

• In §5.2.2 and §5.2.3 we recall the Fourier transforms on B′ and K⊥.

• In §5.2.4 we define the Fourier transform FX′,ψ by (π′)∗(FX′,ψ(f)) = FB′,ψ((π′)∗f). One has

to check that this is well-defined, but this is quite straightforward. We verify that FX′,ψπ
′
∗ =

π′∗FB′,ψ, which makes FX′,ψ look more like F
(1)
X,ψ.

• In §5.2.5 we factor the Fourier transform FX′,ψ as p′∗F
′eX where F ′eX is essentially the Fourier

transform on the various K’s (as it was before) and p′∗ is some fairly simple operation.

• In §5.2.6 we compute an explicit formula for p′∗.

(5.2.2) Let ψ = ψF be a non-trivial additive character of F . Define ψB′ to be the additive character

of B′ given by ψF ◦ trB′/F . For a function f on B′ we put

(FB′,ψf)(x) = q−2m−1

∫
B′
f(y)ψB′(xy)dµB′(y).

Here, as before, p−m is the conductor of ψF . Once again, FB′,ψ induces an isomorphism S (B′) →

S (B′) and can be extended to an isometry L2(B′) → L2(B′). With out normalization, FB′,ψ is
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self-adjoint with respect to 〈, 〉B′ , an isometry with respect to (, )B′ and has inverse FB′,ψ.

(5.2.3) Let K ⊂ B′ be a quadratic extension of F . We have previously defined a Fourier transform

FK,ψ on K. For a function f on K⊥ we put

(FK⊥,ψf)(x) = q−m−1d
−1/2
K

∫
K

f(y)ψK(xy)dy.

Do not confuse this Fourier transform with the one FK⊥,ψ where K⊥ is a subspace of B. The above

Fourier transform has the property that

FB′,ψ(f ⊗ g) = (FK,ψf)⊗ (FK⊥,ψg)

for f ∈ S (K) and g ∈ S (K⊥). Here f ⊗ g is the function (x, y) 7→ f(x)g(y) where B′ has been

identified with K ×K⊥.

(5.2.4) The map FB′,ψ carries S inv(B′) into itself. Using the isomorphism (π′)∗ : S (X ′) →

S inv(B′) of §5.1.4 we transport the Fourier transform to S (X ′). That is, we define

FX′,ψ : S (X ′) → S (X ′), FX′,ψ(f) = π′∗(FB′,ψ((π′)∗f)).

Note that π′∗ is the inverse to (π′)∗ by §5.1.11.

Proposition. We have the following:

1. FX′,ψ is self-adjoint with respect to 〈, 〉X′ .

2. FX′,ψ is an isometry for (, )X′ .

3. The inverse of FX′,ψ is FX′,ψ.

4. We have π′∗FB′,ψ = FX′,ψπ
′
∗.

Proof. (1) follows from the adjointness of π′∗ and (π′)∗ and the self-adjointness of FB′,ψ. (2) follows

from the corresponding statement for FB′,ψ and the fact (c.f. §5.1.11) that (π′)∗ : S (X ′) →

S inv(B′) is an isometry. (3) is similar. We now prove (4). A simple computation shows that for

f ∈ S (B′) and σ ∈ G′ we have FB′,ψ(fσ) = (FB′,ψf)σ
−1

. From this, we see that FB′,ψ(avg f) =

avg(FB′,ψf). Thus, using §5.1.11 we find

FX′,ψ(π′∗f) = π′∗(FB′,ψ((π′)∗π′∗f)) = π′∗(FB′,ψ(avg f)) = π′∗(avg(FB′,ψf)) = π′∗(FB′,ψf),
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which is the stated identity.

(5.2.5) We now come to our main result on the factorization of the Fourier transform. For a

quadratic fieldK we have defined S0(K) be the set of functions f which have integral zero on vertical

strips (c.f. §4.2.7). The Fourier transform gives an isomorphism FK,ψ : Sreg(K) → S0(K). We have

also defined a modified Fourier transform F ′
K,ψ, which also gives an isomorphism Sreg(K) → S0(K).

We let F ′eX′,ψ
be the Fourier transform on X̃ ′ gotten from the F ′

K,ψ. We now have our main result:

Proposition. There is a unique map p′∗ : S0(X̃ ′) → S (X ′) such that the diagram

Sreg(X̃ ′)
p′∗ //

F ′fX′,ψ
��

Sreg(X ′)

FX′,ψ

��
S0(X̃ ′)

p′∗ // S (X ′)

commutes. For f ∈ S (K) we have

(p′K)∗f = q−1π′∗(f ⊗ χa)

where a is any sufficiently large compact open subset of K⊥.

Proof. Again, the existence and uniqueness of p′∗ is clear since F ′eX′,ψ
is an isomorphism. To compute

the formula for p′∗, let f ∈ Sreg(K) be given. Let a be a very small compact open neighborhood of

0 in K⊥. By §5.1.12 we have

(p′K)∗f = 1
2 (1 + dK)π′∗(|∆|F f ⊗ δa)

Now take the Fourier transform of each side. We find

FX′,ψ((p′K)∗f) = 1
2 (1 + dK)FX′,ψ(π′∗(|∆|F f ⊗ δa))

= 1
2 (1 + dK)π′∗(FK,ψ(|∆|F f)⊗FK⊥,ψ(δa)).

In the second step we used the identity FX′,ψπ
′
∗ = π′∗FB′,ψ from §5.2.4 and the identity from §5.2.3

regarding the Fourier transform of a pure tensor. One easily finds FK⊥,ψ(δa) = q−m−1d
−1/2
K χa′

where a′ is a large compact open. The proposition follows.

(5.2.6) We now explicitly compute the map p′∗.
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Proposition. Let f belong to S0(K). Then

((p′K)∗f)(t, ν) =
d
1/2
K

|∆|1/2F A(∆)

∫
F

f( 1
2 t+ ix)I2

(
∆− 4dKx2

γ
,dK

)
dµF (x)

where i ∈ K is such that i2 = dK , γ = −βdK and β is an element of F× for which (dK , β) = −1.

Proof. The proof is similar to the one in §4.2.8, so we omit some details. Pick a standard basis for

B′ so that 1, i is a standard basis for K and i2 = dK . Take a to be the open set of K⊥ such that

χa(x2j + x3k) = χp−n(x2)χp−m(x3) for large integers n and m. Our formula for π′∗ from §5.1.11

then gives

q−1(π′∗(f ⊗ χa))(t, ν) =
1

|∆|1/2F A(∆)

∫
F 2
f( 1

2 t+ ix1)χp−n(x2)χp−m(
√
u)

1 + η(u)

|u|1/2F

dx1dx2

with

u =
∆/4− αx2

1 − βx2
2

γ
.

As before, we find that if we omit the χp−n(x2)χp−m(
√
u) from the integrand the result does not

change. After having done this, the x2 integral is then |b|−1/2
F I2(a, b) with

a =
∆− 4dKx2

1

4γ
, b = −β

γ
= d−1

K ,

just as before. We thus find

((p′K)∗f)(t, ν) =
d
1/2
K

|∆|1/2F A(∆)

∫
F

f( 1
2 t+ ix)I2

(
∆− 4dKx2

γ
,dK

)
dx,

which is the stated result.

