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Abstract

Let F be a finite extension of Qp, let G be the group GL,(F) and let G’ be the multiplicative group
of a central simple division algebra algebra over F of rank n?. The Jacquet-Langlands correspon-
dence is a natural bijection between the set of isomorphism classes of finite dimensional irreducible
representations of G’ and the set of isomorphism classes of (essentially) square-integrable irreducible
admissible representations of G (all of which are infinite dimensional). This purely local result does
not have a local proof for n > 2. We give a new purely local proof in the n = 2 case which should
generalize at least to n = 3.

Our proof relies heavily on the Fourier transform. Let X’ be the space of monic degree two
polynomials over F' with non-zero constant term which are either irreducible or have a doubled root.
We identify X’ with the space of conjugacy classes in G’ and also the space of elliptic conjugacy
classes in G. Using the Fourier transform on the 2 x 2 matrix algebra we construct a Fourier
transform on X’ and show that this transform determines which functions on X’ are characters of
cuspidal representations of G. Using the Fourier transform on the non-split quaternion algebra we
construct another Fourier transform on X', and show that it determines which functions on X’ are
characters of irreducible representations of G’. Finally, we show that the two Fourier transforms on

X' agree (up to a sign) which gives the correspondence.
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Chapter 1

Introduction

(1.1) Let F be a finite extension of Q,, let G be the group GL2(F) and let G’ be the group of
units in the unique non-split quaternion algebra over F. We write Irrg, for the set of irreducible
admissible cuspidal representations of G and Irrg,, for the set of irreducible representations of G’ of
dimension at least two. (All representations are on complex vector spaces.) The Jacquet-Langlands

correspondence states that there is a bijection®
Irrg, — Trrgy

characterized by m — 7’ if x»(g9) = —xa/(¢’) whenever g is a regular elliptic element of G and ¢’ is an
element of G’ with the same characteristic polynomial as g. Here x, and X, denote the characters
of  and #’. Furthermore, if 7 corresponds to 7’ then d, = d,» and €(s, 7, ) = €(s, 7', 9) where d,
is the formal degree of 7, d the degree of 7’ and the ¢’s are the usual e-factors. The purpose of

this thesis is to detail a new proof of this correspondence.

(1.2) We now briefly review the history of the correspondence. As given above, it was first established
by Jacquet and Langlands in the book [JL]. They established the correspondence by using a Weil
representation to construct a representation of G given a representation of G’, and then proving
that this construction satisfies the requisite properties. They also proved a global version of the
correspondence by making use of the Selberg trace formula. A version of the correspondence, both

local and global, for GL,, was established by Rogawski [Rog] and independently by Deligne, Kazhdan

1In fact, the correspondence holds on a slightly larger set of representations, those which are essentially square
integrable. We will restrict ourselves to the cuspidal case, however.



and Vigneras [DKV]. Both proofs work by first establishing the global result via trace formula
techniques and then obtaining the local version by embedding into a global situation. For n > 3 there

2. The original proof of Jacquet and

is currently no purely local proof of the local correspondence
Langlands does not generalize, as the existence of the Weil representation for GL; is a consequence of
the exceptional isomorphism GLs = GSp,. We should mention, however, that there is a purely local
construction of the correspondence. This construction, which makes use of non-abelian Lubin-Tate
theory, is due to some combination of Carayol, Deligne and Drinfeld. A proof that this construction

works was given by Harris and Taylor in their book [HT]. Their proof is global. For more details,

see the introduction of [HT].

(1.3) Our proof of the correspondence is purely local and makes no use of the Weil representation.
It does, however, use the local converse theorem, which states: if 7 and 7’ are two cuspidal represen-
tations of G with the same central character and for which (s, nm,¥) = €(s,n7’, 1) for all characters
n of F* then m = «’. This form of the converse theorem is valid for GLs and GL3 but not for GL,,
with n > 4 (in general one has to twist by representations of GL,, with m > 1). No other steps
in our proof are specific to GLy, however (at least in theory). We therefore feel that our method
should generalize directly to GL3, and perhaps, with some modification, to other GL,,. In fact, our
method of proof does reduce the proof of the correspondence for GL3 to a rather elementary integral
identity which makes no direct reference to representation theoretic concepts. We are not at this

time able to establish this identity, however.

(1.4) We should also mention that we only prove the correspondence for F'/Q,, with p odd. We make
the restriction that p be odd mainly for convenience: many computations become much more simple
in this situation. However, we believe that this restriction is unnecessary and that our approach
will work just as well when p = 2: we expect the computations that arise to be feasible, but slightly
more complicated than the ones we present here. Another direction of generalization would be to

consider that case when F' is a local function field; we have not thought about this.

(1.5) We now give an outline of our proof. Let B = M3(F) and let B’ be the unique non-split
quaternion algebra over F, so that G = B* and G’ = (B’)*. We let X (resp. X’) be the space
of characteristic polynomials of elements of B (resp. B’). Thus X is the space of all monic degree
two polynomials over F' while X’ consists of those monic degree two polynomials which either have

a double root or are irreducible. There is a natural inclusion X’ — X. We must prove that if

2Several experts (for instance G. Henniart) have told me that they believes this to be the case.



7 is a cuspidal representation of G then x.|x/ is the character of an irreducible representation of
G’ (of course, characters are not defined on all of X or X', but a dense subset). The main idea
of our approach is to consider X and X’ as the fundamental objects and to endow them with
enough structure so that one can determine which functions on them are characters of irreducible
representations. We then compare this structure to compare characters of representations. It turns
out that the extra structure needed is simply a Fourier transform defined on (a certain subspace of)

the functions on X or X'.

(1.6) To be more specific, there are three steps that we carry out on each side (meaning in the split

and non-split case):
1. We define the Fourier transform on an appropriate space of functions on X or X’.
2. We show that this is enough information to determine which functions are characters.
3. We express the Fourier transform in such a way that it is easy to compare.

After having accomplished these three steps on each side, we compare the two Fourier transforms.
These two transforms will be acting on more or less the same function space and we must show that

they are more or less equal. This will prove the correspondence.

(1.7) We now say a bit more about the first step. Let 7 : B — X and «’ : B — X’ be the
characteristic polynomial maps. We will define a certain space of functions H(X) on X and H(X')
on X', called the cuspidal spaces. Restricting along X’ — X gives an isomorphism H(X) — H(X').
The Fourier transforms on X and X’ will be defined on these cuspidal spaces and map them into
themselves. (In fact, the Fourier transform will also be defined on the slightly larger space of functions
with regular elliptic support.) To define the Fourier transform, we use the usual Fourier transform
on B or B’ and push-forward. In other words, the Fourier transform is defined by requiring it to
commute with m, or 7. In the non-split case, it is straightforward to see that this is well-defined
and has the desired properties, owing to the fact that ' is a proper map. We denote the resulting
Fourier transform by %#x/ . In the split case, 7 is not proper and things become more difficult.
We end up defining two Fourier transforms, .7 )({12} and & )((2 L} The first of these is defined on the
space of functions with regular elliptic support and is better suited for the comparison step, but its
analytic properties (such as L2-continuity) and interaction with representation theory are not clear.
The second is defined on the cuspidal space and has better analytic and representation theoretic

properties, but could not be used to make the comparison. A key result (§4.4.8) shows that .# )(SL



and & )((2 Zp agree on a dense subspace of the cuspidal space. The main comparison step (discussed
below) shows that 9)({121 and Fx 4 agree. From this we see that %(?L, and Fx/ , agree on a dense

subspace and as both are continuous they must be equal.

(1.8) We now say more about the second step. For an additive character ¢ of F' and a character 7

of F* we define an operator Ay, , on the cuspidal space of X or X’ by the formula
Apaf =0 Fy(l- [0 ).

Here fV is the function x — f(x~!) and 7 is regarded as a function on X by composing with the
determinant. The form of this operator is motivated by the local functional equation. In fact, the
local functional equation shows that if 7 is a cuspidal representation then y, is an eigenvector of
each of the operators Ay ,. The eigenvalue is closely related to the e-factor e(s,nm, ). Using this
insight, we analyze the cuspidal space as a module over the algebra generated by the A, ,. We
find that it is semi-simple, multiplicity free and that its simple constituents are naturally indexed
by the unramified twist classes of cuspidal representations of G' or G’. The multiplicity freeness
here is equivalent to the local converse theorem mentioned above. We take this result further in the
non-split case and give a precise criterion for determining when a function on X’ is a character of

an irreducible representation.

(1.9) We now elaborate on the third step. The Fourier transforms we define on X and X’ would be
difficult to compare directly. To compare them, we break them into simpler pieces. The main idea
is to regard X or X’ as being built out of the degree two field extensions K of F' and try to relate
the Fourier transform on X or X’ to the Fourier transform on these fields. This, it turns out, is not
difficult to do. If f is a function on K (which we can essentially regard as a function on X) then its
Fourier transform is by definition 7, (%, Bﬂpf) where f is a function on B for which 7, f = f. It turns
out that one can essentially take for fthe function f ® § where § is the §-function in the direction
orthogonal to K (with respect to the trace pairing). The Fourier transform of f ® ¢ is (Fg uf) ®1
(up to a constant), where here F 4 f is the Fourier transform on K. We can thus factor the Fourier
transform on X as a Fourier transform on K followed by the operation f — m.(f ® 1). We denote
this operation by p,. The same analysis holds on the non-split case and we denote the operation
f 7 (f®1) by p,. We thus see that to compare the Fourier transforms on X and X’ it suffices

to compare p, and 7.



(1.10) We now discuss the comparison of p, and p/,. Our comparison of these two operators is by
brute force calculation. We show that p, and p, are both given by integrating against a kernel which
is expressed in terms of the integral I> defined in §3.2. The ultimate comparison amounts to the
fact that

I(ax,b) + Ix(x,b)

is independent of z if (b, —a/b) = —1, where (,) denotes the Hilbert symbol. We prove this fact by

explicit evaluation of I5.

(1.11) We now say a word about future directions for the ideas presented here. Naturally, as already
indicated, the most obvious problem to attempt next is the Jacquet-Langlands correspondence for
GL3. Everything presented here should carry over directly to GL3 except for our comparison of p,
and p,. We have not yet found a way to carry out this comparison for GL3. Moving beyond GLs,
much of what we do here in fact works for GL,,: one can still define Fourier transforms and factor
them via p, like operators. A natural problem is to try to compare the Fourier transforms (or,
equivalently, the p, operators) coming from division algebras and GL,,. For n > 3 this would not
imply the Jacquet-Langlands correspondence, but it would give some sort of first order approximation
to it. For further discussion along these lines, see §7. Looking in a different direction, it may be
possible to prove other instances of Langlands functoriality using our approach: in particular, we

have in mind base change for GLs.



Chapter 2

Notation

Throughout F' denotes a fixed extension of QQ, of finite degree, where p is an odd prime. The

following are the most important pieces of notation on the split side:

e B is the matrix algebra Ms(F).

G is the group of units in B, namely GLa(F).
e X is the set of all monic degree two polynomials.

X is the disjoint union of the four degree two étale algebras over F' (the three quadratic field

extensions of F' and the split algebra F' & F).

K typically denotes one of the four degree two algebras over F'.
e 7m: B — X is the map which assigns to a matrix its characteristic polynomial.
° p: X — X is the map which assigns to an element of X its characteristic polynomial.

e i: X — Bisa fixed map such that ¢|x : K — B is an injection of algebras, for each component

K of X.
The following are the most important pieces of notation on the non-split side:
e B’ is the unique non-split quaternion algebra over F.
e (&' is the group of units in B’.

e X' is the set of all monic degree two polynomials which are either irreducible or have a double

root.



X' is the disjoint union of the three quadratic extensions of F.

K typically denotes one of the three quadratic field extensions of F.

e 7' : B’ — X' is the map which assigns to an element of B’ its characteristic polynomial.

o p: X' — X' is the map which assigns to an element of X’ its characteristic polynomial.

e i’ : X' — B'is a fixed map such that i/|x : K — B’ is an injection of algebras, for each

component K of X',
Notation related to F"
e Cr is the ring of integers in F.

q is the cardinality of the residue field kp of .

pr is the maximal ideal of Op.

Ur is the group of units of Op.

UI(:n) is the group 1+ p”.

e wy is a uniformizer for 0.

n: F* — {£1} is 1 on squares and —1 on non-squares.

(,) is the Hilbert symbol on F.
More notation on the split side:

e We write elements of X as 22 — tz + v. We regard t and v as functions X — F. They give an

isomorphism X — FZ2.

We let A : X — F be the function ¢ — 4v. We write still A for its pull-back to B, X or K.

Xreg is the set of polynomials in X with distinct roots.

X1 is the set of polynomials in X which are either irreducible or have a double root.
o X, is the set Xice N Xen.

Xns is the subset of X where v # 0 (ns meaning “non-singular”).

X, is the subset of X where v has valuation n.



o X, nis X.NX,; for example, we have X .

e We write B,, )~(* or K, for the inverse image of X,. For example, B,s = G. Also, G,, denotes

the set of elements in G whose determinant has valuation 7.
e 7 is the center of G. It is isomorphic to F'*.
More notation on the non-split side:

e We use much of the same notation for B’ as for F'. Thus Op' is the maximal order in B’, wpg:

is a uniformizer, etc.

e We regard X’ as a subset of X in the obvious way and use much of the same notation, e.g., t,

v, A, X!

ns’

etc. Note that X' = X/, = Xan.
o We write B, X! or K, for the inverse of X/. For example, B, = G’ and Gy =Up.
e 7' is the center of G'. It is isomorphic to F*.

Degree two étale algebras:

e We use the letter K to denote degree two étale algebras over F'. There are four: the three

quadratic fields extensions of F' and the split algebra F' & F.

e We write di for the discriminant of K, which we treat as an element of F'. This is defined to

be 1 in the split case.

e We write di for |di|r. This is 1 if K is split or an unramified field extension and ¢!

otherwise.
Norms, traces, absolute values:

e We let N (resp. tr) be the norm (resp. trace) map on B, B’ or K to F. In all cases Nz = 2T
(resp. trz = x + T), where T is the conjugate of . We also, at times, use the same notation

on X or X’; of course, N = v and tr = ¢ in those settings.

e For a topological ring A we let |- |4 be the absolute value given by |a|a = d(az)/dxz where dx
is a Haar measure on A. If A is B or B’ then |z|4 = |Nz|%. If A= K is a degree two étale

algebra then |z|4 = |[Nz|p.



Haar measures:

e If A is one of the algebras F, K, B, or B’ then we let dus be the unique Haar measure on A

which gives maximal orders volume 1.
e For such A we let duyx be |- |, 'dua. It is a Haar measure on A*.