5.3 The cuspidal space H(X ′) and its A -structure

(5.3.1) In §5.3 we introduce the cuspidal space H(X ′), define an A -module structure on it and

compute its structure as an A -module. Although the program is similar to §4.3 and §4.4 we proceed

differently, in a more conceptual and less computational manner. (We do perform some computations

at the end of the section. These are not needed to establish the main results of the section, but will

be used later on.) Here is an overview of the section:

• In §5.3.2 and §5.3.3 we introduce two operations on the space of functions on X ′: convolution
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and f 7→ f∨.

• In §5.3.4 we define and study a certain “Eisenstein” space of functions on X ′.

• In §5.3.5 we define the cuspidal space S ◦(X ′) as the orthogonal complement to the Eisenstein

space, and prove some basic properties about it. The space H(X ′) is defined to be the L2-

closure of S ◦(X ′).

• In §5.3.6 we define the operators Aψ,η which constitute the algebra A . We also define the Tn

operators.

• In §§5.3.7–5.3.11 we relate the operators Aψ,η to certain convolution operators, culminating

in the proof in §5.3.11 that a subspace of S ◦(X ′) is stable under A if and only if it is stable

under convolution by all of Sns(X ′).

• In §5.3.12 we introduce the truncated character functions φπ,k and the spaces Vπ.

• In §5.3.13 we compute f ∗ φπ,k, for an arbitrary function f .

• In §5.3.14 we determine the structure of the space Sns(X ′) under convolution, in terms of the

basis φπ,k.

• In §5.3.15 we use the results of §5.3.11 to transfer the results of §5.3.14 to yield the A -structure

of H(X ′). This is the main result of §5.3.

• In §5.3.16 and §5.3.17 we explicitly compute what the Aψ,η do to the basis elements φπ,k.

(5.3.2) For functions f and g on G′ define a function f ∗ g on G′, called the convolution of f and

g, by

(f ∗ g)(x) =
∫
G′
f(y)g(xy−1)dµG′(y)

This integral makes sense so long as one of f or g has compact support. The operation ∗ is associative

but not in general commutative. However, if one of f or g is invariant then f ∗ g = g ∗ f does hold.

If f and g are both invariant then so is f ∗ g and so the operation ∗ descends to functions on X. It

is easy to see that we get maps

Sns(X ′)⊗Sns(X ′) → Sns(X ′), C∞(X ′
ns)⊗Sns(X ′) → C (X ′

ns)

using ∗. These first is commutative and associative; the second is associative in the obvious sense.
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(5.3.3) We have a map X ′
ns → X ′

ns, written x 7→ x−1, gotten by thinking of X ′
ns as the set of

conjugacy classes in G′. For f ∈ Sns(X ′) we define f∨ to be the function given by x 7→ f(x−1). It

again belongs to Sns(X ′).

Proposition. The map f 7→ | · |−2
F f∨ is self-adjoint for 〈, 〉X′ and an isometry for (, )X′ .

Proof. We have

〈f∨, g〉X′ = 〈(π′)∗f∨, (π′)∗g〉B′ =
∫
G′
f(x−1)g(x)dµB′(x) =

∫
G′
f(x)g(x−1)|Nx|−4

F dµB′(x)

= 〈(π′)∗f, (π′)∗(| · |−4
F g∨)〉B′ = 〈f, | · |−4

F g∨〉X′ .

Changing f to | · |2F f shows that f 7→ | · |−2
F f∨ is self-adjoint for 〈, 〉X . The isometry statement

follows easily from this.

(5.3.4) We define S 1(X ′) to be the subset of S (X ′) consisting of those functions whose restriction

to X ′
ns factors through the norm N. We write S 1

ns(X
′) for the subspace of S 1(X ′) consisting of

those functions supported on X ′
ns.

Proposition. We have the following:

1. An element f of S (X ′) belongs to S 1(X ′) if and only if (π′)∗f is invariant under left (or

right) translation by the group G′
1 consisting of those elements x of G′ with Nx = 1.

2. The spaces S 1(X ′) and S 1
ns(X) are closed under pointwise addition and multiplication.

3. The space S 1
ns(X

′) is closed under the involution f 7→ f∨.

4. The space S 1
ns(X

′) is closed under convolution by elements of Sns(X ′).

5. The space S 1(X ′) is closed under the Fourier transform.

Proof. (1), (2) and (3) are straightforward. We now prove (4). Let f belong to S 1
ns(X

′) and let φ

belong to Sns(X ′). We then have

(φ ∗ f)(xu) =
∫
G′
f(y)φ(xuy−1)dµG′(y)

for x ∈ G′ and u ∈ G′
1. Changing y to yu in the integral and using φ(yu) = φ(y) makes the u on

the right go away and shows that φ ∗ f is invariant under translation by G′
1 and thus belongs to
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S 1(X ′). We now prove (5). Let f belong to S 1(X ′). We have

(Fψf)(xu) =
∫
G′
f(y)ψB(xuy)dµB′(y)

for x ∈ B′ and u ∈ G′
1. Changing y to u−1y and using f(u−1y) = f(y) gives the desired result.

(5.3.5) Let f ∈ S (X ′). We say that f is cuspidal if 〈f, g〉X′ = 0 for all g ∈ S 1(X ′). We write

S ◦(X ′) for the space of cuspidal functions and H(X ′) for its closure in L2(X ′). If f is cuspidal the

its support is contained in Xns and so S ◦(X ′) ⊂ Sns(X ′). One easily sees that to check that f is

cuspidal it is enough to show 〈f, g〉X′ = 0 for g ∈ S 1
ns(X

′).

Proposition. The space S ◦(X ′) is stable under the following operations.

1. The involution f 7→ f∨.

2. The Fourier transform.

3. Pointwise multiplication by elements of S 1(X ′).

4. Convolution with elements of Sns(X ′).

Proof. These all follow easily from the corresponding properties of the spaces S 1(X ′) and S 1
ns(X

′)

and simple adjointness statements. We prove (1) as an example. Let f ∈ S ◦(X ′) and let g ∈

S 1
ns(X

′). We then have

〈f∨, g〉X′ = 〈f, | · |−4
F g∨〉X′ = 0

since | · |−4
F g∨ belongs to S 1

ns(X) and f is cuspidal. Thus f∨ is cuspidal.

(5.3.6) For a non-trivial additive character ψ of F and a character η of F× define an operator

Aψ,η : S ◦(X ′) → S ◦(X ′), Aψ,η(f) = −η−1FX′,ψ(| · |−2
F η−1f∨).

If η is unitary then Aψ,η is easily seen to be an isometry for (, )X′ and thus extends to an isometry

H(X ′) → H(X ′). We will see shortly that the Aψ,η commute. We let A be the polynomial ring

over C generated by the symbols Aψ,η with η unitary, so that the above definitions give H(X ′) the

structure of an A -module.

We will need a few more operators as well. For an integer n we define an operator

Tn : H(X ′) → H(X ′)
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by letting Tn(f) be the function which is equal to f on the locus where N has valuation n and 0

off of this set. The operators Tn are mutually orthogonal idempotent operators. We let T be the

polynomial ring over C in the Tn. We have thus given H(X ′) the structure of a T -module. The

actions of Aψ,η and Tn do not commute. We write A ∗ T for the coproduct of A and T in the

category of non-commutative algebras, so that H(X ′) is a module over A ∗T .

(5.3.7) Let φψ,η be the function on Xns defined by (t, ν) 7→ ψ(t)η(ν). A simple computation shows

that, for f ∈ S ◦(X ′), we have

φψ,η ∗ f = −q2m(ψ)+1Aψ,η−1(f).

For a compact open set Ω of X ′ let φψ,η,Ω be the function which is equal to φψ,η on Ω and 0 off of

Ω. We let K be the set of all compact subsets of X ′ which are finite unions of the X ′
n. These are

the sets of most importance to us. Any compact subset of Xns is contained in an element of K . We

call a subset of Xns bounded if it is contained in some compact set.

Proposition. Let f belong to S ◦(X ′), let ψ be a non-trivial additive character of F and let η be a

character of F×. Then there is a bounded subset Ω0 of X ′
ns such that for any Ω ∈ K containing Ω0

we have

φψ,η,Ω ∗ f = −q2m+1Aψ,η−1(f)

In fact, one may take Ω0 to be the union of the sets

supp((Tnf)∨) · supp(Aψ,η−1(Tnf)).

Here the product is taken by regarding each factor as a subset of G′ via (π′)−1.

Proof. As f =
∑
n∈Z Tnf it suffices to prove the proposition for Tnf . In other words, we may assume

that f is supported on X ′
n. Of course, then f∨ is supported on X ′

−n. Let Ω0 = $−n
B′ · supp(Aψ,η−1f)

and let Ω ∈ K contain Ω0. We then have

(φψ,η,Ω ∗ f)(x) =
∫
B′
f∨(y)ψB′(xy)η(xy)χΩ(xy)d×y

= χΩ($−n
B′ x)

∫
B′
f∨(y)ψB′(xy)η(xy)d×y

= −q2m+1χΩ($−n
B′ x)(Aψ,η−1f)(x).

If x belongs to supp(Aψ,η−1f) then $−n
B′ x belongs to Ω and so −q2m+1(Aψ,ηf)(x) = (φψ,η,Ω ∗ f)(x).
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If x does not belong to the support of Aψ,η−1f then both (ψψ,η,Ω ∗ f)(x) and (Aψ,η−1f)(x) are zero.

Thus −q2m+1(Aψ,η−1f)(x) = (φψ,η,Ω ∗ f)(x) for all x, as was to be shown.

(5.3.8) We now strengthen the previous proposition slightly. We write F∨ for the set of additive

characters on F∨. It is a topological group and isomorphic to F . Recall that the conductor of a

character η of F× is defined to be the minimal integer n such that χ(U (n)
F ) = 1. If χ(UF ) = 1 then

the conductor is defined to be 0.

Proposition. Let f belong to S ◦(X ′), let S be a compact subset of F∨ \ {0} and let S′ be a set of

characters of F× of bounded conductor. Then there is a bounded subset Ω0 of X ′
ns such that for any

Ω ∈ K containing Ω0 we have

φψ,η,Ω ∗ f = −q2m+1Aψ,η−1(f)

for all ψ ∈ S and all η ∈ S′.

Proof. Again, it suffices to treat the case where f is supported on a single coset $nUB of UB . Let

Ω0 be the union of the sets $−n
B · supp(Aψ,η−1f) as ψ varies in S and ν varies in S′. So long as this

set is bounded, the previous proposition implies the present one. We now show that it is bounded.

To begin with, note supp(Aψ,η−1f) = supp(FX′,ψ(η−1f∨)). If we change ψ to ψ(ax) for some

a ∈ F× then the support changes by a−1. Thus if we fix a non-trivial character ψ0 of F so that S

corresponds to some compact subset S1 of F× then

⋃
ψ∈S

supp(Aψ,η−1f) ⊂ S1 · supp(Aψ0,η−1f)

Now, if we twist η be an unramified character then ηf is just scaled by a constant since f is supported

on a single coset of UB . In particular, supp(Aψ,η−1f) is unchanged. Let S′1 be a subset of S′ so that

every element of S′ is an unramified twist of a unique element of S′1. As there are only finitely many

characters of a bounded conductor modulo unramified twists, the set S′1 is finite. We now have

Ω0 =
⋃
ψ∈S

⋃
η∈S′

supp(Aψ,η−1f) ⊂ S1 ·
⋃
η∈S′1

supp(Aψ0,η−1f)

and so Ω0 is bounded.

(5.3.9) Let S †(X ′) denote the space of functions spanned by functions of the form (t, ν) 7→ f(t)g(ν)

where f ∈ S (F ) has total integral zero and g ∈ S (F×). We have S †(X ′) ⊂ Sns(X ′).
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Proposition. Let φ belong to S †(X ′). There then exists a compact subset S of F∨ \ {0} and a

set S′ of characters of F× of bounded conductor such that for any bounded set Ω0 we can find an

expression

φ =
n∑
i=1

aiφψi,ηi,Ωi

with ψi ∈ S, ηi ∈ S′ and Ωi an element of K containing Ω0.

We need two lemmas before proving this. We leave these to the reader.

Lemma. Let f ∈ S (F ). There exists a compact set S of F∨ such that for any compact subset A

of F containing supp(f) we have an expression

f(x) = χA(x)
∑
ψ∈S

aψψ(x)

where aψ = 0 for all but finitely many ψ. If f has total integral zero then S can be taken to be a

compact subset of F∨ \ 0.

Lemma. Let g ∈ S (F×). There exists a set S′ of characters of F× of bounded conductor such that

for any compact subset A′ of F× containing supp(g) we have an expression

g(x) = χA′(x)
∑
η∈S′

bηη(x)

where bη = 0 for all but finitely many η.

We now prove the proposition.

Proof of proposition. Let f and g be given. Let S and S′ be the sets furnished by the previous

lemmas. We now show that these sets satisfy the statement of the proposition. Thus let Ω0 be

a given bounded set. Let Ω be any element of K containing Ω0 and the support of the function

(t, ν) 7→ f(t)g(ν). Let A be a compact subset of F containing t(Ω) and let A′ be a compact subset

of F× containing ν(Ω). Note that these conditions imply

χA(t(x))χΩ(x) = χΩ(x), χA′(ν(x))χΩ(x) = χΩ(x).

By the lemmas, we have expressions

f(x) = χA(x)
∑
ψ∈S

aψψ(x), g(x) = χA′(x)
∑
η∈S′

bηη(x).
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We thus have

f(t(x))g(ν(x)) = χΩ(x)f(t(x))g(ν(x))

= χΩ(x)χA(t(x))χA′(ν(x))
∑

aψbηψ(t(x))η(ν(x))

=
∑

aψbνφψ,η,Ω(x)

which proves the proposition.

(5.3.10) For a character η of F× and a compact subset Ω of X ′
ns we let φ1,η,Ω be the function

x 7→ χΩ(x)η(ν(x)). This is just the function φψ,η,Ω with ψ taken to be the trivial character.

Proposition. The space Sns(X ′) is spanned by S †(X ′) and the ψ1,η,Ω for Ω ∈ K .