We call the above Haar measures the normalized Haar measures. Let Y be a topological space. All

function spaces below deal with complex valued functions.
o Z(Y) is the space of Schwartz (=locally constant and compact support) functions on Y.
e ©°°(Y) is the space of smooth (=locally constant) functions on Y.

e We typically put support conditions in subscripts. For example, #.(X) (resp. €.°(X)) de-
notes the subspace of .7 (X) (resp. ¥>°(X)) consisting of those functions whose support is
contained in Xye. Note .#e(X) = 7 (Xye) but €2 (X) # €°(Xye)-

e We will define more function spaces below. The most important of these are the cuspidal

spaces H(X) and H(X").

Let Y be a topological space with a measure du.

e We write L?(Y') for the standard L? function space.

e We let | - ||y be the L2-norm.

e For f,g € L*(Y) we put (f,9)y = [, fgdp.

e For f,g € L*>(Y) we put (f,9)y = (f,g)y where g is the conjugate of g. Note (f, f)y = || f|%.
Fourier transforms:

e ) = 1) is a non-trivial additive character on F'

e If A is one of the algebras B, B’ or K we let 94 be the character of A given by ¢ otry,p.

e We let m = m(t)) be the largest integer for which 1) is trivial on p~™.

e When we have defined a Fourier transform on a space Y with respect to 1 we denote it by

something like Fy ;. For example, Fr, is the usual Fourier transform on F'.



Representations:

e Irrg, is the set of isomorphism classes of irreducible admissible representations of G which are

cuspidal.

e Irrg, is the set of isomorphism classes of finite dimensional irreducible “cuspidal” representa-

tions of G, where here “cuspidal” simply means having dimension at least two.

° ﬁz is the quotient of Irrg, by the twisting action of the group of unramified characters;

similarly for G’.

e Ity , is the subset of Irrg; consisting of those representations with central character w; similarly

for G'.
. Hg’w is the image in Irrg, of Irrg . Similarly for G'. The map Irrg ,, — HZ’W is 2-1.
e ¢ denotes the character of F* (or G or G’ by composing with the norm) given by z + (—1)¥8l2.
e A representation 7 of G or G’ is even if £ ® m = 7w and odd otherwise.
e For a representation 7 of G or G’ we denote by n(w) its conductor.

e For a representation 7 of G of G’ we denote by w, its central character.

10



Chapter 3

Some integrals

(3.1) For a,b € F* define

1/2

/ (1+n(a + bz?))dz.
F JF

Here dz is the normalized Haar measure on F. If b is not a square then the integrand has compact
support and so the integral makes sense. One easily sees that its value only depends on a and b

modulo squares. We now compute its value.

Proposition. Let a and b be as above. Then

14 ¢t — 359 ot and valb even

q+1
0 vala odd and valb even
Il(aa b) =
(1+n(a))g1/? vala even and valb odd
1+n(=b/a)

vala and valb odd

q+1

Proof. Without loss of generality, we assume a and b have valuation 0 or 1. We proceed by cases.
Case 1: a and b have valuation 0. For a + bx? to be a square we must have z € Or. We thus

regard I; as an integral over OF and then break it up over the cosets of p as follows:

Z / 2dzx.
x+p

L(a,b) = e/ (14 na + ba?))da +
Fatp z€S

Here S is the set of z in the residue field & such that a+ ba? is a non-zero square, € is 1 if a+bz%2 =0

11



has a solution in x and zero otherwise and « is a solution to a + bz? = 0 if one exists. The second
term above is of course equal to 2¢~'#S. We thus have to compute #S and the integral.

We begin with the computation of #S. Consider the projective variety over x defined by 3% =
az? +bz?. This is smooth and has a rational point and so is isomorphic to P'. It therefore has ¢+ 1
solutions in k. As b is not a square, there are no solutions when z = 0. Thus y? = a + bz? has ¢+ 1
solutions. Now, if ¢ = 0 then there are no solutions with y = 0. Therefore, if (z,y) is a solution then
(x,—y) is a distinct solution; thus #S = (¢ + 1)/2. On the other hand, if € = 1 then there are two

solutions with y = 0; removing these, we find #S = (¢ — 1)/2. Thus we have

#5=(¢+1)/2—¢

in all situations.

We now handle the integral, assuming o exists. First we lift o to a solution to a+bxz? = 0 in Op.
We now make the change of variables x = a4y, so that the integral takes place with y € p. We have
a+ bx? = 2bay + by?. As the first term has strictly smaller valuation, we find n(a + bx?) = n(2bay).

We therefore have

[t satyis = [(n@an)dy =Y [ (@4 n(zbay)dy.
a+p n=1"%

b nUp

Now, for 2bay to be a square y must have even valuation. Thus only the even terms in the above
series contribute. The function y — 7(2bay) is a non-trivial character of @w?"Ur and so has integral

zero. Thus the above series is equal to

-2

Y Vol(@*'Up) = —

—1 :
n=1 1+ q
Of course, we get the same result for —« as for a.
Putting everything together, we find
Layb) = 2= 4 2 (g +1)/2— &) = 14 q~* — —2%
a,b) = 2¢ —€) = —
1 Tg1 2 ((a q )

The identity 2e = 1 + n(—b/a) gives the stated result.
Case 2: a has valuation 1 and b valuation 0. It is impossible for a + bx? to be a square and so
the integrand is identically zero.

Case 3: a has valuation 0 and b valuation 1. In this case, a + bx? is a square if and only if a is

12



a square and x belongs to Or. We thus find

I(a,b) = /2 /ﬁ (1+ n(a))de = (1+n(a))g~/>.

Case 4: a and b have valuation 1. For a+bx? to be a square it is necessary for x to have valuation
0. Since a + bz? must have even valuation, and it has valuation at least 1, we find a + bz? = 0
modulo p?, which implies 2% = —a/b modulo p. Thus if —a/b is not a square then I;(a,b) = 0. We
therefore assume from now on that —a/b = o?. Of course, a belongs to Up.

Now, for a + bz? to be a square we must have © = +a modulo p. Thus

I(a,b) = /i er(1 +n(a + bx?))dz.

We consider the +« integral, the other one going much the same. Make the change of variables
x = a + ¥y so that the integral varies over y € p. We have a + bx? = 2bay + by?. As the first term is

dominant, n(a + bx?) = n(2bay) and so the integral equals

/(1 +1(2bay))dy = q‘"/ (1+ n(2baze"y))dy
p n=1 Ur

As b has valuation 1, only the terms with n odd contribute. As in Case 1, when n is odd 7 is a

non-trivial character and its integral vanishes. We thus find that the above equals

1
—(2n+1) 1 _ )
E q Vo (UF) = 7{1 1

n=0

The —« integral is equal to this as well. Thus I1(a,b) is 2/(q + 1) if —a/b is a square and zero

otherwise. m

(3.2) For a,b € F* define

1/2 1+ n(a + bx?)
IQ(Q’b) = ‘b|F/ / 1/2 dx
F o |a+ba?|

Here dz is the normalized Haar measure on F. If b is not a square then the integrand has compact
support and so the integral makes sense. One easily finds that I5(a,b) only depends on a and b

modulo squares. We now explicitly compute its value.

13



Proposition. Let a and b be as above. Then

14¢71 vala and valb even

0 vala odd and valb even
IQ(CL, b) =

(1+n(a))g'/? vala even and valb odd

(1+n(—a/b))g~*? vala and valb odd

Proof. Without loss of generality, we assume a and b have valuation 0 or 1. We proceed by cases,
much like the proof in §3.1.

Case 1: a and b have valuation 0. The same reasoning as in Case 1 in §3.1 gives

1+ n(a + bx?)

Ig(a,b):e/ ST g / 2
+otp |a+ba:2\11p/2 ; z+p

using the same notation as there. The second term is 2¢71((q + 1)/2 — €), as it was in §3.1.
We now compute the integral, which is different from the one occurring in §3.1. Write z = a+y

so that n(a + bx?) = n(2bay) and |a + bz?|r = |y|r. We then have

1+ n(a + ba? 1+ n(2b >
/ e 172 )das = / 77(1/20@) dy = Z qin/2/ (1 +n(2baw"y))dy
atp  |a+ ba?| p ly| n—1 Ur

Only the terms with n even contribute. When n is even the 7 term is a non-trivial character and

thus has integral zero. We thus find that the integral is equal to

S VW) = g

n=1

1

The —a integral is equal to ¢ as well.

Putting it all together, we find
I(a,b) =2e¢7 ' +2¢ (g +1)/2—€) =144 "

which completes this case.

Case 2: a has valuation 1 and b valuation 0. As in Case 2 of §3.1, the integrand vanishes
identically.

Case 3: a has valuation 0 and b valuation 1. This proceeds like Case 3 of §3.1. Note that if

a + bx? is a square then |a + bz?|p = |a|p = 1.

14



Case 4: a has valuation 1 and b valuation 0. As in Case 4 of §3.1 we find that Is(a,b) = 0 unless

—a/b is a square, in which case

_ 1+ n(a + bz?
Ir(a,b) = q 1/2/ 77(—1/2)‘137
tatp a4+ bx?|H

where a? = —a/b. We evaluate the +a integral. Writing = = « + y gives n(a + bz?) = n(2bay) and

la + bx?| = |by|#. Therefore the integral is equal to

1+ n(2ba N .
/%dy: Zq ( 1)/2/ (14 n(2baw™y))dy.
p |by‘ =1 Ur

F n

Only the terms with n odd contribute and, as usual, in these terms the 7 term vanishes. We thus

obtain
o0

> g " Vol(Up) = 1.

n=0
The —a integral is the same, so I5(a,b) = 2¢~ /2. Thus Is(a,b) = (1 + n(—a/b))g~/? in all cases,

as stated. O

(3.3) For a,b,c € F'* define

be|? 1 ba® + cy?
Is(ab,c) = | 2 / + (e + b +f}/2)dxdy
@lp JF2 |a+bx? + cy?|y
where dx and dy are normalized Haar measures on F. If (b,¢) = —1 then the integrand has compact

support and so the integral makes sense. One easily finds that I3(a,b, ¢) only depends on a, b and ¢

modulo squares. We now explicitly compute its value.

Proposition. Let a, b and ¢ be as above. Then

(1+n(a))gt vala even, valb odd, valc odd

(14q¢ Hg=1/? vala odd, valb odd, valc odd
Is(a,b,c) =

(14q¢ YHg1/? vala even, valb odd, valc even

(1+n(—a/b))gt vala odd, valb odd, valc even

Proof. To begin with, we have

1/2
I3(aaba C) =

/Ig(a+ba:2,c)dx.
F JF
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We now proceed in cases.

Case 1: valb and val ¢ both odd. Using our formula for I, we find

1/2 y (/2
I5(a,b,c) = g %= /(1+n(a+bx2))dx+q_1/2 — /(1+n(a'+b’m2))d$.
a Ia F a Ia F
Here a’ = —a/c and b’ = —b/c. We can rewrite this as

I(a,b,c) = ¢ "*Ii(a,b) + ¢ /2 1 (d, V).

Using our formula for I; gives the stated result.

Case 2: valb odd and val ¢ even. Using our formula for Iy we find

1/2
Vol(Q2)

I3(a,b,c) = (14+q¢7 1)

where Q is the set of  for which a + bx? has even valuation. If a has even valuation then a +bz? has
even valuation if and only if |bz?| < |a| and so Vol(Q) = |0L/b|},/2q*1/27 which gives the stated result.
Now say that a has odd valuation. Then a + bz? will have even valuation for some z if and only if
—a/bis a square. Assume this is the case and write o = —a/b. Then a + bx? has even valuation if

and only if 2 = £a(1 + ew? 1) for € € Ur and a non-negative integer k. We thus find

© /2 9
Vol(Q) = 2 Vol(w 1) = ’3’ <
(@ =20l 3o Vol 1ue) =[5

and the stated result follows. O
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Chapter 4

The split side

The goals of §4 are as follows:

e Define a Fourier transform % )((1 1& on the space of Schwartz functions on X with regular elliptic

support.

e Factor .7 )((1)w into two steps, the first of which involves the Fourier transform on quadratic

extensions of F' and the second of which is a relatively easy operation.
e Define a Fourier transform .# )((2 )w on the space of cuspidal functions H(X).
e Relate the two Fourier transforms.

o Use F )({2 1# to define a family of operators &/ on H(X) and determine the structure of H(X)

as an «/-module in terms of the representation theory of G.

The first two goals are accomplished in §4.2 while the final three are accomplished in §4.4. The
odd numbered sections §4.1 and §4.3 carry out a number of rather routine calculations. The reader

should keep the following diagram in mind throughout the section.

Recall that B is the matrix algebra My(F), X is the space of monic degree two polynomials over F,
X is the disjoint union of the four degree two étale algebras over F', p and 7 are the characteristic

polynomial maps and ¢ is a chosen map which restricts to an algebra injection on each component

of X.
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4.1

Measures and push-forwards

(4.1.1) The purpose of §4.1 is to define measures on the spaces B, K, K+, X and X’, push-forwards

along the maps p and 7 and compute all of these things explicitly. Here is an overview of the section:

In §4.1.2 and §4.1.3 we introduce a certain class of bases of B and K which we call standard

bases.
In §4.1.4 we give an elementary change of variables formula that we will often need.
In §4.1.5 we define the push-forward p..

In §§4.1.6-4.1.10 we define and compute the measures on B, K, K+, X and X. The measures
on the first three spaces are just Haar measures, on the latter two they are defined in a

somewhat ad hoc manner, but are motivated by the Weyl integration formula.

In §4.1.11 we define the map 7. Roughly, 7, (f) is defined to be the Radon-Nikodym derivative

of . (fdup) with respect to dux.

In §84.1.12-4.1.15 we relate 7, to certain orbital integrals and 7*7, to certain averaging oper-

ators.

In §4.1.16 we produce natural liftings of functions on X to functions on B. These will be

important when we factor the Fourier transform.

(4.1.2) By a standard basis of B we mean a basis 1, i, j, k of B as an F-vector space where:

1 is the unit of B.

i, 7 and k anti-commute.

i, j and k square to elements of F'.

ij = k.

We will typically write 2 = o, j? = 8 and k? = v. The above conditions imply a3 = —v. Given a

standard basis and an element x of B we write x = x¢ + ix1 + jxo + kzs.

(4.1.3) Let K be a degree two étale algebra over F. By a standard basis of K we mean a basis 1, 4

of K as an F-vector space where 1 is the unit and i? belongs to F. We will typically write i2 = .

Given a standard basis and an element z of K we write x = g + iz.

18



(4.1.4) Before continuing, we give the following elementary change of variables formula, which we

shall have often have the occasion to employ.

Proposition. Let f € ./(F). Then
_ L+n()
[ r@aa = [ revm) aFia
where f(x£yz) = 1(f(v/z) + f(—/Z)) and dz is a Haar measure on F.

(4.1.5) For a function f on X we define P+« f to be the function on X given by

(p+f)(z) = Z fly
p(y)==
Of course, we have p,p*f = f. In general, if f belongs to 5”()?) then p, f will not belong to .7 (X).

However, since p|g : )?reg — Xyeg 1s étale, p, does induce a map
reg
Ds t Freg(X) = Frea(X).

In fact, p. and p* give mutually inverse isomorphisms between .#u (X X) and Freg(X) where the

former space is the subspace of %eg()? ) consisting of those functions which are Galois invariant.

(4.1.6) Recall that dup is the Haar measure on B which assigns volume 1 to any maximal order.

We now compute it in a standard basis.

Proposition. Identifying B with F* via a standard basis, we have
dup(z) = \ozﬁﬂF dxodzidredrs

where dx; = dup(x;) are normalized Haar measures on F.

Proof. We first remark that the proposition is true for a standard basis 1, i, j and k if and only if
it is so for the basis 1, ai, bj, ck where a, b and ¢ belong to F'*. Similarly, it is true for 1, 4, 7 and
k if and only if it is for 1, oic™!, ojo~! and ocko~! with ¢ € BX. We are thus free to scale and
conjugate our basis.

Consider the case where one of «, 3 or 7 is a square. It suffices to treat the case where « is. By

rescaling, we may then assume o = 1. It is then not hard to see that we can conjugate our basis so
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that

From this, we see that an element z + ix1 + jxo + kxs belongs to My () if and only if each of
Zo + T, To — Z1, T + T3, B(xe — x3)
belongs to Op. As the measure dxgdzidradas gives this set volume |3 \;1 it follows that
|8|pdxodxidrodas

is the normalized Haar measure on B. Finally, observe that |8|p = |aﬁ’y|;/2. The proposition is
thus established in this case.
Now consider the case where «, @ and « are all non-squares. It follows that they must all

belong to the square class of —1, which is therefore not a square. By rescaling we may then assume

a = [ =v=—1. It is then not hard to see that we may conjugate our basis so that
1 a b b —a
= ’ j = ’ k=
-1 b —a —a —b

with a? 4+ b?> = —1. From this, we see that an element 2 = x¢ + i1 + j22 + kxs belongs to My(OF)

if and only if each of

To + axo + bxs, z1 + bxro — axs, —x1 + bxy — axs, To — axo — bxg

belongs to Or. Clearly, this is equivalent to each of

o, Ty, axs + brs, bry — axs
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belonging to 0. Now, note that a and b must each have valuation 0. Therefore,

azxs + bxs and bxs — axs belong to O
< a%x5 + abxs and b%zs — abxs belong to O
— (a2 + b2):r2 and abzxsz belong to O

<= x5 and z3 belong to Op

We have therefore shown that x belongs to Ma(OF) if and only if each z; belongs to &r. Thus
dzodxidrodrs is the normalized Haar measure on B. Since \aﬁﬂ}/ ? =1 this proves the proposition.

O

(4.1.7) Let K be a degree two étale algebra over F. We have defined dug to be the Haar measure
on K which gives volume 1 to the unique maximal order Ok of K. We now compute this measure

in a standard basis.

Proposition. Identifying K with F? via a standard basis we have
1/2
duk(z) = |a/dk| g “drodr,

where dx; = dup(x;) are normalized Haar measures on F'.

Proof. We have Ok = Op + cOpi where ¢ = \/dg/a. Under the isomorphism K = F? the lattice
O corresponds to O @ cOp. The measure dzodr; on F? gives this lattice volume |c|z. Therefore

the normalized Haar measure duyx on K corresponds to the measure |c\;1d$0da:1 on F2. O

(4.1.8) Let K C B be a degree two étale algebra over F' and let K denote its orthogonal comple-
ment. There is a unique Haar measure dug . on K such that dup = duxdpg.. We now compute

dpg 1 in coordinates.

Proposition. Let 1, i, j, k be a standard basis for B such that 1, i is a standard basis for K. Then

j, k is a basis for K+ and under the resulting identification K+ = F? we have
dpgce = |dg fy| ) dwsdas

where dx; = dup(z;) is a normalized Haar measure on F'.

Proof. This follows immediately from the computations of §4.1.6 and §4.1.7. O

21



(4.1.9) We now define a measure dux on X by
dyix = | A A dare (v)dpar (1)
where we have identified X with F? via (¢,) and A is given by:

2 A has even valuation
A(A) =

¢"/? +¢='/2 A has odd valuation

This formula may look somewhat arbitrary. However, we shall see that it is quite a natural choice
of measure. Perhaps the most convincing reason for this is that the push-forward measure 7. dup: is
given by the same formula — see §5.1.8. (One cannot form the push-forward 7.dpp since the map

7, is not proper.)

(4.1.10) We define a measure on X by dug = p*dux. Thus, by definition, we have

/deuX:/X(p*f)dux

We now compute this measure in coordinates.

Proposition. We have dug|x = 3(1+ dg)|A|pdus. Ezplicitly, this means that for f € S (X) we

have
/N fdug =531 +dK>/ N
X % K

where the sum is the four degree two étale algebras K.

Proof. We first compute (pg)«dug. Pick a normalized basis for K so that a = di. For f € (X))

we have

1+n(A/dk)

Prf)du =/f2m,x2—d 22)dzodz :dfl/ft,u
/K(K)K F2(00 K1)01 KFQ()|A/dK‘}:/2

where the measures above are the normalized Haar measures on F'. In the first step we have used

§4.1.7 and in the second §4.1.4. Replacing f by |A|;/2f gives

d}</2/K(p}‘<f)lA\}/2duK = /F Ft, )1 + (A /dg))dvdt
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Summing over K and using the fact that >, (1 +7n(A/dk)) = 2 gives

/ Ft,v)dvdt = QZdl/z/ HIA da.

Replacing f by f|A|1/2 A(A) and using the fact that for (¢,v) € impx we have A(A)d}} A2 =1+dg
gives

/deX*QZ (1+dgk) / (Pk HIA|F duk .

Finally, replacing f with p,.f gives

/ fdpg = % (1 ‘*‘dK)/K(P*KP*fNA\F dp.

The result follows since pjp.f and f have the same integral over K. O

(4.1.11) We now study the push-forward map 7, on functions. For a measurable function f of
compact support on B we can form the push-forward measure 7. (fdug) on X. It follows from
general theory that this measure is absolutely continuous with respect to dup(t)dur(v). It follows
immediately from this that m.(fdug) is absolutely continuous with respect to dux on Xy, We
define 7. f to be the function on X, given by the Radon-Nikodym derivative of m,(fdug) with

respect to dux.

Proposition. We have the following:
1. If f belongs to Sreg(B) then m.f belongs to Freg(X).
2. If f belongs to .7 (B) then m.f belongs to L*(X).

3. For f € /(B) and g € S (X) we have (m.f,9)x = (f,7"9)B

4. We have
1 1+
(m )t v) = NAA f( t+$11+$23ifk)#dx1dx2
A2 AR) Jr Jul

where 1, i, j, k is a standard basis for B, dxy and dzs are normalized Haar measures on F

and
 A/A— ot — B3
5 .

Proof. If f belongs to #;cg(B) then 7, f clearly has compact support; it is locally constant because
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T ¢ Breg — Xyeg 1s smooth. This proves (1). For (2) note that . f can be written as |A|;1/2f’ where

f is a continuous function of compact support on X. Thus |, f|2dux = A(A)|A[?|f/|2dvdt and

the result follows from the local integrability of |A\I_,1/ % on F2. As for (3), we have

(o fog)x = /X o) ) () dpix () = /X o) (m (fdus)) ()
- /B (") (@) F @)y () = (f,7°9) 5.

Finally, we come to (4). Let f be a function on B and g a Schwartz function on X. We then have,

by §4.1.6,

(f,m9,)B = qlaﬂv\}” /4 flxo + iz + jao + kxs)g(t, v)dxodridradas.
F

We now apply §4.1.4 to change the x3 integral to an integral over v. The result is

Oéﬁ 1/2 1 . . 1+ 77(11,)
q|—= / f(5t+ iz + jao £ Vuk)g(t, V)deldxgdtdy
v e ul ¢
where u is as in the statement of the proposition. As a8 = —< the absolute value in front of the

integral is equal to 1. We thus have

(fomtge = [ E0glt)AD)AL dtdy = (' 9,)x

where
fltv) = 7/ F(3t+ iz + jos £ Vuk)———dridxs.
AQ)AL? e Jul;?
We have thus shown
(mefr9)x = ([ 9)x
for any g, which proves m, f = f’ O

(4.1.12) We now recall the Weyl integration formula for G. First we define some measures. We
define dug = | - |§1d,u3. It is a Haar measure on the group G. If K is a degree two étale extension
of F and T its group of units then we put dur = | - \I_(lduK. Finally, if we embed K into B so

that 7' can be regarded as a maximal torus of G then we put dug,r = duc/dur. It is the unique
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left-invariant measure on G/T having the property that

/G F(9)duclg) = /G B /T F(gt)dpr (dpc ()

for any f € (G). The Weyl integration formula is then the identity

[rwman=i5f ][22

valid for any f € .“(G), where the sum is over a set of representatives of the conjugacy classes of

dott|, flgtg " dpc r(g)dur(t)

maximal tori in G. We can also phrase the formula in a more additive manner, as follows:

/f )dpp(z) = QZ/ /G/ 2)|pf(oxo™")dugr(o)duk ()

where f belongs to .7 (B), the sum is over isomorphism classes of degree two étale algebras over F’

(regarded as embedding into B) and T' = K *.

(4.1.13) We now give a formula for 7, as an orbital integral.

Proposition. Let f belong to #(B), let x be a regular element of G, let K be the mazimal com-

mutative subalgebra of B containing x and let T = K*. Then

1

(7 f)(@) = 1+de /T

flozo™Ydugr(0).
Proof. Let g belong to .(X). Then

(g, f)p = /B (") (@) f(2)dpu ()

=2 /K |A<x>F<p;(g><z>[ f(owo™ Y dpc,r(o) | dux ()

G/T

where in the second step we applied the Weyl integration formula of §4.1.12 and used the fact that
for z € K C B we have (7*g)(cxo™1) = (p}g)(x). On the other hand, by §4.1.10 we have

(g7 f)x = / o) (m f) () dux ()
X
4 0+ i) [ 8@ ieo) (07 7. ) ) (0).
K

Here we are using the fact that for x € K C B we have (pm. f)(z) = (n*m.f)(z). Comparing the
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two expressions gives the stated result. O

(4.1.14) We now give an improvement of the previous formula at the elliptic elements. First some
definitions. We write Z for the center of the group Gj it is identified with F*. Welet duz = ||z dur

and we let dug/z be the quotient measure dpg/dpz. Our formula is then:

Proposition. Let f belong to .#(B), let x be a regular elliptic element of G, let K be the mazimal

commutative subalgebra of B containing x and let T = K*. Then

(mm f)(z) =c flozo™Y)dug)z(0)
G/z

where ¢ = 1q/(q + 1).

Proof. We have
/ flozo™)dpez(0) :/ floxo™ ) dur)z (0" )dpg (o)
G/Z G/TJT/Z
= (14 dg) Vol(T/Z) (7" 7. f) ()
where in the second step we used §4.1.13. We therefore need only show

14q71
1+dK’

Vol(T/Z) =2 -

Now, if K/F is unramified then K*/F* = Uk /Up and so Vol(T/Z) = Vol(Uk)/ Vol(Ufr). By our
normalizations, Vol(Ux) = 1 — ¢=2 and Vol(Ur) = 1 — ¢~! and so we have the stated result. If
K/F is ramified then Uy /Up has index two in K* /F*. Thus Vol(T/Z) = 2Vol(Uk)/ Vol(Ur). As
Vol(Uk) = Vol(Ur) = 1 — ¢~ we have the stated result. O

(4.1.15) Let U be a compact open subset of G/Z. For a function f on B we put
avgy f = c/ [ dpcz(0).
Gz

Here f° is the function z — f(cxo~!). We also define

waf=c [ A7 (o)

We regard avg f as a function on the regular elliptic elements of B and extend it by zero to all of B.

The integral defining avg f will not exist for all functions f; it does, however, for all f in #.(B).
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In fact, for f € .o(B) the results of §4.1.14 gives avg f = 7* (7, f). One easily verifies that avgy; is

adjoint to avgy—1 and that avg is self-adjoint (on .%¢(B)). Furthermore, we have:

Proposition. Let f belong to .#;o(B) and let W be a compact subset of By.. Then for U sufficiently

large we have (avg f)(x) = (avgy f)(x) for allx € W. Thus avgy f — avg f pointwise as U — G/Z

Proof. The map i : G/Z x W — @ given by (0,2) +— oxo~! is proper since W is a compact set of
regular elliptic elements. Thus i~!(supp f) is a compact subset of G/Z x W and so we can pick a

compact subset V of G/Z such that V' x W contains it. We then have

flozo g z(0) = / f(ozo)dug,z(0)
G/Z 1%

for all x € W. Thus (avg f)(z) = (avey f)(z) whenever U contains V. O

(4.1.16) We now show how one can lift regular Schwartz functions on X to regular Schwartz
functions on B. This is one of the key ingredients that goes into the factorization of the Fourier

transform we will give later in this section.

Proposition. Let K C B be a degree two étale algebra and let f belong to Freg(K). For any
sufficiently small compact open set a of K+ containing 0 we have

2
T (f ® 6a) = m|A|El(pK)*f-

Here 04 = V%@)X“ where x4 1s the characteristic function of a and Vol(a) is the volume of a with

respect to dpg ..

Proof. Pick a standard basis for B so that 1, ¢ is a standard basis for K. Take a to be the set of
xr € K+ with 25 € p™ and 23 € p™, for fixed integers n and m. (It suffices to consider such sets for

a.) We have Vol(a) = |dKﬁv|y2q’"*m. Using our formula for 7, from §4.1.11, we find

1+ n(u)

1/2
Jul

(mu(f @ ba)(£,) = —

- Vol(a) A(A) dzidxs

TA|1/2 /F2 f(%t+ix1)Xp"(x2)XpM(\/ﬂ)
F

where
AJ4 — az? — B3
u = .
Y

Denote by I the integral in the above expression. We now use §4.1.4 to change variables so that we
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integrate over u instead of z;. Putting

v=A/da + Bu — fa " 23

we obtain
. 1+n(v)1+nu
I= |5|F/ F(5t % iv/0)Xpn (2) xprm (VO) 17/(2) ’]/(z)dudxg.
2 |v] 3 |ulp

Pick an integer N such that f(z + iy) only depends on y modulo p?. Since f is regular, f(z + iy)
will vanish for y € p/V. We now take n and m so large that Ba~!p?" C p?V and Bp™ C p2V. We
thus have v = A/4a modulo p*V. Thus if A/4a belongs to p?V then the integral will vanish. This
shows that 7.(f ® d4) has regular support. Now, if A/4a does not belong to p?V then we see that
v is a square if and only if A/4« is and also |v|p = |A/a|p. Thus if A/4a is not a square then the
integral vanishes. This shows that 7. (f ® d4) is supported on im pg. Now assume that A/4« is a
square, so that v is as well. The value of f(%t +4y/v) is then independent of u and x5 as they vary

in p?™ and p". We thus find f(3¢ +iy/u) = ((px)«f)(t,v). Therefore

2Bl )
= o - [ @2)m (V) L e

The x5 integral here is just ¢7". The u integral is easily evaluated and found to be ¢=™. We thus

obtain
2 —n—m
I = \qu

r

Putting this into our formula for (7.(f ® d4))(¢,v) and using our formula for Vol(a) gives

1 1 2YBlrg

T (f ®0q) = ’ (PK)«f
ADIAE? Jdxpyl g |A el
which after simplification gives
Tu(f ®0a) = ——75——(PK )+ [-
U AL
Finally the identity A(A)d}(/2 = 1+ dk gives the stated result. O

Corollary. Let f € See(K). For any sufficiently small compact open set a of K+ containing 0 we

have

(pK)*f = %(1 +dK)7T*(|A|Ff®§a)'
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Proof. Apply the proposition to |A|p f, which belongs to #eg(K). O
Corollary. The map . : Freg(B) — Freg(X) is surjective.