Proof. It is easy to see that Sns(X ′) is spanned by functions of the form f(t)g(ν) with f ∈ S (F )

and g ∈ S (F×). Let f and g be given. Let Ω ∈ K contain the support of f(t)g(ν). Let A′ be a

compact open subset of F× containing ν(Ω) and write

g(x) = χA′(x)
∑

bηη(x)

Let A be a non-empty compact open subset of F containing t(Ω) and let α ∈ C be such that

f ′ = f − αχA has total integral zero. We then have

f(t)g(ν) = f ′(t)g(ν) + αχA(t)χA′(ν)
∑

bηη(ν)

Multiplying each side by χΩ we find

f(t)g(ν) = f ′(t)g(ν) + α
∑

bηφ1,η,Ω

which proves the proposition.

(5.3.11) We can now prove the following important proposition.

Proposition. A subspace V ⊂ S ◦(X ′) is stable under A if and only if it is stable under convolution

by Sns(X ′).

Proof. Let V be stable under A . As Sns(X ′) is spanned by S †(X ′) and functions of the form φ1,η,Ω
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it suffices to show S ′(X) ∗ V ⊂ V and φ1,η,Ω ∗ V ⊂ V . Let f ∈ V . We have

(φ1,η,Ω ∗ f)(x) =
∫
G′
f∨(y)η(xy)χΩ(xy)dµG′(y)

For x fixed, the function y 7→ η(xy)χΩ(xy) factors through the norm (assuming Ω ∈ K , as we can).

Thus φ1,η,Ω ∗ f = 0. Now let φ be an element of S †(X ′). Let S and S′ be the sets produced by

§5.3.9 applied to φ. Let Ω0 be the set produced by §5.3.8 to f , S and S′. The conclusion of §5.3.9

gives

φ =
n∑
i=1

aiφψi,ηi,Ωi

with ψi ∈ S, ηi ∈ S′ and Ωi ∈ K containing Ω0. The conclusion of §5.3.8 gives φψi,ηi,Ωi ∗ f =

−q2m+1Aψi,η−1
i

(f). We thus see that φ ∗ f belongs to V since V is stable by the Aψi,ηi .

Conversely, say that V is stable under convolution by Sns(X ′). We must show that it is stable

by the Aψ,η. Let f be an element of V . By §5.3.7 we have Aψ,η(f) = −q−2m−1(φψ,η−1,Ω ∗ f) for

some choice of Ω. This proves the proposition.

(5.3.12) Let π be an element of IrrG′ . We let χπ : X ′
ns → C be the character of π and write

φπ,k for the “truncated character,” defined to be χπ on Xk and 0 off of this set. In our notation,

φπ,k = Tkχπ. We write Vπ,k for the one dimensional space spanned by φπ,k. We let Ṽπ be the space

spanned by all of the φπ,k and Vπ be its closure in L2(X ′). Of course, these spaces do not change if

π is replaced by an unramified twist, and so make sense for π ∈ IrrG′ . As before, we call π even if

ξ ⊗ π = π and odd otherwise. If π is even then φπ,k and Vπ,k vanish for k odd. The following is a

simple extension of the Peter-Weyl theorem.

Proposition. The φπ,k span Sns(X ′).

Proof. It suffices to show that a conjugation invariant function supported on G′
k lies in the span of

the φπ,k. Thus let f be such a function. We can then find an non-compact open subgroup U of the

center Z ′ and a function f ′ on G′/U such that the pull-back of f ′ to G′ agrees with f on G′
k. As the

group G′/U is compact, we have f ′ =
∑
aiχπi where the πi are irreducible representations of G′/U .

Of course, the πi can also be regarded as irreducible representations of G′. As such, we clearly have

f =
∑
aiχπi,k, which establishes the proposition.

(5.3.13) We need the following result.
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Proposition. For π ∈ IrrG′ and f ∈ Sns(X ′) we have

(f ∗ φπ,k)(x) = d−1
π χπ(x)

∫
x$−k

B′ UB′

f(y)χ∨π (y)dµG′(y)

for all x ∈ X ′
ns. Here dπ is the degree of π.

Proof. For x ∈ G′ put

A(x) =
∫
G′
f(y)χk(xy−1)π(xy−1)dµG′(y).

Thus (f ∗ φπ,k)(x) = trA(x). Now, we have

A(x) = π(x)
∫
x$−k

B′ UB′

f(y)π(y−1)dµG′(y) = π(x)B(x).

Since f is invariant under conjugation and π is a homomorphism, it follows that π(g)B(x)π(g−1) =

B(x) for any x ∈ G′. Thus, by Schur’s lemma, B(x) is a constant. Thus B(x) = d−1
π trB(x) and so

B(x) =
1
dπ

∫
x$−k

B′ UB′

f(y)χ∨π (y)dµG′(y).

Taking the trace of the expression A(x) = π(x)B(x) now gives the required formula.

(5.3.14) We now determine the structure of Sns(X ′) as an algebra under convolution.

Proposition. We have the following:

1. We have Ṽπ ∗ Ṽπ′ = 0 if π is not an unramified twist of π′.

2. If π is odd then φπ,i ∗ φπ,j = Vol(UB′)d−1
π φπ,i+j.

3. If π is even then φπ,i ∗ φπ,j = 2Vol(UB′)d−1
π φπ,i+j for i and j even.

4. The Ṽπ are precisely the minimal T -stable ideals of Sns(X ′).

Proof. The previous proposition shows that for any f ∈ Sns(X ′) the function f ∗ φπ,k belongs to

Ṽπ. If π and π′ are unequal elements of IrrG′ then Ṽπ ∩ Ṽπ′ = 0 and so we find Ṽπ ∗ Ṽπ′ = 0. This

gives (1). Now let π be an element of IrrG′ . The previous proposition gives

(φπ,i ∗ φπ,j)(x) = d−1
π χπ(x)

∫
x$−j

B′ UB′

φπ,i(y)χ∨π (y)dµG′(y)
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If x does not belong to $i+j
B′ UB′ then this is zero. For x ∈ $i+j

B′ UB′ we get

(φπ,i ∗ φπ,j)(x) = d−1
π χπ(x)

∫
$i
B′UB′

χπ(y)χ∨π (y)dµG′(y)

If π is odd then π ⊗ π∨ contains the trivial representation once and does not contain ξ; the above

integral is equal to Vol(UB′). If π is even then π⊗π∨ contains each of the trivial representation and

ξ exactly once; thus, if i and j are even, then the above integral is equal to 2Vol(UB′). This gives

(2) and (3). As for (4), the above shows that the Ṽπ are minimal T -stable ideals. Now let I be some

minimal T -stable ideal and let f ∈ I be some non-zero element. We can then write f =
∑
aπ,kφπ,k

where almost all the aπ,k vanish. Say aπ0,k0 is non-zero. By T -stability the element
∑
π aπ,k0φπ,k0

belongs to I. Convolving with φπ0,0, we find that φπ0,k0 belongs to I. It thus follows that I contains

Ṽπ0 and therefore by minimality is equal to it.

(5.3.15) We now determine the structure of H(X ′) as an (A ∗T )-module (compare with §4.4.12).

Proposition. We have the following:

1. Each Vπ is stable under (A ∗T ) and simple as an (A ∗T )-module.

2. If π and π′ are distinct elements of Irr
◦
G′ then Vπ and Vπ′ are not isomorphic as (A ∗ T )-

modules.

3. We have H(X ′) =
⊕
Vπ, the sum taken over π ∈ Irr

◦
G′ .