Proof. Tt suffices to show that for f € .7¢z(K) and a a sufficiently small subset of K © the function
f ® 6q belongs to Seg(B). This was essentially proven in the course of proving the proposition and

in any case is easy enough that it is left to the reader. O

4.2 The Fourier transform % )((1 zb

(4.2.1) The purpose of §4.2 is to define a Fourier transform on the space of Schwartz functions on

X with regular elliptic support and prove a factorization result for it. Here is an overview:
o In §64.2.2-4.2.4 we recall the Fourier transforms on B, K and K.

e In §4.2.5 we establish the fundamental result that allows for the definition of the Fourier
transform. This result says, roughly, that the Fourier transform commutes with the operator

m*m, on the space of Schwartz functions on B with regular elliptic support.

e In §4.2.6 we define the Fourier transform 35)((1)1/) by the formula ﬁ)((lzp(ﬂ*f) = 1 (FpB,yf) where

f is a Schwartz function on B with regular elliptic support.

e In §4.2.7 we factor the Fourier transform .%# )((1311 as p,.& ;?, where .7 ;} is essentially the usual
Fourier transform on the various K’s and p, is some operator which has a fairly simple form.

This factorization results from taking the Fourier transform of the identity given in §4.1.16.

e In §4.2.8 we compute an explicit formula for p,. It is this formula which we will ultimately

use in the comparison step.

(4.2.2) Let ¢ = ¢F be a non-trivial additive character of F'. Define 15 to be the additive character

of B given by ¢ o trg,p. For a function f on B we put

(Fpuf)(@) = g2" /B F) 05 (y)dus ().

Here m = m(v) is the largest integer for which ¢ is trivial on p~™. It is a standard fact (and easy
to prove) that .#p , induces an isomorphism . (B) — .(B) and can be extended to a continuous
isomorphism L?(B) — L?*(B). By our normalization, Zp , is self-adjoint with respect to (,)p, an

isometry with respect to (,)p and has inverse ¥ 7,
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(4.2.3) Let K/F be a degree two étale algebra. Define ¢x to be the additive character of K given

by ¥F otrg,p. For a function f on K we put

nngfxx>=q—md%2j;f@nwK0mnduK@n

Again, Zk  maps . (K) into itself isomorphically and extends to a continuous automorphism of
L*(K). By our normalization, .k , is self-adjoint with respect to (,)x, an isometry with respect

to (,)x and has inverse F .

(4.2.4) Let K C B be a degree two étale algebra and let K be its orthogonal complement. For a

function f on K+ we put

(Frce pf) (@) = g md? /m T Y (xy)dug L (y).

As usual, Fg 1, takes (K1) to itself and extends to L?2(K*). The key property of the above

definition is the following: for f € .%(K) and g € .#(K~) we have

Ipy(f®9) = (Fryf) @ (FKri y9)

where f ® g is the function on B given by (z,y) — f(z)g(y), where B is identified with K x K.

(4.2.5) We now give the fundamental result which will allow us to define a Fourier transform on X.

Proposition. For f,g € #.(B) we have

(avg f, FBwa)B = (FByw[,avg g) B.

Proof. We have

—1

W%WmﬁzéﬁmﬁwwﬂﬂzéﬂmﬁaMm%@a%wW%aﬂ

We therefore have

(avey f, FBy9)B = (FBwf avey 9) B-

If we now take U so large such that avg f = avg f holds on the support of #p yg and avgy-1 ¢ =

avg ¢ holds on the support of Fp 4 f then we obtain the stated identity. (It is possible to choose U
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as such by §4.1.15.) O

(4.2.6) We now define a Fourier transform

T S (Xre) = € (Xie)

by gz)((lzl)f = T, (9\3,'¢J?)|X,e where f is any element of e(B) such that mof = f. The following

proposition shows that this is well-defined.
)

Proposition. The map 7 w 18 well-defined. Furthermore, the Fourier transform commutes with

pull-back in the sense that for f € S(X) and g € S1e(B) we have
(T (FXu D908 = (F5u(7f), )5

Here Fp y(m* f) is the Fourier transform of m* f in the sense of distributions.

Proof. Let f and g be two elements of .%(B). We have
(7 f, Foug)n = (Fpuf 7 mg)n = (7 Fpy fomeg) x.

Here we have used §4.2.5 and the identity n*m, = avg on #e(B), c.f. §4.1.15. This shows that if

7.f = 0 then ﬂ*(ﬁgwa) pairs to zero with each element of .7,¢(B), since every element of .7;.(B)

is of the form m,.g by §4.1.16. Thus if 7..f = 0 then m.(y f)|x,. = 0 and so Z\), is well-defined.

Writing f = ﬂ'*f, the above equation and some adjointness relations give

(T f, Ppwg)s = (T (FC) ). 9) B,

which proves the statement about the Fourier transform commuting with 7*. O

(4.2.7) We now prove a factorization result for the Fourier transform. For a degree two étale algebra

K/F let #(K) be the set of functions f in .’(K) which satisfy

/ f(a’:o +ixy)dx; =0
F

for all zyp. In words, these functions have integral 0 on “purely imaginary” vertical strips. The
Fourier transform on K gives an isomorphism Fg y 1 Freg(K) — F(K). We let 5’0()?,311) be
the space of f € .7(Xen) for which f|x belongs to % (K) for all quadratic fields K. It will be
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convenient to have a slight modification of the Fourier transform in what follows. We define the

modified Fourier transform on (K, denoted . ,, by
Fiewf = 307 (A2 +d ) P w(Alpf).

As multiplication by |A|r gives an isomorphism #eg (K) — Feg(K) the modified Fourier transform

still gives an isomorphism F. , : Feg(K) — Fo(K). We let 9’)’? " be the Fourier transform on
) ell,

X gotten from the & Il(ﬂb‘ We now have our main result:

Proposition. There is a unique map P, : 5”0()?611) — € (Xye) such that the diagram

P

P (Xe) —— S (Xre)

L (1)
yxcnvwl l‘gxﬂl’

~ P« 00
Fo(Xen) — = € (Xe)

commutes. For f € S (K) we have

(Pr )] = mu(f © Xa)

where a is any sufficiently large compact open subset of K. Here (Dy )« is just the restriction of P,

to yo(K)

Proof. The map p, exists and is unique since the arrow labeled % }( - in the diagram is an isomor-

elly

phism. The point of the proposition is the formula for p,. We have

Fxu((pr)«f) = 51+ dg) Fx (1. (|Alp f © b4))

(I +dr)m( Tk ([AlFf) © TPt y(0a))

N|—

In the first step we used §4.1.16 and in the second §4.2.4, together with the fact that Fx ym. =
7.7 B,y One easily verifies that Fx 1 ,(d4) = q_md;mxa/ where a’ is a large compact open. The
proposition follows. O
(4.2.8) We now explicitly compute the map p,.

Proposition. Let f belong to #y(K). Then

J/2

5 V)= — K Lt +in) (A — 4dga? A )dpp (o
((x). ). v) |A|;/2A(A)/Ff(2t+ VI2(A — ddica?, di)dpr(z)
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where i € K is such that i = d .

Proof. Pick a standard basis for B so that 1, i is a standard basis for K. We take this basis so
that a = dg, 8 = —dk and v = d%. Let a be the open set of K consisting of those = for which

To € p~™ and x3 € p~" for large integers n and m. Our formula for 7, from §4.1.11 then gives

(mo(f @ xa))(t¥) = / F(3t + i) xp—r (22)Xp-r <f>1|+|?}2>dx1dx2

with
A/4 — ar? — ﬂxQ
Y

Let t and v be given. We are free to enlarge n and m as this will not change the value of the integral.
The condition that f(4t + iz1)x,-n(22) be non-zero puts a bound on |u|p (since f has compact
support). Thus by taking m to be sufficiently large, the non-vanishing of f(%t +iw1)Xp-—n (T2) wWill
imply \/u € p~™. We can therefore remove the x,-m (y/u) from the integrand without changing the
value of the integral.

Now, for u to be a square it must be that |3z3|r < |A/4 — az?|F as —3 = dx is not a square.
Thus if u is a square then |3z3|p < max(|A|r, |az}|r). As f(5t+ iz;) vanishes for |21|F large, we

n

see that the condition that u be a square forces x5 to belong to p~" if n is sufficiently large. It
follows that we can pick n sufficiently large so that u being a square implies x5 € p~". Therefore
we can remove the x,-n(x2) from the integrand without changing the value of the integral.

We have thus shown that

(mo(f © xa))(t.7) = o J i) ||"/< L2008 41 i

|A|1/2
The x4 integral is now equal to |b|;1/2I2(a,b) (see §3.2) with

A/4 — ax? _ A — 4dga?
v 4d3. 7’

p

b=-2=d!.
v K

a =

We thus find (using some basic properties of I5)

1/2

(Br)eF)(t,v) = / (3t + i) (A — ddga?, dic)de,

which is the stated result. O
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4.3 The cuspidal space H(X)

(4.3.1) The purpose of §4.3 is to compute push-forwards and inner products of matrix coefficients

of cuspidal representations and introduce the cuspidal space. Here is an overview:

o Is §4.3.2 and §4.3.3 we introduce the matrix coeflicients ¢ , ,~ of cuspidal representations and

recall the Schur orthogonality relations.

o In §4.3.4 we introduce certain truncated matrix coefficient functions ¢ , =« » and prove a Schur

orthogonality type result for them. The ¢ 4 4+ n, unlike the ¢ , .+, have compact support.
e In §4.3.5 we recall the definition of the character of an irreducible admissible representation.

e In §4.3.6 we relate the push-forwards of matrix coefficients to characters. The result is that
T (w0 n) is given by d-1 (v,v*)p ,, where d is the formal degree of 7 and ¢ ,, is a certain

truncation of the character of 7.
e In §4.3.7 we prove a Schur orthogonality type result for the ¢x ;.

e In §4.3.8 we define the space H(X) of cuspidal functions on X as the L2-closure of the space

spanned by the ¢ .

e In §4.3.9 we give a characterization of H(X) which is independent of representation theory.

(4.3.2) Let m be an cuspidal representation of G (by which we will always mean an irreducible
admissible representation which is cuspidal). Let V be the representation space of m and V'V the

space of the contragredient 7. For v € V and v* € V'V we define

¢7r,1),1;* (g) = <7T(g)’l), 1)*>.

The function ¢ 4 o+ is called a matriz coefficient of w. As m is cuspidal, such functions have compact
support modulo the center. The matrix coefficients satisfy the Schur orthogonality relations, which
we now recall. Let m; and w9 be cuspidal representations whose central characters are inverse to
each other. Then ¢z, vy vt * Pryvy,0; transforms trivially under the center and defines a Schwartz

function on G/Z. We then have

<¢7T1,U1,U{ ) ¢7T2,v2,1)§ >G/Z =0
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if m; and 7o are not contragredient to each other. If m; and 7y are contragredient then

(Gry 1,07 Prava,vg )Gz = Ao, (U1, 02) (U], 03).

We now explain the right side. First, d,, is a non-negative real number, called the formal degree of

-1

m. Fix i i Ty — . Vi i i Ty — . i
Fix an isomorphism « V. We then have an isomorphism (o 4 The right

side of the above equation is to be interpreted as

dz,! (1, av2))(v], (@) 71 (v3))

This is independent of the choice of a. If 75 is equal to the contragredient of m; then one can take

« to be the identity map and the above formula looks a bit more pretty.

(4.3.3) Now let m be a unitary cuspidal representation. Let (,) be the invariant Hermitian form on
the representation space V of m. We always use the convention that such forms are linear in the

first variable and conjugate linear in the second. For v and v' in V' we define

D0 (9) = (w(g)v,0).

As (—, ') is an element of the contragredient of V' the above is just a matrix coefficient of w. However
it will be convenient to use this kind of matrix coefficients at times. Schur orthogonality for these

functions can be written as follows: if w1 and w9 have the same central character then

/ /
(¢7T1,v17v'1’¢772ﬂ)2,v§)c/z =0

if m; and 7o are not isomorphic. Furthermore,

(QS;,vl,vi ’ ¢;,v2,vé)G/Z = d;l(vlv ’UQ)(’UIQ’ Ui)

In particular,

H(b{n',v,v' ||é/Z = d;1|(1}7 UI)P
These orthogonality relations easily deduced from the ones in §4.3.2.

(4.3.4) Let 7 be a cuspidal representation of G on the space V. For v € V, v* € V¥V and n € Z

we let ¢z o+ be the function which is equal to the matrix coefficient ¢ , .+ on the locus G, in
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/
v, \n

G where the determinant has valuation n and 0 off of this locus. For unitary m we define ¢
in the analogous manner. These belong to the Schwartz space .(B). Recall that £ : G — {£1} is
the character g — (—1)v2(d¢t9)  We call a representation 7 even if 7 is equivalent to £ ® m and odd

otherwise. We now have the following:

Proposition. We have

<¢7r1,v1,v{,n7 ¢7f2w2ﬂ/§,m>G =0

unless n = m and m is isomorphic to an unramified twist of 75 . We have
(B ,01,01,ms v va,wp m)a = 3 (1= a1 )d o1, v9) (v, v3)

if ™ is odd, while

(D 1,070 O oo vgm) e = 3 (1 — a1 )d (o1, v2) (vF,03) + (1) (Avy, v2) (A 0], vax))
if T is even, where A : € @ T — T is an intertwining operator with A2 = 1. Similarly, we have
(D1 01,000 Pres 03 t,m )G = 0

unless n = m and T is isomorphic to an unramified twist of mo. For w unitary cuspidal we have
(D an s Do mp )G = H(1 = g1 (01, 02) (0, 1)

if ™ is odd, while

(¢;,U1,U1,na ¢>§T,1}2,U;,n)c =31 — ¢ ")d; " ((v1,v2) (vh,v]) + (—1)"(Avy, va) (Avh, vf))

if mis even and A: £ ® T — T is an intertwining operator with A% = 1.
Before proving the proposition we need a lemma.

Lemma. Let f be a function on G which is supported on G, and invariant under Ugp C Z. Let f'

be the function on G which is equal to f on G, invariant under Z and vanishes off of G, Z. Then
[ ftne==a [ fducyz.
G G/z
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Proof. We have
/G fdpa = /G . /Z F(92)duz(=)dpic 2(9).

One finds that
| Ha2)duz(z) = Vol (a),

which proves the lemma. O
We now prove the proposition.

Proof of proposition. Put f = ¢r, v, w1 n * Pryvg,0g,m- Note that

<¢7r1,v1,vf,nv¢ﬂ2,1}2,v§,7rL>G :/ .fd,uG
G

Now, f is identically zero unless n = m. Thus assume n = m. If the central characters of m; and
o, restricted to Up C Z, are not inverse to each other then f transforms by a non-trivial character
under Up and its integral over G is zero. Thus assume that wr,wr, = |- |5%. We now have that f is

supported on G,, and invariant by Ug. Let f’ be the function used in the lemma. One finds that

f’(g) — (H(-QD”S(Q)) q—ns/2| detgl;S/Q%I,vl,v; (9)¢w2,v2,v; (g)

where here £(g) = (—1)¥2(d¢t9) The lemma now gives

<¢7r1,v1,vf,nv ¢WQ,v2,v§,n>G = %(]— - qil)qins/z (<¢‘,|;5/2ﬂ.17,,hvi« ) ¢7F27v2,71§ >G/Z

+ (_1)n<¢|~|;5/2§7r1,v1,vi‘ s ¢7T2,v2,v§ >G/Z) .

If 71 is not an unramified twist of mo then the Schur orthogonality relations of §4.3.2 show that both
terms on the right vanish. Now take m; = m and m = 7", so that s = 0. The first term in the
parentheses is d_1(vy, v2) (v, v3). If €@ # 7 then the second term vanishes; otherwise it is equal to
(—=1)"d Y {Avy, v2)(AV v}, v3) where A is an endomorphism of 7 satisfying A(g)7(g) = £(g9)7(9)A(g)

and A? = 1. This gives the stated formula. The proofs for the ¢’ go in the same way. O

(4.3.5) Let 7 be an irreducible admissible representation of G on a vector space V. For a Schwartz

function ¢ on G we define an operator 7(¢) on V' by

(v = /G o(9)m(g)v duc(g).
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It is not difficult to see that the operator m(¢) has finite rank and thus a well-defined trace. There is

a unique continuous function X, defined on G,¢g, called the character of m, which has the property

tr ﬂ-(d)) = <¢a X7T>G'-

It is easily seen that x, is conjugation invariant, and thus defines a continuous function on X,eg.

(4.3.6) Let m be a cuspidal representation of G and let n be an integer. We define ¢ ,, to be the
function on X, which is equal to x, on the locus X, , where N has valuation n and 0 off of this
locus. Note that ¢, by definition, vanishes on regular non-elliptic elements of X. We now relate

this function to the matrix coefficients of .

Proposition. For a cuspidal representation ™ we have
T (P 0,0 n) = cd- (v, V)P -
Similarly, for a unitary cuspidal representation m we have
(D0 n) = ' (0,0) b .

Here c = 1q/(q+1).

Proof. We first show that m,(¢x 4,0+ n) vanishes on regular non-elliptic elements. For this, it suffices
to show (T*mu@r v+ n)(t) = 0 for ¢ a regular element of the group T of diagonal matrices with dett
of valuation n. Let IV be the group of upper triangular unipotent matrices and let K be a maximal

compact subgroup of G. If f is a compactly supported function on G/T then

/| = [ [ swnyina

for suitable Haar measures dk and dn on K and N. We thus find

(7r*7r*¢,r’y,v*7n)(t):/K/N<7r(kntn_1k_1)v,v*>dndk.
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a 1 =z a (a—0bx
Writing ¢ = and n = gives ntn~! = . We may thus write
b 1 b

(7r*7r*¢ﬂ7v7v*7n)(t):/ A (v*)dk

K

with

The function v* +— Ag(v*) defines a linear map VV — C which is invariant by kNk~1. Thus
v* > Ag(v*) factors through the Jacquet module of V'V which is zero since V'V is cuspidal. We thus
find that Ag(v*) =0, which proves that (7*T.¢x 4 0.n)(t) = 0.

We now need to determine . (@ v.0+,n) 00 Xen. Of course, it is supported on the locus where N
has valuation n. Let ¢ be a Schwartz function on B whose support is regular elliptic and contained

in the locus where the determinant has valuation n. We then have

(Ta(Pr0,0%n), T(D)) X = (P v,0%, aVE(D)) B

where we have used §4.1.15 to replace n*m.¢ by avg¢. Let U be a compact open subset of G/Z.
Then

(G avEy (B)5 = /U /B (m(@), v d(owo ™ )dpup (x)dpcy 2(0)

= Cq72

" [ [ waa)o @) ole)dno(a)duc (o)
U
=g [ (w(@)n(o)o.x ()0 de2(0)
U
where ¢ = 2¢/(q+1). The factor of g~2" comes from replacing dup with dug = | det |*dup. Pick a
basis v; of V and let v} be the dual basis of VV. (The dual basis of V belongs to the contragredient,

rather than the dual, because some twist of V' is unitary.) We have

and so
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We thus find

<¢7T,’U7’U* ) anU(¢)>B = Cq_zn Z<W(¢)Ui7 ’UJ*> /U (bﬂ',v;u;‘ (U>¢T(V,’U*7’Uj (U)d,uG/Z (0>

The quantities above are independent of U for U sufficiently large, and equal to the corresponding

quantity with U changed to G/Z. We thus find

<7T* (gbﬂ’,v,v*)» Tk (¢)>X = cq—Zn Z<7T<¢)’Uia U;><¢7r,v,v;‘ 5 ¢7Tv,’u*,’l]j>G/Z
= ez (o, 0%) S (@)on, o) o, 0])
= g~ d (v, 07) Y (m(d)vi, vf)

= cq~ " d N (v,v") tr7(9)

= cq~ " (0,0%) (Xr, O

In the second step above we used the Schur orthogonality relations of §4.3.2. As ¢ is supported
on the set where the determinant has valuation n, the last line is not changed if we replace x,. by

7*(¢r.n). We can also get rid of ¢72" by changing back to the measure dup. We thus find

(e (¢ﬂ,v,v*,n)a T.(9))x = Cd:rl (v,v%) <¢ﬂ-,m T (P)) x -

This now gives the stated result for m,(¢x 4 v+.n). The unitary case goes similarly. O
Corollary. The function ¢, belongs to L*(Xye).

Proof. The function ¢y 4 .., belongs to .%(B) and so its push-forward by 7 belongs to L*(X) by

§4.1.11. O

(4.3.7) We now compute the inner products of the functions ¢ .

Proposition. We have

<¢7r1,n7 ¢7r2,m>X =0
unless n = m and w1 is isomorphic to an unramified twist of 75 . We have
<¢7r,na ¢7r\/7n> = (1 - q—2)q—2n

if ™ is odd, while

(G Orvm) = 2(1 — g 2)g 2"
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if ™ is even and n is even. If w is even then ¢, =0 for n odd. Similarly, we have

(¢ﬂ'17’ﬂ7 ¢‘n'2,m)X =0

unless n = m and w1 is isomorphic to an unramified twist of mi1. For w unitary cuspidal we have
lénnlk = (1 —q*)g™?"

if ™ is odd, while

[ prnlli =2(1 —g72)g™>".
if ™ is even and n is even.

Proof. It is clear that all these inner products vanish unless n = m, so we only work in that situation.
Using §4.3.6 we find

—1 —-1,—2n

cd c g™ "d

<U ’U:; <7T*(¢771,U,v*,n)aXﬂ'2>X = <U U*> i trﬂ-?(gﬁﬂ'l,v,v*,n)
) )

<¢7r1,n7 ¢7r2,n>X -

—2n

where here v and v* are any vectors such that (v,v*) is non-zero. The factor of ¢ comes in

because the pairing (,)x uses an additive measure, while the trace of m(¢) is given by integrating
¢ against y, using a multiplicative measure. Note that in the above we have used the fact that
T4 (Pry w0+ n) vanishes on regular non-elliptic elements, since the character x,, does not vanish on

such elements. Now, let u; be a basis for m, and let u} be the dual basis of 7y . We then have

tr 71—2((72571‘1,1)71;*77;,) = Z<W2(¢ﬂ1,v,v*,n)ui,uf>
= T™,v,v%,n iy : d
Z/Gd) (9)(772(g)u U > e

= § <¢W1,v,v*,na¢w2,Ui7uZ>G

Of course, we can change the ¢r, u, »: in the above to ¢r, 4, ur» Without changing the result. By
the Schur orthogonality relations of §4.3.2, we see that the trace vanishes unless 7 is isomorphic to

an unramified twist of mo. Taking m; = 7 and 75 = 7V, we find

672Gy 0,000) = (1= g7 D (v, w0, uf) = 31— g7 d o, 07)
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if 7 is odd, while we get

672Gy 0,0m0) =3 (1= g7 Y [(v, ui)(v*,u7) + (1) (Av, u;) (A¥07, uf)
(1= ¢ Hdz" (v, 0") + (=1)"(Av, A¥v"))

(1—q d; (v, o)1+ (-1)™)

N|—

=

if 7 is even and A : £ ® T — 7 is an intertwining operator with A2 = 1. Putting this back into our
above formula gives the stated result. The computation for (,)x goes exactly the same. Note that
if £ ® m = 7 then the character of 7 is forced to vanish on elements of G whose determinant has odd

valuation, and this gives ¢, , = 0 for n odd. O

(4.3.8) We now come to an important definition. We define the space of cuspidal functions H(X)
to be the closure in L?(X,.) of the space spanned by the ¢, with 7 a cuspidal representation. We
also define .#°(B) to be the subspace of .#(B) spanned by the ¢ 4 . By our above computa-
tions, 7, carries .°(B) into H(X) and has dense image. Our definitions of the spaces H(X) and
.#°(B) are very representation theoretic. However, one can define these spaces without mentioning
representations. For instance, .°(B) is the subspace of .%(B) consisting of those functions f which

are supported on non-singular elements and which satisfy

/N F(gn)dn =0

for any g € G and any unipotent subgroup N C G. (That this description of .#°(B) is equivalent
to our definition of .#°(B) follows from Harish-Chandra’s Plancherel formula.) We will give a

characterization of H(X) below.

(4.3.9) We now characterize the space H(X).

Proposition. The space H(X) consists of those elements of L?(X,.) which are orthogonal to func-

tions factoring through N.

Proof. Let V be the subspace of L?(X,.) consisting of those functions which factor through the
norm. We first prove the following statement: the functions ¢ ,, with 7 a special representation,
span a dense subspace of V. (Here ¢, is the function on X, which is equal to xr on X, and
0 off this set. We extend ¢, by zero to all of X.) First observe that functions of the form ¢ o N
with ¢ € Z(F*) span a dense subspace of V. By basic Fourier analysis on F'*, we can write ¢ as

a sum of functions of the form ¢, ,, where 7 is a character of F'* and ¢, , is the function which is
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n on wrUp and 0 off that set. Thus the functions ¢, , o N span a dense subspace of V. Now, if 7
is the special representation associated to 1 then x,|x,. = (7o N)|x,. (see the discussion following
[JL, Theorem 7.7]). This shows that ¢, ,, o N and ¢, , agree on X,. and the claim follows.

Now, we have only stated the Schur orthogonality relations for cuspidal representations. However,
they are valid for all square integrable representations. Thus they hold for cuspidal and special
representations. From this it follows that H(X) is orthogonal to V, that is, H(X) C V. We must
prove that this containment is an equality. It suffices, therefore, to show that H(X) @ V is equal to

all of LQ(Xre). In other words, we must show that the ¢,

X,.» &5 T varies over square integrable
representations, span a dense subspace of L?(X,.). To do this, it suffices to prove the following
statement: if f € .(X,e) is orthogonal to all the ¢, , with = square integrable then f vanishes.
We now prove the above statement. Thus let f be given. Let fbe a function on B with regular
elliptic support such that w*f = f. (We can find J? by §4.1.16.) If 7 is an infinite dimensional

principal series representation then

r(f) = (7" (xx)s o = (Xrs /) x =0

since X, has non-elliptic support (see [JL, Proposition 7.6]) but f has elliptic support. If 7 is square

integrable then
7 (f) = (m F)x = Y _(Gnms flx =0

neZ

by hypothesis. We thus see that tr W(f) vanishes for any infinite dimensional irreducible admissible
representation 7 of G. The density of characters (which can be proved using the local trace formula,
see [Vig, §3.1]) implies that the integral of f on any conjugacy class vanishes. We thus see that

f= W*fvanishes, which proves the proposition. O

4.4 The Fourier transform 3@%} and the «7-structure on H(X)

(4.4.1) In §4.4 we introduce a Fourier transform .# )((2 )w on the cuspidal space H(X), use this Fourier
transform to define a family of operators o7 on H(X) and then determine the structure of H(X) as

a module over /. Here is an overview:
e In §4.4.2 we compute the Fourier transform (on B) of our truncated matrix coefficients ¢ 4 v+ n.-

e In §4.4.3 we determine the modulus of e-factors.
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e In §4.4.4 we show that the e-factor of m can be obtained from integrating one of the truncated
character functions ¢, against an additive character. We will ultimately use this result to

determine the proper sign in the Jacquet-Langlands correspondence.
e In §4.4.5 we give some characterizations of even representations.

e In §4.4.6 we show that in certain families of representations the formal degree becomes large.

This is an important input into the results of §4.4.8.

o In §4.4.7 we define the Fourier transform 35)(?)1/} by the formula ﬁ)(?zp(mf) = . (Fp,pf) where

f is a linear combination of truncated matrix coefficients. We prove this is well-defined using

the explicit computations of §4.4.2.

e In §4.4.8 we prove that 9)((1)#) and 9)((2)11} agree on a dense subspace of H(X). This is a very
important result as certain properties are easier to establish for .# )((1)w and others for .# )((2 L,

and this result allows one to transfer these properties. The proof of this result is a bit tricky!
e In §4.4.9 we introduce an operation f — f¥ on functions on X.

e In §4.4.10 we introduce the operators Ay , and the algebra 7 they generate. We also introduce

another algebra of operators .7, which is much less interesting but still needed.

e In §4.4.11 we determine the structure of H(X) as a module over the coproduct &« * 7. It is
semi-simple and multiplicity free. Its simple constituents are in bijective correspondence with

unramified twist classes of cuspidal representations.