In particular, H(X ′) is semi-simple and multiplicity-free as an (A ∗T )-module.

Proof. It is enough to prove the analogous statements for S ◦(X ′) in place of H(X ′). The results of

§5.3.14 show that S ◦(X ′) is semi-simple and multiplicity free as an (Sns(X ′)∗T )-module, its simple

constituents being the Ṽπ. (To see that Ṽπ and Ṽπ′ are not isomorphic look at their annihilators in

Sns(X).) The result of §5.3.11 implies that a subspace of S ◦(X ′) is a simple (A ∗T )-submodule if

and only if it is a simple (Sns(X ′) ∗ T )-submodule. Now, a module over a ring is semi-simple and

multiplicity free if and only if it is the direct sum of its simple submodules. We thus see that S ◦(X ′)

is semi-simple and multiplicity free as an (A ∗T )-module, since its simple (A ∗T )-submodules are

the same as its simple (Sns(X ′) ∗T )-submodules and we know it to be the direct sum of its simple

(Sns(X ′) ∗T )-submodules.

(5.3.16) We now compute the Fourier transform in the spanning set φπ,k.
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Proposition. For π ∈ Irr◦ we have

FX′,ψ(φπ,k) = −ε( 3
2 , π, ψ)φ|·|−2

F π∨,−k−n(π)−2m(ψ)

where

ε( 3
2 , π, ψ) = −q−2m(ψ)−1d−1

π 〈φπ,−n(π)−2m(ψ), ψX′〉X′ .

Here ψX′ = ψF ◦ tr.

Proof. Let n be the conductor of π and put n′ = n − 1, so that π|
U

(n′)
B′

is trivial but π|
U

(n′−1)
B′

is

non-trivial. Let Φk be the function on G′ which is equal to π(x) on G′
n and 0 off of this set. Note

that trΦk = χπ,k. Put m = m(ψ). We have

(FB′,ψΦk)(x) = q−2m−1

∫
$k
B′UB′

π(y)ψB′(xy)dy

= q−2m−2k−1
∑

a∈$k
B′UB′/U

(n′)
B′

π(a)
∫
U

(n′)
B′

ψB′(axy)dy

= q−2m−2k−1
∑

a∈$k
B′UB′/U

(n′)
B′

π(a)ψB′(ax)
∫
$n

′
B′OB′

ψB′(axy)dy

= δq−2m−2k−2n′−1π($k
B′)

∑
a∈UB′/U

(n′)
B′

π(a)ψB′($k
B′ax)

Here δ is 1 if valx ≥ −2m− 1− n′ − k and 0 otherwise. Now, say that valx ≥ −2m− n′ − k. The

sum on the last line is then equal to

∑
a∈UB′/U

(n′)
B′

π(a)ψB′($k
B′ax) =

∑
a∈UB′/U

(n′−1)
B′

∑
b∈U(n′−1)

B′ /U
(n′)
B′

π(ab)ψB′($k
B′abx).

The quantity ψB′($k
B′abx) is in fact independent of b, as we can write b = 1 +$n′−1

B′ u and then

ψB′($k
B′abx) = ψB′($k

B′ax)ψB′($
k+n′−1
B′ aux) = ψB′($k

B′ax)

as $k+n′−1
B′ aux has valuation k + n′ − 1 + valx ≥ −2m− 1. The sum is thus equal to

∑
a∈UB′/U

(n′−1)
B′

π(a)ψB′($k
B′ax)

∑
b∈U(n′−1)

B′ /U
(n′)
B′

π(b) = 0

since π is a non-trivial representation of Un
′−1

B′ . We have thus shown that FB′,ψ(Φk) vanishes off of
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the locus in G′ where the valuation is equal to −2m− 1− n′ − k (which is equal to −2m− n− k).

Now let x have valuation −2m− n− k. Then

(FB′,ψΦk)(x) = q−2m−1

∫
$k
B′UB′

π(y)ψB′(xy)dy

= q−2m−1|Nx|−2
F

∫
$−2m−n
B′ UB′

π(x−1y)ψB′(y)dy

= B · (| · |−2
F π∨)(x)

where

B = q−2m−1

∫
$−2m−n
B′

π(y)ψB′(y)dy.

As we have argued before, B is a scalar. Thus

B = d−1
π trB = q−2m−1d−1

π

∫
$−2m−n
B UB

χπ(y)ψB(y)dy

Taking traces of our expression for FB′,ψ(Φk) gives

FB′,ψ(φπ,k) = B · φ|·|−2
F π∨,−2m−n−k,

which proves the proposition. (That ε( 3
2 , π, ψ) = −B can be taken as a definition of the left side; in

fact, this agrees with the usual ε-factor.)

(5.3.17) We now compute the operators Aψ,η explicitly.

Proposition. For π ∈ Irr◦ we have

Aψ,η(φπ,k) = λψ,η(π)φπ,k−n(ηπ)−2m(ψ)

where λψ,η(π) = ε( 3
2 , ηπ, ψ).

Proof. This is a simple computation using §5.3.16.

5.4 Detecting characters

(5.4.1) The results of §5.3 show that the A and T structures on S ◦(X ′) are enough to recover the

one dimensional spaces Vπ,k spanned by the truncated character functions φπ,k. The question we

now turn to is: how can one recover the full characters using the A and T structures? Concretely,
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if χ is a function on X ′ for which Tkχ belongs to Vπ,k for each k then how does one determine if χ

is equal to χπ, or perhaps an unramified twist of this? We address these issues in this section. Here

is an overview:

• In §5.4.2 we introduce the space of “cuspidal distributions.” This space has two key properties:

it admits a map from C∞(X ′) and has an action of A .

• In §5.4.3 we show that the cuspidal distributions coming from cuspidal characters are precisely

the eigenvectors of A acting on the space of cuspidal distributions.

• In §5.4.4 and §5.4.5 we give an alternative approach towards the problem of determining which

functions are characters. It is not used in what follows, but helped shape our way of thinking

towards the problem, so we decided to include it.

• In §5.4.6 we discuss how the results of this section, and in particular §5.4.5, relate to the local

functional equation and local converse theorem.

(5.4.2) By a cuspidal distribution on X ′ we mean a linear map S ◦(X ′) → C. We write D◦(X ′)

for the space of cuspidal distributions. For f ∈ D◦(X ′) and g ∈ S ◦(X ′) we write 〈f, g〉X′ for the

value of f on g. We have a linear map C∞(X ′) → D◦(X ′) defined by mapping f ∈ C∞(X ′) to the

cuspidal distribution defined by

〈f, g〉X′ =
∫
X′
f(x)g(x)dµX′(x).

All the operations on cuspidal functions we have considered (i.e., the Fourier transform, the invo-

lution f 7→ f∨, the operators Aψ,η, etc.) extend to operations on cuspidal distributions, as they all

have nice adjointness properties. In particular, the space of cuspidal distributions is a module over

A .

(5.4.3) We can now finally give a complete characterization of irreducible characters. Note that the

only non-trivial structure needed on X ′ for this characterization is the Fourier transform FX′,ψ.

Proposition. Let χ belong to C∞(X ′
ns). Then χ is of the form αχπ with π ∈ Irr◦G′ and α ∈ C if

and only if it is orthogonal to S 1
ns(X

′) and its image in D◦(X ′) is an eigenvector for A .