(4.4.2) We now compute the Fourier transform on .#°(B) in terms of the spanning set ¢ , o= .

Proposition. We have

yBﬂl)(qﬁmv,v*,k) = 6(%’Tr’,(/))¢|~|;27rv,v*,v,—k—n(w)—Qm(w)

where €(s,m, 1) is the e-factor of m, n(rw) is the conductor of m and m(v) is the largest integer for

which ¥p is trivial on p~™Y) . Similarly, for © unitary we have

—2(n(m m -
yB,w((#ﬁ,v,v’,k) = 6(%3771/))(] 2An(m)+2 (w)Jrk)¢7r,v/,v,—k—n(7r)—2m(1p)

where the bar denotes complex conjugation.
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Proof. Take 7 in Kirillov form (with respect to the character ), so that its representation space is

S (F*). By [JL, Lemma 13.1.1] we have that the Fourier transform of
z — ¢(det z)| det x| (v, 7V (x)v*)

is equal to

z +— ¢/ (det x)| det x| w; * (det x) (m(2)v, v*).

T

Here ¢ is an element of #(F*), ¢’ is 7(w)¢$ where w = and w; is the central character
-1

of m. For a character n of F'* and an integer k let ®; , be the function which is n on @w*Up and 0

of this set. Applying the above formula with ¢ = ®4, 1 gives
¢"(Fpwbrv o) (@) = ¢ (det )| det 2| wt (det 2)dr 00 (@)

where ¢/ = m(w)®y 1. In [JL] it is explained how to compute 7(w) in the Kirillov model by using
formal Mellin transforms. This involves certain power series which are denoted there by C(v,t). For
cuspidal representations, these series have only a single non-zero term. Working through the details

shows that

T(w)Phy = CN)PN () —kwn—

where N (n) is some integer and C'(n) some constant. One can relate the series C'(v, t) to the constants

appearing in the local functional equation. The result is
e(s,wy ) = Cn)g /DN,

Now, by [Cas] one knows that (s, 7,1)) is a constant times ¢V* where N = —n(7) — 2m(z)). It

follows that N(n) = —n(nm") — 2m(+). (Note that w*m = wV.) From this we find
C(n) = 6(8, 777-(-\/’ ¢)q—(s—1/2)(n(nﬂv)+2m(1/f))’
for any value of s. This gives

(W) P,y = e(s, Y, )g CTYDOOTIR2MENG oo

45



Taking n = 1 gives a formula for ¢’. We thus have

qk (gB,wﬁbﬂv,v*,v,k)(x)
:6(37 ﬂ.\/’ w)q7(571/2)(n(ﬂ’)+2m(¢))q)fn(ﬂ’)f%n(w)fk,w (det $)| det x|;1w71 (det x)¢ﬂ',v,v* (x)

=e(s, 7Tv7 w)q—(s—1/2)(n(ﬂ)+2m(¢))q—n(7r)—2m(w)—k¢mv7w,_n(w)_Qm(w)_k(x).

Thus, taking s = 3/2, we find

LQ\B,w ((rbﬂ'v,'v* ,v,k) :6(%7 7.(_\/’ ¢)q72(n(ﬂ)+2m(¢)+k) ¢7r,v,v*,—n(7r)—2m(1/})—k

_ (3
=5 )P 2 e () —2m )k

Changing 7 to 7" now gives the stated result. The identity for ¢’ can be derived from the one from

’
0,0 n

for ¢ by observing ¢ = ¢r yv+,n Where v* = (—,0v'). O

Remark. The proposition shows that the space .#°(B) is closed under #g 4. In fact, one can give a
more conceptual proof of this using the characterization of #°(B) as the space of functions whose

integrals on unipotent cosets vanish. For this, see [JL, Lemma 13.1.2].

(4.4.3) We can now use the fact that the Fourier transform is an isometry to compute the size of

e-factors.
Proposition. For m unitary we have |e(3,m, )| = gn(™+2m),

Proof. As Zp ., preserves | - ||%, we find

H(b;r,v,'u/,k”% = |6(%7 ™, ¢)|2q—4(n(ﬂ')+2m(1/))+k) |‘¢;rv,7j,v’,fk7n(7r)f2m(w) ||%3

We have previously computed these norms (see §4.3.4), but with respect to the multiplicative Haar
measure. Changing to the additive Haar measure, we find ||¢;7v)v,yk||23 =172k (1—g )d (v, v)) %,
if w is odd or 7 and k are both even (the difference between this and the previous formula is the
factor of g2 that is now present). For 7 odd, this gives the stated result. If 7 is even, we take k
to be even. The left side is non-zero, which implies the right side is non-zero, which implies n(7) is

even. The stated formula now follows from the computation of the norms. O

(4.4.4) Define ¢x : X — C by ¢x = ¢F o tr.
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Proposition. We have

6(%7 T, '(!]) = Cd;lq_2m(w) <¢7r,7n(7r)72m(1/))a ¢X>X-

Proof. Observe that n*¢x = ¢p and (f,¥p)p = q2m(w)(93,¢f)(1). Thus

dr
<¢7T,k7wX>X 7C<'U,'U*> <¢7T,1),U*7k'a/l/}B>B
dﬂ_q2m o~
= " 1
c<u,v*>('/3’“’(¢”7”’” #)(1)
d/ﬂ_q2m .
:C<’U7’U*>E(%7ﬂ—7w)<v’v >5k,—n(ﬂ')—2m(w)

which gives the stated result. Here we have used our formula for the Fourier transform, c.f. §4.4.2. [

(4.4.5) We now give some characterizations of even representations.
Proposition. Let 7 be a cuspidal representation of G. The following are equivalent:
1. 7 1is even.
2. EQm=m.
3. ¢r 1k =0 for k odd.
4. n(nm) is even for any character n of F*.

Proof. (1) and (2) are equivalent by definition. That (2) implies (3) is immediate, as we have already
remarked. Now assume (3) holds. Then ¢, = 0 for any character n and any odd integer k. As
€(2,mm, 1) is non-zero, we see from §4.4.4 that n(nm) is even. Thus (4) holds. Now assume (4) holds.

Then by §4.4.4 we have

6(%a 77571—7 1/1) = <¢n§7r,—n(n7r)—2m(w)7 wX>X = <¢7]7r,—n(n7r)—2m,(w)» 1/}X>X = 6(%7 nm, ¢)

as Per i = ¢n i for k even. Since &7 and m have the same conductor, we see e(s, ném, ) = e(s, nm, )
for all n and . Thus, by the local converse theorem [JL, Corollary 2.19], we find £ ® 7 = 7 and so
(2) holds. O

(4.4.6) We now study the behavior of the formal degree in certain families of representations.

Proposition. Letw be a character of F* and let S be a section ofIrraw — Eé,w- Then >~ d% = o,

the sum taken over m € S.
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Proof. We first note that the truth of the proposition is unchanged if we multiply w by the square
of another character. We can and do therefore assume that w is unitary and its restriction to Up is
non-trivial.

Let L2(Xen) be the subspace of L?(X,y) consisting of those functions which transform under
Ur C Z by w. If w is not a square then this space has for a basis the functions ¢, ; with 7 € S.
If w = w? then the functions ®uwo.k» defined to be wg o N on X 1 and 0 off this set, also belong to
L2(Xen) and together with the ¢, form a basis. These statements follow easily from §4.3.9.

Define a function F' : X — C by

F(z) = Nx|;1/ wH(€)x (ex)de. (4.1)

Ur

Here de is the Haar measure on Up with total volume 1. Note that ¢ x (ex) = ¢p(etrx). The usual

evaluation of Gaussian sums shows that
F(Jﬁ) = COw(tr 33)| Nx‘g‘léval(trz),N (42)

where N is an integer and Cj a constant. Let F}, be the function which is F' on X, and 0O off
of this set. The function F}, belongs to L2 (Xcy). For 7 € S a simple computation using (4.1) and

§4.4.4 gives

(¢7r,ka Fk:)X = aﬂ'd’ﬂ'(sk,f’n(ﬂ‘)72m(’¢))

where a, = ¢~ "™ =2mW)e(3 7 3). If w is a square then using (4.2) and the definition of dux (c.f.
§4.1.9) we find

(Dwo,ks Fre)x = qkéo/

wNUR

L, o Oamial? (<) ava

The 1 — n(A) ensures that the integral is really over a subset of Xq. If k£ # 2N then |A| and n(A)
are independent of v and so the integral over the coset of Up is zero, as wq|y, is non-trivial. Thus

(Pwo. ks Fr) x 1is non-zero only for k = 2N and so we have

(725“)0 ,k

szzdwaw b +015k’2N||¢ il
wo,

16kl x
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where the sum is over those 7 € S for which n(7) = —k — 2m(«). Therefore
[ Frll% = Zdi +C - dpon

the sum taken over the same set of 7. (Note |ar| = 1.) Summing over k now gives

Z [Fell% = C2 + Z .

kEZL TeS

The proposition will follow if we can show that the left side is infinite.

We now estimate || Fy||%. Using (4.2) and the definition of dux gives

1—n(A
imtk=cole [ [ awan () avar
W F w F

where dv and dt are additive Haar measures on F. The quantity A(A) is never zero and assumes

only two values. If k < 2N then |A|}r/2 equals qik/ 2. We thus find, under this hypothesis,
I Fell% > Csq"q~+/? Vol(wNUr) Vol(=*Ur) > Caq~ /2.

We therefore see that || Fy||x increases without bound as k — —oo. This proves the proposition. [

(4.4.7) We now define a Fourier transform on the cuspidal space H(X).

Proposition. There is a unique map ﬁ)(?zp : H(X) — H(X) which is an isometry and satisfies
Fx (T f) =m1(Fpyf) for f € 7°(B). Explicitly, we have

2
%((,L(%,k) = 6(%’Tr’¢)¢|~\;27rv,—k—n(ﬂ')—2m(¢)'

Proof. Let S be a set of cuspidal representations such that any cuspidal representation is an un-
ramified twist of exactly one element of S. We can, and do, assume that S consists of unitary
representations. The ¢ with 7 € S then form a basis for H(X) (excluding the ¢ with 7 even
and k odd) and are mutually orthogonal. From this and our explicit computation of 7. (¢r v v k)
(c.f. §4.3.6) one easily sees that the kernel of 7, : .°(B) — H(X) is spanned by functions of the
form Zaiqb,,,%v;,k with Y a;(v;,v}) = 0. Our explicit computation of Fg y(Pr v+ k) (c.f. §4.4.2)

thus shows that this kernel is mapped into itself. It follows that we have a unique well-defined linear
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map

F, m(S°(B)) = m.(S°(B))

given by ﬂ)(?)w(w*f) = m.(Fpyf). Our computation of Fg 4 (Pr,v,v+ k) a0d T (P w0+ k) NOW gives
the stated formula for ﬁ)(?)w(gb,rk) To finish off the proof, it suffices to show that ﬂ)(f)w is an

isometry on 7, (#°(B)). For this, it is enough to show that

(Pr ks B k) x = (fg(?)w (Pmk), fg(f)w (Prr k7)) x

for m,7’ € S. If w # 7’ or k # k' then the left side is zero and our formula for eﬁz)(?)w shows that the
right side is zero. (Here we have used the orthogonality relations of §4.3.7.) We are thus reduced to

showing

2
loricllk = 17, (6ri) X

Assume first that 7 is odd. Then the left side is (1 — ¢=2)¢~2* by §4.3.7. On the other hand,

2
1Z L 6m =1 T )P0 =2 by —2miuy I

:|6(%7 T, lb) |2q—4(k+n(ﬂ')+2m(¢)) ||¢7rv,7k7n(7r)72m(’¢)) ||%(

:|6(%7 T, ¢)|2q74(k+n(7r)+2m(w))(1 — q72)q2(k+n(ﬂ)+2m(w))

=|e(3, m,1p)[2q 2FFnmF2mW) (1 — ¢=2),

This is equal to (1 —¢~2)g~2* by our computation of |e(%, m, )| (c.f. §4.4.3). Now consider the case
where 7 is even. The key point is that n(m) is even by §4.4.5, so that k and —k —n(7) — 2m(¢) have
the same parity. The above analysis of the odd case thus carries over nearly unchanged to the even

case. O

(4.4.8) We now compare the two Fourier transforms we have defined. This is a crucial result in our

proof of the Jacquet-Langlands correspondence.

Proposition. There exists a subspace V C .7 (Xye) N H(X) which is dense in H(X) and for which

FVf=22f forall fev.

Proof. We take V to be the space spanned by functions of the form
Do ge = Ay b — i) b 1

where 7 and 7’ are cuspidal representations with the same central character and k is any integer. We
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must show that ffd(}l) and ﬁé?) agree on V (implicit in which is the statement that V' is contained
in .(Xy.)) and that V is dense in H(X). We first handle the latter task. Assume that V is
not dense in H(X) and let ¢ be a non-zero element of the orthogonal complement. We can write
= hezdow cOp Pw,k Where @, i transforms under Up C Z by the character w and is supported
on Xen k. Each ¢, 1 belongs to the orthogonal complement of V' in H(X), so it suffices to handle
the case where ¢ itself transforms under Ur by a character w and is supported on Xy ;. Extend w

to a unitary character of Z. The map
o —0
Irrg o, — Irrg

is 2-1; let S C Irr&w be a section. We can then write ¢ = > Qr®r k, in a unique way. As

mes
¢r.kll? = (1—g2)g~ 2" and the ¢, j, are orthogonal to each other (c.f. §4.3.7), we see that 3¢ |ax|*
must converge. However, if 7 and 7’ belong to S then

A (o7

0= (6, ®rmrp)x = & = 27
<¢7 s ,k>X dﬂ— dﬂ-’

We thus see that a, = cd, for some non-zero constant c. As the series Zwe g d% does not converge
(c.f. §4.4.6), we have a contradiction. Thus V is dense in H(X).

We now show that & )((1 )1/1 and % )((2 )1/) agree on V and that V C (X,.). Consider the statement

(¥) Given two unitary cuspidal representations 7 and 7’ with the same central character there
exists @ in S °(B) N e(B) for which 71'*(&)) =Dk

It is enough to prove (x), as m.(®) belongs to .#(Xye) and 7. (Fp y(Pr k) computes both
ﬂ)(({zp(fl)mﬂgk) and f)(izp(cbmﬁgk). We now prove (). Thus let 7, 7’ and k be given. To find
® we take m and 7 in their Kirillov form. Thus both 7 and 7/ have for their representation space

the Schwartz space . (F*). Furthermore, if for v; and vy in 7 (F*) we put

(v1,v2) = /FX v (2)02(z)dpp= ()

then (,) is a Hermitian form which is invariant under both 7 and 7’ (see [JL, Proposition 2.21.2]).

Let v be a non-zero element of .(F*). Put

X / /
L0 = 9r vk~ P vk
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Of course, ® belongs to .#°(B). Since the group P of upper triangular matrices in G acts on .7 (F*)
in the same manner under m and 7/, we see that ® vanishes on P. Let K be a maximal compact
subgroup of G and put

~ 1

oL B
EVOI(RK) o2 Vexz/2(Po)

where ¢ = 2¢/(q+ 1). We have

~ 1
@ == [ ! ” - / ’ ’ ’ :| d
(9) cVol(KZ)Z)||v]2 /KZ/Z D m(gyomlg)ok — Pnt o (gyom (gyo ke | Wic/z(9)

and so ® vanishes on P for the same reason that CT)O did. Let g be an arbitrary element of G and

let pg be an element of P. We can write g as kp where k € K and p € P. We then have

B(gpog™t) = B(ppop~t) = 0.

It follows that ® has regular elliptic support since any element which is not regular elliptic belongs
to some conjugate of P. We have thus shown that ® belongs to .7°(B) N .%e(B). Finally, using

84.3.6, we have

7o (B) = o (Bo) = D
c[lv][?
This proves (*) and thus the proposition. O

(4.4.9) Define a map X, — Xy, denoted x +— 271, by (¢,) — (tv~—!,v~1). This map corresponds
to inversion in G if we regard X5 as the set of semi-simple conjugacy classes in G. For a function

f on X welet fV denote the function  — f(z~!). (This function is really only defined on X,.)
Proposition. The map f + |- |p°f is self-adjoint for {,)x and an isometry for (,)x.

Proof. This is a simple computation with dux. O

(4.4.10) For a non-trivial additive character ¢ of F' and a unitary character n of F'* define an

operator
152 —o
Ap s HOX) = H(X), Ay =07 0 1607 1),
Here 7 is regarded as a function on X by composing with the norm. Since |n| = 1, multiplying

)

!'is an isometry; the Fourier transform 9)((21/} is an isometry by §4.4.7 while f — | - \}zf is

by 7~
an isometry by §4.4.9. It follows that Ay, is an isometry. We will see shortly that various Ay,

commute. We let &/ be the polynomial ring over C generated by the symbols Ay ,, so that the
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above definitions give H(X) the structure of an «/-module.

We will need a few more operators as well. For an integer n we define an operator
T,: HX)— H(X)

by letting T3, (f) be the function which is equal to f on the locus where N has valuation n and 0 off
this set. Of course, the T, are idempotent operators. We let .7 be the polynomial ring over C in the
T,,. We have thus give H(X) the structure of a .7-module. The Ay , and T,, do not commute with
each other. We write &/ * .7 for the coproduct of &/ and 7 in the category of non-commutative

algebras. Thus H(X) is a module over this ring.

(4.4.11) We now explicitly calculate the «/-module structure on H(X) in terms of the basis ¢r k.
Proposition. We have

A (P, k) = Ao (T) Pre e () —2m (1)
where Ay (m) = (2, nm, ).

Proof. This is a simple calculation using the formula for .7 )((2 )w(d%k) from §4.4.2. O

(4.4.12) We now determine the structure of H(X) as a (& * .7 )-module. For a cuspidal represen-
tation 7, let V be the closure in H(X) of the space spanned by the ¢ . It is clear that V; does
not change if 7 is replaced by an unramified twist. The main structure theorem we are after is the

following:
Proposition. We have the following:
1. Each Vy is stable under o x 7 and simple as an (& * T )-module.

2. If # and 7' are distinct elements of Hg then Vi and Vi are not isomorphic as (o x T)-

modules.
3. We have H(X) = @ Vy, the direct sum taken over 7 € Irrgy.
In particular, H(X) is semi-simple and multiplicity-free as an (& * 7 )-module.

Proof. 1t is clear from the formula for Ay ;(ér k) given in §4.4.11 that V7 is stable for the action of
of x« 7. Now, let V be a non-zero (& x 7 )-stable subspace of V. Since V is 7 -stable, it is spanned
by the ¢ ; which it contains. Say that V' contains ¢, # 0. If 7 is odd then by §4.4.5 we can pick

71 such that n(7n) is odd. Since m(1)) takes on every integer value as 1 varies, it follows that we can
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pick v so that Ay ,(dr k,) is @ non-zero multiply of ¢ j, for any given k. Thus V = V. If 7 is even
then ko must be even since ¢ 1, # 0. We can therefore pick 1) appropriately so that Ay ,(¢x k) is
a non-zero multiple of ¢ i, for any given even k. Thus V = V. This proves (1).

We now prove (2). Let 7 and 7’ be elements of Hz; and let F': V, — V. be an isomorphism of
(o7 * T )-modules. It suffices to show m = 7’. Since F' is J-linear, we have F(¢r k) = arPr i for
some scalar ay. Using the o/-linearity of F, we find that n(nr) = n(nn’) for all n and that

Ay (7')

Ok —n(nm)—2m(y) = Ay () Of-

First consider the case where 7 is odd. The above equation then implies that a; = ab® for non-zero
constants a and b. Scaling F' by a~' and replacing 7’ by an unramified twist determined by b, it
follows that we can take the a; to all be 1. This shows that Ay ,(7") = Ay n(m) for all n and .
Combining this with the equality n(nm) = n(nz') shows that e(s,nm, ) = e(s,nn’y) for all n and
1. The local converse theorem [JL, Corollary 2.19] now implies that 7 = 7’. The case with 7 even
is similar: just restrict attention to k even. This completes the proof of (2).

Statement (3) follows immediately from the definitions of H(X) and V. O
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Chapter 5

The non-split side

The goals of §5 are as follows:

e Define a Fourier transform .#x/ , on &(X').

e Factor Fx- 4 into two steps, as we did with f)((lzb

e Use Zx/ 4 to define a family of operators & on the cuspidal space H(X’) and determine the

structure of H(X') as an «/-module.

e Use the o/-structure on H(X') to determine which functions on X’ are the characters of

cuspidal representations.

The first two goals are accomplished in §5.2. The third and fourth are realized in §5.3 and §5.4,
respectively. Section §5.1 carries out a number of routine calculations. The reader should keep the

following diagram in mind throughout the section.

X ————8

NS

Recall that B’ is the unique non-split quaternion algebra over F' with center F, X’ is the space of
monic degree two polynomials over F' which are either irreducible or have a double root, X' is the
disjoint union of the three quadratic extensions of F', p’ and 7’ are the characteristic polynomial

maps and 4’ is a chosen map which restricts to an algebra injection on each component of X’.
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5.1 Measures and push-forwards

(5.1.1) The purpose of §5.1 is to define measures on the spaces B’, K, K+, X’ and )Z", push-
forwards along the maps p’ and 7’ and compute all of these things explicitly. Here is a more detailed

overview:
e In §5.1.2 we define a class of bases on B’ which we call the standard bases.
e In §5.1.3 we define the push-forward p’,.

e In §5.1.4 we show that (7')* gives an isomorphism between the space of Schwartz functions on

X and the space of conjugation invariant Schwartz functions on B’.

e In §§5.1.5-5.1.9 we define and compute the measures on B’, K, K+, X’ and X' (Actually,

the relevant measures on K were defined and computed in §4.1.7.)

e In §5.1.10 and §5.1.11 we define and study the push-forward =, and relate (7’)*7’, to a certain

averaging operator.

e In §5.1.12 we produce certain natural liftings of functions on X’ to functions on B’. As before,

these will be important when we factor the Fourier transform.

(5.1.2) By a standard basis of B’ we mean a basis 1, 4, j, k of B’ as an F-vector space where:
e 1 is the unit of B’
e ¢, j and k anti-commute.
e ¢, j and k square to elements of F.
o ij=k.

We will typically write 2 = a, j2 = 8 and k? = 4. The above conditions imply a3 = —v. Given a
standard basis and an element x of B’ we write z = xg + ix1 + jx2 + kx3. We have previous defined

what is meant by a standard basis of a quadratic extension K/F.

(5.1.3) For a function f on X' we define p’.f to be the function on X’ given by

, _ 1
W = g 2 W
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much like our previous definition of p,. The map p’, has the same properties as p, (in fact, they are

basically the same thing). In particular, p/, maps #es(X) surjectively onto .#eg(X).

(5.1.4) Write .#™V(B’) for the subspace of .%(B’) consisting of those functions which are invariant
under the conjugation action of G’. The following result is a consequence of m being proper and

open.

Proposition. The pull-back map (7')* : S (X') — ™ (B’) is an isomorphism. Under this iso-
morphism, Free(X') is identified with Y (B').

reg

Proof. Since 7’ is proper, it induces a map (7')* : S (X') — L(B’). It is clear that this map is
injective and has image contained in .#Y(B’). Let f be an element of .7"V(B’). As two elements
of B’ are conjugate by an element of G’ if and only if their images in X’ are equal, we see that f
can be written as f’ o 7’ for some function f’ on X’. Since 7’ is open and f is locally constant we
see that f’ too is locally constant. It is clear that f’ has compact support. Thus f = (7')* f’ with

e L (X'), which proves the proposition. O

(5.1.5) Recall that dup is the Haar measure on B’ giving the unique maximal order &g/ of B’

volume 1. We now compute it in a standard basis. This is similar to §4.1.6.

Proposition. Identifying B’ with F* via a standard basis, we have
1/2
dup (x) = gqlaBy| g drodrideedes

where dx; = dup(x;) are normalized Haar measures on F'.

Proof. Tt is clear that dup(x) = ¢ - drodridxadrs for some constant ¢, so we need only compute x.
We do this by computing the volume of &' using the measure dxgdzidradrs. To do this, note that
z € B’ belongs to Op: if and only if Nz belongs to r. Furthermore, N x belongs to O if and

only if each of 23, ax?, fz3 and ya3 do. We thus have

/ dxodridredrs = Vol(/ OFp) Vol(v/a=10Fr) Vol(v/ =1 Or) Vol(\/y~1OF)
Ogp

where for Q C F we use the notation v/Q to denote the set of elements z € F for which 22 belongs
to Q and Vol to denote the volume of ) with respect to the normalized Haar measure. Now, one

of a, B8 and v has even valuation and the other two odd valuations. Assume « has even valuation.

Then Vol(vVa=10F) = |a|;1/2. As (8 has odd valuation, we find Vol(y/5~10F) = q*1/2|ﬂ\;1/2, and
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similarly for v. We thus have

dzodzdradrs = q_1|a57|;1/2~

Op
The constant ¢ is the inverse of this quantity, and so the proposition follows. O
(5.1.6) Recall that for a quadratic extension K/F we have defined duk to be the Haar measure

on K giving the ring of integers 0k volume 1. We have previously (in §4.1.7) computed this in a

standard basis. We recall the result:

Proposition. Identifying K with F? via a standard basis we have
dpyx = |a/dK|;/2dxodx1

where dx; = dup(x;) are normalized Haar measures on F'.

(5.1.7) Let K be a quadratic extension and choose an embedding ix : K — B’. Let K+ denote the
orthogonal complement to K in B’ under the trace pairing. There is then a unique Haar measure
dpigr on K+ so that dup: = duxdug.. We now compute dug 1 in coordinates. (Note that we have

previously in §4.1.8 defined a measure dj . but this was for a subspace K+ of B.)

Proposition. Let 1, i, j, k be a standard basis for B’ so that 1, i is a standard basis for K C B’.

Then j, k is a basis for K+ and under the resulting identification K+ = F? we have
1/2
dugs(x) = qldgfy|g “drodes
where dx; = dup(x;) are normalized Haar measures on F.

Proof. This follows immediately from §5.1.5 and §5.1.6. O

(5.1.8) We define dux+ to be the measure on X’ given by 7, (dup:). We now compute it in coordi-
nates. Note that this computation is one of the reasons for defining the measure dux as we did in

§4.1.9.

Proposition. We have

dpx: (z) = |A[2A(A)dvdt

where we have identified X' with its image in F2, dv and dt are normalized Haar measures on F

and A(A) is as previously (c.f. §4.1.9). Ezplicitly, the formula for dux: means that for f € . (X’)
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we have

/((Tr’) N (@)dpp (z /ftz/|A\1/2 (A)dvdt.
B

Proof. Pick a standard basis for B’ such that a has even valuation and 3 and ~ have odd valuation.

In the resulting coordinates, we have t = 2x¢ and v = x3 — az? — r3 — y23. By §5.1.5 we have

f(r'(z))de = (J|04»3V|}r/2/ f(2xo, 2% — ax] — Ba3 — ya})dwodz dradas.
B Fa

We now apply §4.1.4 and make the change of variables x3 = \/u where

AJ4 — az? — B23

u =
v
to obtain
aB | L+ n(u)
f('(z))dx = q ‘ / f, z/)ilmdacldxgdtdy.
B Yl Jps |u|
As afi/y = —1, the absolute value in front of the integral is equal to one. We can thus write
f(r'(z))dx = ft,v)A'(A)dtdy
B 2

with

A'(A) :q/ Ln(u)dmldxg.
F2

1/2
‘U|F/

Now, one easily sees that if A = 0 then the integrand vanishes identically, and so A’(0) = 0. If
A # 0 then we have

A'(A) = A2 T(A /4y, —a )y, —B/7)-

The results of §3.3 now shows that A’(A) = \A\UQ A(A) when A is not a square while A’(A) =0 if

A is a square. This gives the stated result. O

(5.1.9) We define dug, to be the measure on X' given by (p')*dux,. We now compute it in

coordinates.

Proposition. We have dfiz|x = 3(1+dg)|A|pdug. Explicitly, this means that for f € S (X') we

have
/~ Fdug, = %Z(lerK)/ F1Alrdux
X/ % K

where the sum is over the three degree two field extensions K/F'.

59



Proof. This goes just like the proof in §4.1.10. O

(5.1.10) For 0 € G’ and f € #(B’) we let f° be the function x — f(ocxo~1). Define a map

. / inv / _ 1 / o
avg : S (B') — ™ (B, anfiiVol(G’/Z’) G//Z/f do

where do is any Haar measure on G'/Z’ (Z' being the center of G’). The function avg f is easily
seen to be independent of the choice of Haar measure. Since f belongs to .(B’) its stabilizer in
G'/Z’ is open, and so the above integral is really a finite sum. Thus avg f is well-defined and a

Schwartz function. It is clear that avg is a projector, that is, avg? = avg.

(5.1.11) We now define and study the map 7.
Proposition. We have the following:
1. The map (7')* : S (X') — L(B’) has a unique adjoint 7, : S (B') — . (X’).
2. We have 7, (n")* = id and (v')*7) = avg.
3. We have ||zl f|lx < ||fllg- The map (7')* is an L?-isometry.
4. The map 7, carries Lreg(B') into Freg(X').