Proof. Let π ∈ Irr◦G′ . It is clear that χπ is orthogonal to S 1
ns(X

′). We now show that χπ, regarded

as a cuspidal distribution, is an eigenvector of A . Write A′ψ,η for the adjoint of Aψ,η Let φ be a

test function in S ◦(X ′) and let S be a finite set of integers such that φ has its support contained
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in
⋃
k∈S X

′
k−2m(ψ)−n(ηπ∗) and A′ψ,ηφ has its support contained in

⋃
n∈S X

′
n. We then have

〈Aψ,ηχπ, φ〉X′ = 〈χπ, A′ψ,ηφ〉X′ =
∑
k∈S

〈φπ,k, A′ψ,ηφ〉X′ =
∑
k∈S

〈Aψ,ηφπ,k, φ〉X′

= λψ,η(π)
∑
k∈S

〈φπ,k−2m(ψ)−n(ηπ∗), φ〉X′ = λψ,η(π)〈χπ, φ〉X′

and so Aψ,ηχπ = λψ,η(π)χπ holds in D◦(X ′).

Conversely, let χ be given satisfying the conditions. Let S be a section of Irr◦G′ → Irr
◦
G′ . We can

then write χ =
∑
aπ,kφπ,k with π varying over S and k varying over Z, in a unique manner (subject

to the convention that aπ,k = 0 for π even and k odd). Now, we have

cψ,ηχ = Aψ,ηχ =
∑

aπ,kλψ,η(π)φπ,k−n(ηπ)−2m(ψ)

for some scalar cψ,η, from which we conclude

cψ,ηaπ,k = λψ,η(π)aπ,k+n(ηπ)+2m(ψ).

From this we conclude aπ,k = απβ
k
π. Replacing π with an unramified twist, we can assume βπ = 1.

We thus find cψ,η = λψ,η(π) whenever απ is non-zero. The local converse theorem thus implies that

απ is non-zero for at most one π, which proves the proposition.

Remark. It is possible to take the above proposition further and give conditions that constrain the

scalar α. For example, χ is of the form ±χπ if and only if the above two conditions are satisfied and

additionally ∫
X′

1

(χ · χ∨)dµX = Vol(UB′)×


2 if χ is even

1 if χ is odd

where here we say that χ is even if it vanishes on the X ′
n with n odd and that χ is odd otherwise.

One can even go further than this and nail the sign down: χ is of the form χπ if and only if the two

conditions of the proposition hold, the above condition holds and furthermore for each quadratic

extension K/F the restriction of χ to K× ⊂ B′ is a non-negative integral combination of characters

of K×.

(5.4.4) We now give an alternative approach towards the problem of determining which functions

are characters. Let C char(X ′) be the subspace of C∞(X ′
ns) consisting of those functions f such that

p∗K(f) ∈ C∞(K×) is a linear combination of characters of K× for all quadratic extensions K/F .
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This definition has the advantage of being intrinsic to X ′ in that it does not make reference of B′

in any way. Nonetheless, we have:

Proposition. The space C char(X) has for a basis {χπ} with π ∈ IrrG′ .

We need a lemma before giving the proof.

Lemma. Let K/F be a quadratic extension and let η : K× → C× be a character. Let f : Z → C by

the function given by

f(n) =
∫
$nKUK

η(x)|x− x|2F dx.

Then f is a finite linear combination of functions of the form n 7→ an.

Proof. First consider the case where K/F . We can then take $K = $F and so

f(n) = q−2nη($F )n
∫
UK

η(x)|x− x|2F dx.

Therefore f(n) = abn where a is the integral and b = q−2η($F ).

Now consider the case where K/F is ramified. The idea is basically the same but slightly more

complicated. As $2n
K UK = $n

FUK we find

f(2n) = q−2nη($F )n
∫
UK

η(x)|x− x|2F dx

and so f(2n) = abn for some a and b. Similarly, since $2n+1
K UK = $n

F$KUK we find

f(2n+ 1) = q−2nη($F )n
∫
$KUK

η(x)|x− x|2F dx

and so f(2n+ 1) = cdn for some c and d. We now have

f(n) = abn/2
(

1 + (−1)n

2

)
+ cd(n−1)/2

(
1− (−1)n

2

)

which proves the lemma. (The above formula is a special case of the fact that if a function f : Z → C

is a linear combination of exponentials on each coset of mZ, for some integer m, then so is f .)

We can now prove the proposition.

Proof of proposition. Let π belong to IrrG′ . Then χπ|K× is the character of the semi-simple rep-

resentation π|K× , for any embedding K → B′. It follows that χπ|K× is a linear combination of

characters of K×. Thus χπ belongs to C char(X ′).
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We now show that the χπ span C char(X ′). (We take it as a standard fact that the χπ are linearly

independent.) Thus let f belong to C char(X ′). For each integer k we have a unique expression

f |X′
k

=
∑
π∈Irr

aπ,kχπ|X′
k
.

(Here and in what follows, we fix a section of Irr → Irr.) The proposition then follows from the

following two statements:

1. There exists a finite set X ⊂ Irr such that aπ,k = 0 for π 6∈ X.

2. The function k 7→ aπ,k is a linear combination of functions of the form k 7→ ak.

We now prove these two statements.

First, as f belongs to C char(X ′) it is uniformly smooth, that is, there exists an integer n such that

π∗f factors through G′/U
(n)
B′ . It follows easily from this that if π is an irreducible representation

for which π|
U

(n)
B′

is non-trivial then aπ,k = 0. We can thus take X to consist of those π for which

π(U (n)
B′ ) = 1, i.e., those π of conductor ≤ n. This is clearly a finite set. Thus (1) is established.

We now prove (2). We have

aπ,k = q2k
∫
X′
k

f(x)χ∨π (x)dµ(x) =
∑
K

cK

∫
f(x)χ∨π (x)|x− x|2F dx

(at least for π odd; in the even case there should be a 1
2 ) where the integral in the sum is over $k

KUK

if K is ramified and $k/2
K UK is k is unramified (this is taken to be the empty set if k is odd). Since

f and χπ each belong to C char(X ′), each is a linear combination of characters when restricted to

K×. We thus find that k 7→ aπ,k is a linear combination of functions of the form

k 7→
∫
$kKUK

η(x)|x− x|2F dx.

As shown in the lemma, these functions are linear combinations of functions of the form k 7→ ak.

We have thus established (2) and therefore the proposition.

(5.4.5) We now simply mention the following result, which follows from the earlier results of this

section.

Proposition. The image of C char(X) → D◦(X) is stable under A and semi-simple and multiplicity

free as an A -module. Its simple constituents are the one dimensional spaces spanned by the χπ with

π ∈ Irr◦. In fact, Aψ,η(χπ) = λψ,η(π)χπ holds in D◦(X) for π ∈ Irr◦.
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(5.4.6) We now discuss how some of the above results are just disguised forms of the local functional

equation and the local converse theorem. Let π ∈ Irr◦G′ . For a complex number s and a function

φ ∈ S (X ′) we define the zeta function as

Z(s, φ, π) = q−2m(ψ)−1

∫
G′
|x|s−3/2

F φ(x)χπ(x)dx

where dx is the normalized Haar measure on B′. (The q−2m(ψ)−1 factor out front makes q−2m−1dx

the self-dual Haar measure; it will not really be important for us.) The so-called local functional

equation is the identity

Z(1− s,FB′,ψ(φ), π∨) = ε(s, π, ψ)Z(s, φ, π)

for some function ε(s, π, ψ) of the form abs. Note that because π is cuspidal the L-functions which

normally appear on either side are equal to 1. Now, we have the equality

Z(s, φ, π) = q−2m(ψ)−1〈| · |s−3/2
F χπ, π

′
∗(φ)〉X′ .

Given this, the local functional equation is exactly equivalent to the fact that χπ is an eigenvector of

Aψ,1. Furthermore, the statement that the eigenspace of χπ is one dimensional, as given in §5.4.5,

amounts to the fact that π = π′ if and only if λψ,η(π) = λψ,η(π′) holds for all ψ and η. This is the

converse theorem for G′. Notice that our result describing the image of C char(X) → D◦(X) as an

A -module thus encapsulates both the local functional equation and the local converse theorem.

Remark. Although we used the local converse theorem for GL2 in our analysis of the split side, its

use was not truly necessary. In fact, using our proof of the Jacquet-Langlands correspondence in

the next section, we could deduce the local converse theorem from GL2 from the converse theorem

for G′, of which we have given a complete proof.
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Chapter 6

The Jacquet-Langlands

correspondence

(6.1) In §6, we apply the theory developed in the previous sections to prove the Jacquet-Langlands

correspondence. Here is an overview:

• In §6.2 we prove the fundamental identity needed to compare the two sides in the correspon-

dence. This identity is explicit and elementary.

• In §6.3 we use the result of §6.2 to show that the maps p∗ and p′∗ agree.

• In §6.4 we use the result of §6.3 to show that H(X) and H(X ′) are isomorphic as (A ∗ T )-

modules, via the natural restriction map.

• Finally, in §6.5 we use §6.4 to deduce the correspondence.

(6.2) We begin by proving the fundamental identity needed for our comparison.

Proposition. Let α and β be elements of F× for which (α, β) = −1 and put γ = −αβ. Then the

quantity

I2(x, α) + I2(γx, α)

is independent of x ∈ F×.

Proof. First consider the case where valα is even. Necessarily then, val γ is odd (as the residue
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characteristic of F is odd). We have, for x ∈ F×,

I2(x, α) =


1 + q−1 valx even

0 valx odd.

As precisely one of x and γx has even valuation, we see that I2(x, α) + I2(γx, α) is always equal to

1 + q−1.

Now consider the case where valα is odd. We then have

I2(x, α) = q−1/2


1 + η(x) valx even

1 + η(−x/α) valx odd.

If γ has even valuation, so that x and γx have the same parity of valuation, then

I2(x, α) + I2(γx, α) = q−1/2


2 + η(x) + η(γx) valx even

2 + η(−x/α) + η(−γx/α) valx odd.

As precisely one of y and γy is a square if y has even valuation, we see that the quantity inside the

brace is always equal to 1, which proves the result in this case. If γ has odd valuation then we find

I2(x, α) + I2(γx, α) = q−1/2


2 + η(−γx/α) + η(x) valx even

2 + η(γx) + η(−x/α) valx odd.

As −γ/α = β is a non-square of even valuation, the quantity inside the brace always equals 1. This

establishes the proposition.

(6.3) We can now compare p∗ and p′∗.

Proposition. Let f be an element of S0(X̃ ′) = S0(X̃ell). Then p∗f + p′∗f = 0.

Proof. If suffices to show that for K/F a quadratic extension and f ∈ S0(K) we have (pK)∗f +

(p′K)∗f = 0. By §4.2.8 and §5.2.6 we have

((pK)∗f + (p′K)∗f)(t, ν) =
d
1/2
K

|∆|1/2F A(∆)

∫
F

f( 1
2 t+ ix)J(x)dµF (x)
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where

J(x) = I2(∆− 4dKx2,dK) + I2

(
∆− 4dKx2

γ
,dK

)
,

γ = −dKβ and β is an element of F× for which (dK , β) = −1. By §6.2 we have that J(x) is

independent of x. As f belongs to S0(K) we have that

∫
F

f( 1
2 t+ ix)J(x)dµF (x) = 0,

which proves the proposition.

(6.4) We now have our main comparison theorem.

Proposition. Restricting functions on Xell to X ′ gives an isomorphism H(X) → H(X ′) of (A ∗T )-

modules.

Proof. For a function f on Xell let r(f) denote its restriction to X ′. It follows from §4.3.9 and the

definition of H(X ′) that r : H(X) → H(X ′) is an isomorphism of Hilbert spaces. It is equally clear

that r commutes with the action of T . It remains to check that r commutes with A . To verify

this, it suffices to show that for f ∈ H(X) we have

r(F (2)
X,ψ(f)) + FX′,ψ(r(f)) = 0.

Recall that we have defined Fourier transforms

F
(1)
X,ψ : S (Xre) → C∞(Xre), FX′,ψ : S (X ′) → S (X ′).

By §4.2.7, §5.2.5 and §6.3 we have

r(F (1)
X,ψ(f)) + FX′,ψ(r(f)) = 0.

As the map r : Sre(X) → Sreg(X ′) is a linear isomorphism and an L2-isometry and the transform

FX′,ψ is an L2-isometry (§5.2.4), it follows that F
(1)
X,ψ is an L2-isometry. It therefore extends

uniquely to a continuous map

F
(1)
X,ψ : L2(Xell) → L2(Xell)

since S (Xre) is dense in L2(Xell). We have previously shown in §4.4.8 that F
(1)
X,ψ and F

(2)
X,ψ agree on

a dense subset of H(X) (which is a closed subspace of L2(Xell)). It follows that F
(1)
X,ψ(f) = F

(2)
X,ψ(f)
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for f ∈ H(X). We thus see that

r(F (2)
X,ψ(f)) + FX′,ψ(r(f)) = 0

for f in Sre(X)∩H(X). As this space is dense in H(X) and r, F
(2)
X,ψ and FX′,ψ are continuous, it

follows that the above equation holds for all f ∈ H(X), which proves the proposition.

(6.5) We can now prove the Jacquet-Langlands correspondence.

Theorem. If π is a cuspidal representation of G then there exists a unique cuspidal representation

π′ of G′ such that χπ|Xre = −χπ′ . Every cuspidal representation π′ of G′ arises from some π.

Furthermore if π and π′ are thusly related then dπ = C · dπ′ for some absolute constant C and

ε(s, ηπ, ψ) = ε(s, ηπ′, ψ) for all η and ψ.

Proof. As H(X) → H(X ′) is an isomorphism of (A ∗ T )-modules, it follows that for π ∈ Irr
◦
G

and k ∈ Z there exists π′ ∈ Irr
◦
G′ , unique up to unramified twist, such that Vπ,k = Vπ′,k. Note

that this implies that φπ,k belongs to S (Xell) for π ∈ Irr◦G. Using the same reasoning as in §5.4.3,

one now finds that for π ∈ Irr◦G we have Aψ,η(χπ) = λψ,η(π)χπ, where here we regard χπ as a

cuspidal distribution. As χπ is orthogonal to S 1(X ′), the results of §5.4.3 imply that χπ|X′ =

αχπ′ for some π′ ∈ Irr◦G′ . Of course, we then have λψ,η(π) = λψ,η(π′) for all ψ and η, which

shows ε( 3
2 , ηπ, ψ) = ε( 3

2 , ηπ
′, ψ). The action of Aψ,η on Vπ = Vπ′ (c.f. §4.4.11 and §5.3.17) shows

that n(ηπ) = n(ηπ′). We therefore have ε(s, ηπ, ψ) = ε(s, ηπ′, ψ) for all η and ψ. The equality

〈φπ,0, φ∨π,0〉X = α2〈φπ′,0, φ∨π′,0〉X′ together with the computation of each side now gives α = ±1.

The identities of §4.4.4 and §5.3.16, together with the positivity of dπ and dπ′ now give α = −1. We

can now again apply §4.4.4 and §5.3.16 to conclude the statement about formal degrees agreeing up

to an absolute constant (in fact, the constant is 1
2q

2/(q + 1)).

We have now proved everything except for the statement that every cuspidal representation of

G′ arises from a cuspidal representation of G. To see this, observe that because H(X) → H(X ′)

is an isomorphism of (A ∗ T )-modules, the map r : Irr◦G → Irr◦G′ demonstrated above induces an

isomorphism r : Irr
◦
G → Irr

◦
G′ (this follows from §4.4.12 and §5.3.15). Because r behaves well with

respect to twists and r is an isomorphism it follows that r is an isomorphism. This proves the

theorem.

Remark. By normalizing our Haar measures differently, the constant C in the above theorem can

be made to equal 1.
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Chapter 7

Future directions

(7.1) We now give some discussion about how the above results might be adapted to GLn with

n > 2. We begin by giving some notation and basic definitions. These override previous notations

and definitions.

• Fix an integer n > 1.

• Let X be the space of monic degree n polynomials over F which are either irreducible or nth

powers.

• Let Xreg be the subspace of X consisting of those polynomials which are irreducible.

• Let dµX be the measure on X analogous to the one we have used above. We give a more

precise definition below.

Let B be a central simple F -algebra of rank n2.

• We call x ∈ B elliptic if its characteristic polynomial belongs to X. We write Bell for the set

of elliptic elements of B.

• We call x ∈ B regular elliptic if its characteristic polynomial belongs to Xreg. We write Bre

for the set of regular elliptic elements of B.

• We let π : Bell → X be the characteristic polynomial map.

• We let dµB be the Haar measure on B giving volume 1 to any maximal order.
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• For a function f : Bell → C we let π∗(f) be the function on X given by the Radon-Nikodym

derivative of π∗(fdµB) with respect to dµX , wherever this exists. If f ∈ S (Bell) then π∗(f)

is well-defined and smooth on Xreg.

• For an additive character ψ of F we let FB,ψ be the Fourier transform on B with respect to

ψ, normalized so that it is an L2-isometry.

• Write B = Mk(D) where D is a central simple division algebra over F . We define εB to be

(−1)n−k.

If B is a central simple division algebra over F of rank n2 then B = Bell and π : B → X is proper.

The measure dµX can be taken to be π∗(dµB).

(7.2) Consider the following statement:

Statement (FTn). Let ψ be a non-trivial additive character of F . Then there exists a map

FX,ψ : L2(X) → L2(X)

which is self-adjoint, an isometry, preserves S (X) and has the following property. Let B be a central

simple F -algebra of rank n2. Let f be a Schwartz function on B which either has regular elliptic

support or is a linear combination of truncated matrix coefficients of essentially square integrable

representations. Then

FX,ψ(π∗(f |Bell)) = εBπ∗((FB,ψf)|Bell).

Note that the map FX,ψ, if it exists, is determined uniquely by the final condition imposed on it.

(This uses the facts that the map π∗ : S (Bre) → S (Xreg) is surjective and that S (Xreg) is dense

in L2(X).) By “truncated matrix coefficients” we mean functions like the φπ,v,v∗,n that we used.

(7.3) For a totally disconnected locally compact group G let Irrsi(G) denote the set of irreducible ad-

missible representations of G whose matrix coefficients are square integrable. Consider the following

statement:

Statement (JLn). Let B and B′ be central simple F -algebras of rank n2. Then there is a bijection

Irrsi(B×) → Irrsi((B′)×)

characterized by the following property: if π corresponds to π′ then εBχπ(x) = εB′χπ′(x′) whenever
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x ∈ B and x′ ∈ B′ are regular elliptic elements with the same characteristic polynomial. The

bijection also preserves ε-factors and L-functions.

(7.4) We can now discuss the manner in which our work extends to GLn. To begin with, our

methods show

JLn =⇒ FTn for all n.

This can be seen using explicit computations of the Fourier transforms of matrix elements of square

integrable representations, such as those in §4.4.2. (Of course, there are a lot of details to fill in,

but we believe that no new ideas are needed in addition to our work.) In the other direction, our

methods show

FTn =⇒ JLn for n = 2, 3.

This can be proved by considering the structure of the cuspidal space H(X) as a module over A ∗T .

We carried this out for n = 2; for n = 3 the same argument works. The essential feature which fails

for n > 3 is the form of the local converse theorem which we use. The entirety of this thesis was

devoted to proving FT2 and the above implication for n = 2, which gave us a proof of JL2.

(7.5) We proved FT2 by attaching a Fourier transform on X to each rank 4 central simple algebra

over F and then verifying that all of these Fourier transforms agreed. To prove that they agreed, we

factored them into something intrinsic to X followed by an operator p and then showed that the p’s

agreed. We feel that this approach should work, in theory, to prove FTn. The problem lies in the

comparison of the p operators. We succeeded in our situation because we could explicitly compute

the p’s and then just look at the resulting formulas to see that they agreed. For n > 2 such an

explicit computation does not seem feasible, at least not by our methods, so a new idea is needed.

Nonetheless, comparing these p operators amounts to showing that two rather elementary integrals

agree. If one could establish this for n = 3 then one would have a purely local proof of JL3.

(7.6) We should remark that while we have put some thought into the claims in §7.4 and §7.5, we

have not worked carefully through the details, so they should be taken with a grain of salt.

(7.7) As mentioned in the introduction, the statement JLn has been proven (by global means).

Thus the statement FTn is true. We find the Fourier transform FX,ψ to be very intriguing: it is a

natural transform on the space functions on the space of irreducible monic polynomials. There are

a number of questions we have about it:
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• To compute FX,ψ(f) one has to pick a central simple algebra B and choose a lift of f to a

function on B. Is there a more natural description of FX,ψ, one that does not involve any

choices? In particular, can one describe FX,ψ without mentioning central simple algebras?

• Is there a natural way to extend FX,ψ to the space of functions on the space of all monic

polynomials?

• We feel that the principle of functoriality should imply, at least on a philosophical level, that

FX,ψ interacts nicely with certain operations on polynomials. Can this be made precise?

(7.8) As mentioned, our methods only show FTn implies JLn for n = 2, 3. We have one idea about

how our approach could be modified to obtain JLn for larger n. In the case n = 2 we defined

a convolution operation on the space of Schwartz functions on X with regular elliptic support

by pushing forward the multiplicative convolution operation on the non-split quaternion algebra.

The Fourier transform on X could be recovered from this structure by convolving with a specific

function. For general n, if one could define such convolutions on X using any central simple algebra

and compare the resulting operations then one should be able to deduce JLn.
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