5. Pick a standard basis. For f € Seq(B') we have

14 n(u)

W60 = s [ VD 15 e

where f(£y/u) means 1(f(\/u)+ f(—v/u)) and

A/4 —az? — 6382
Y

Proof. If an adjoint exists then it is unique since the pairings are non-degenerate. Now, let f €
Z(X'). Then the measure fdup: is absolutely continuous with respect to dup:. It follows that
7l (fdup) is absolutely continuous with respect to 7l (dup/) = dux,. Thus by the Radon-Nikodym
theorem we can find a function 7, f on X’ such that «.(fdup/) = (7, f)dux:. It is clear that =/ f
has compact support, but maybe not clear that it is locally constant; we will prove that shortly.

Nonetheless, the formula

(f,(7")"g)pr = (7. f, 9)x
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holds for f € #(B’) and g € (X).
For f and g in &7(X’) we have

(m(7) L g)x = (@) f, (7) " g) B :/ ()" N((') g)dps

’

=/l((7f')*fg)du3/ :/X/ fogdux = (f,g)x-

The non-degeneracy of (,)xs now gives f = «.(7')*f for any f € #(X’). Now, for f € #(B’) and
o € G' we have

(. (f7), 9 x = (7. (") g)p = (f. (7")"9)pr = (mof. 9)xr

and so 7, (f7) = m.f. (The middle equality above follows from the fact that (7')*g belongs to
SV (B').) Tt follows that 7l (avg f) = 7. f. As avg f belongs to . "V(B’) we can, by §5.1.4, find
f' € #(B’) such that avg f = (7')* f’. We thus have

m.f = (avg f) = 7 (7)) f = f.

In particular, this shows that 7. f belongs to (X’) and thus establishes (1). Applying (7')* to
each side of the above gives (7')*7, = avg and thus establishes (2).
We have seen already that for f,g € .7(X’) we have ((7")*f, (7")*g9)p = {f, 9)x and so (7')* is

an L%-isometry. Now let f be an element of .7 (B’). We then have

I fl%r = (7o f, w ) x = (ave f, ) o
1 o
~ Vol(G'/Z) /G’/Z’ 7)o do

1
G | g vdo = 2,
= VO](G’/Z’) /G'/Z' ||f ”B HfHB do ”fHB

the last step following from || f7||g: = || f||5- We thus have ||« f||x+ < || f|l 5/, establishing (3).
Let f € Seg(B’). Then for any ¢ € G’ the function f7 still belongs to .#es(B’). It follows
that avg f € SY(B’). We can thus find f’ € Seg(X’) such that avg f = (7')* . We then have

mif =, avg f = f' and so 7, f belongs to #es(X'). This establishes (4). The proof of (5) goes

just like the proof of part (4) of §4.1.11. O

(5.1.12) We now prove the following result, which is directly analogous to §4.1.16.

Proposition. Let f belong to Fes(K) with K C B'. For any sufficiently small compact open set a
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of K+ containing 0 we have

2
T (f ®da) = m|A|El(PK)*f-

Here §q = xa/ Vol(a) where x4 is the characteristic function of a and Vol(a) the volume of a with

respect to the normalized Haar measure on K.
Proof. The proof goes exactly like the proof given in §4.1.16. O

Corollary. Let f € S1eg(K). For any sufficiently small compact open set a of K+ containing 0 we

have

(Px)«f = 51+ dr)m (|A[pf @ da).

Proof. The proof is just the like the corresponding corollary in §4.1.16. O

5.2 The Fourier transform Fx

(5.2.1) The purpose of §5.2 is to introduce a Fourier transform on the Schwartz space .(X’) and

prove a factorization result for it. Here is an overview:
e In §5.2.2 and §5.2.3 we recall the Fourier transforms on B’ and K.

e In §5.2.4 we define the Fourier transform Fx/ by (7')*(Fx/ 4 (f)) = Fpr o ((7')* f). One has
to check that this is well-defined, but this is quite straightforward. We verify that Zx/ g7}, =

7, Fp p, which makes Fy 4 look more like ﬁg)w

e In §5.2.5 we factor the Fourier transform .Zx/ , as D% )’? where .7 )’? is essentially the Fourier

transform on the various K’s (as it was before) and P, is some fairly simple operation.

e In §5.2.6 we compute an explicit formula for p..

(5.2.2) Let ¢ = ¢F be a non-trivial additive character of F. Define 15/ to be the additive character

of B’ given by ¢ o trg//p. For a function f on B’ we put

(o)) =0 [ )i an)dns ).

Here, as before, p~™ is the conductor of ¢p. Once again, Zp/ 4 induces an isomorphism . (B’) —

S (B’) and can be extended to an isometry L?(B’) — L?*(B’). With out normalization, g 4 is
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self-adjoint with respect to (,)p/, an isometry with respect to (,)ps and has inverse .7, 7

(5.2.3) Let K C B’ be a quadratic extension of F'. We have previously defined a Fourier transform

F k. on K. For a function f on K+ we put

(Fres D) =" [ F@vanin

K

Do not confuse this Fourier transform with the one .. ,, where K + is a subspace of B. The above

Fourier transform has the property that

Ipup(f©g)=(Fryf) @ (Frrp9)

for f € #(K) and g € S(K*). Here f ® g is the function (x,y) — f(x)g(y) where B’ has been
identified with K x K*.

(5.2.4) The map Fp/,, carries .V (B’) into itself. Using the isomorphism (7/)* : ./ (X’) —

SV (B') of §5.1.4 we transport the Fourier transform to .#(X’). That is, we define
Fxrp: LX) = S (X)), Txouf) =7 Fp (7))

Note that 7, is the inverse to (7)* by §5.1.11.
Proposition. We have the following:
1. Fxi .y is self-adjoint with respect to (,)x:.
2. Fxiy is an isometry for (,)x.
3. The inverse of Fx: . is Q‘X,,E.
4. We have nl.Fp p = Fxi .

Proof. (1) follows from the adjointness of 7/, and (7’)* and the self-adjointness of Fp/ 4. (2) follows
from the corresponding statement for #p/ and the fact (c.f §5.1.11) that (7')* : A (X') —
SV (B') is an isometry. (3) is similar. We now prove (4). A simple computation shows that for
feS(B)and o €@ wehave Fpy(f°) = (Fppf)° . From this, we see that .Zp ,(ave f) =

avg(Fpr f). Thus, using §5.1.11 we find

Fxr (T f) = 7 (Fp oy ()7L f)) = 7 (Fp w(ave ) = wi(ave(Fp 4 f) = 7 (Fpr w ),
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which is the stated identity. O

(5.2.5) We now come to our main result on the factorization of the Fourier transform. For a
quadratic field K we have defined .#,(K’) be the set of functions f which have integral zero on vertical
strips (c.f. §4.2.7). The Fourier transform gives an isomorphism Fx  : Feg(K) — (K ). We have
also defined a modified Fourier transform #j; ,, which also gives an isomorphism #eq (K) — S (K).

We let .7 )’?, " be the Fourier transform on X’ gotten from the .# [’<7w. We now have our main result:

3

Proposition. There is a unique map 7. : So(X') — #(X') such that the diagram

~. D
%eg(X/) - ‘%eg(Xl)

glf’,wl lyxw
=/

Fo(X) ——= S(X)

commutes. For f € /(K) we have

(ﬁ/K)*f:q_lﬂ';(f@Xu)

where a is any sufficiently large compact open subset of K.

Proof. Again, the existence and uniqueness of P/, is clear since .#*

% is an isomorphism. To compute

the formula for 7, let f € Seg(K) be given. Let a be a very small compact open neighborhood of

0in K*. By §5.1.12 we have
(P)f = 51+ di) 7 (|Alpf @ da)

Now take the Fourier transform of each side. We find

Fxr (D) f) =

= 3(1+dg)m (P p(|Alp f) @ Fr (8a))-

(14 dr)Fxr 4 (T (|Alp f @ d4a))

N

In the second step we used the identity Fx/ 7, = 7,.Fp/ 4 from §5.2.4 and the identity from §5.2.3
regarding the Fourier transform of a pure tensor. One easily finds Fg1 ,(6a) = q_m_ldgl/zxu/

where d' is a large compact open. The proposition follows. O

(5.2.6) We now explicitly compute the map ...
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Proposition. Let f belong to S (K). Then

: di? A —4d g
(P )L, v) = W/ fGGt+iz)L (ny dK) dpr(z)

where i € K is such that i> = dg, v = —Bdx and 3 is an element of F* for which (dx, ) = —

Proof. The proof is similar to the one in §4.2.8, so we omit some details. Pick a standard basis for
B’ so that 1, i is a standard basis for K and i> = dg. Take a to be the open set of K+ such that
Xa(z2j + x3k) = Xp—n(x2)Xp-m (v3) for large integers n and m. Our formula for 7, from §5.1.11

then gives

@) E0) =~ [ 1 in)n (a2 (V) ey
aa@) Jr uly
with
. A/4 — ax? — 6332

~
As before, we find that if we omit the x,-n(22)xp-m(v/u) from the integrand the result does not

change. After having done this, the x5 integral is then |b\;1/2f2 (a,b) with

A — 4dK:17% ﬁ 1
¢ 4y 7 vy K
just as before. We thus find
_ a3/ , A — 4dga?
(Px)«)(t,v) = m/lmf(%t"'m)b fadK dx,
F
which is the stated result. O

5.3 The cuspidal space H(X') and its «7/-structure

(5.3.1) In §5.3 we introduce the cuspidal space H(X’), define an «/-module structure on it and
compute its structure as an -module. Although the program is similar to §4.3 and §4.4 we proceed
differently, in a more conceptual and less computational manner. (We do perform some computations
at the end of the section. These are not needed to establish the main results of the section, but will

be used later on.) Here is an overview of the section:

e In §5.3.2 and §5.3.3 we introduce two operations on the space of functions on X’: convolution
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and f— fV.
In §5.3.4 we define and study a certain “Eisenstein” space of functions on X’.

In §5.3.5 we define the cuspidal space .#°(X”) as the orthogonal complement to the Eisenstein
space, and prove some basic properties about it. The space H(X') is defined to be the L-
closure of .#°(X").

In §5.3.6 we define the operators Ay, which constitute the algebra 27. We also define the T,

operators.

In §§5.3.7-5.3.11 we relate the operators Ay, to certain convolution operators, culminating
in the proof in §5.3.11 that a subspace of .#°(X’) is stable under & if and only if it is stable

under convolution by all of .7,4(X").
In §5.3.12 we introduce the truncated character functions ¢, , and the spaces V.
In §5.3.13 we compute f * ¢, for an arbitrary function f.

In §5.3.14 we determine the structure of the space .#s(X’) under convolution, in terms of the

basis ¢ k.

In §5.3.15 we use the results of §5.3.11 to transfer the results of §5.3.14 to yield the &7-structure

of H(X'). This is the main result of §5.3.

In §5.3.16 and §5.3.17 we explicitly compute what the Ay, do to the basis elements ¢ .

(5.3.2) For functions f and g on G’ define a function f x g on G’, called the convolution of f and

(F+0)e) = [ Fwateydne )

This integral makes sense so long as one of f or g has compact support. The operation * is associative

but not in general commutative. However, if one of f or g is invariant then f x g = g * f does hold.

If f and g are both invariant then so is f * g and so the operation * descends to functions on X. It

is easy to see that we get maps

Fs(X') ® Fs(X') = Fs(XT), € (X)) @ Fus(XT) — €(X,)

using *. These first is commutative and associative; the second is associative in the obvious sense.
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!/
ns

(5.3.3) We have a map X,, — X,

ns’

written = +— !, gotten by thinking of X’  as the set of

conjugacy classes in G’. For f € .%,s(X’) we define fV to be the function given by z +— f(z=1). It
again belongs to #s(X).

Proposition. The map f v+ |- |p2fV is self-adjoint for (,)x/ and an isometry for (,)x.

Proof. We have

(" g)x ={@) 1. (x")"g)p = . Fla™g(x)dup (x) = . f(2)g(a™")INz|p dup ()

= (@), (@) (- Fre e = (] |5 )x

Changing f to | - |%f shows that f + |- |z>f" is self-adjoint for (,)x. The isometry statement

follows easily from this. O

(5.3.4) We define .1 (X’) to be the subset of .7 (X") consisting of those functions whose restriction
to X/, factors through the norm N. We write .75 (X’) for the subspace of .#!(X’) consisting of

those functions supported on X|..
Proposition. We have the following:

1. An element f of .#(X') belongs to #1(X') if and only if (z')*f is invariant under left (or

right) translation by the group G| consisting of those elements x of G' with Nz = 1.
2. The spaces S (X') and SL(X) are closed under pointwise addition and multiplication.
3. The space S L(X") is closed under the involution f — fV.
4. The space S5 (X") is closed under convolution by elements of ns(X').
5. The space .#1(X") is closed under the Fourier transform.

Proof. (1), (2) and (3) are straightforward. We now prove (4). Let f belong to .71 (X’) and let ¢
belong to .#,s(X’). We then have

@« D) = [ 1w)otau e ()

for z € G’ and u € G. Changing y to yu in the integral and using ¢(yu) = ¢(y) makes the u on

the right go away and shows that ¢ * f is invariant under translation by G} and thus belongs to
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Z1(X"). We now prove (5). Let f belong to .1(X’). We have

(Fohan) = [ Fwvslem)dus )

for z € B’ and u € G. Changing y to u~'y and using f(u"'y) = f(y) gives the desired result. [

(5.8.5) Let f € #(X'). We say that f is cuspidal if (f,g)x, = 0 for all g € S1(X’). We write
#°(X") for the space of cuspidal functions and H(X') for its closure in L?(X'). If f is cuspidal the
its support is contained in X5 and so .°(X’) C #s(X’). One easily sees that to check that f is

cuspidal it is enough to show (f, g)x: = 0 for g € L L(X").
Proposition. The space .#°(X’) is stable under the following operations.
1. The involution f — fV.
2. The Fourier transform.
3. Pointwise multiplication by elements of #1(X").
4. Convolution with elements of Sps(X').

Proof. These all follow easily from the corresponding properties of the spaces .#1(X’) and .71 (X")
and simple adjointness statements. We prove (1) as an example. Let f € #°(X’) and let g €
SL(X"). We then have

(fVoghxr = (f]- 179 )x =0
since | - |»*g" belongs to .7 (X) and f is cuspidal. Thus fV is cuspidal. O

(5.3.6) For a non-trivial additive character ¢ of F' and a character i of F'* define an operator
Apn + LX) = 7°X"), Apy(f) = =0 Fxrpll- [0 1Y)

If 7 is unitary then Ay , is easily seen to be an isometry for (,)x and thus extends to an isometry
H(X') — H(X'). We will see shortly that the Ay, commute. We let &/ be the polynomial ring
over C generated by the symbols Ay, with n unitary, so that the above definitions give H(X") the
structure of an 2/-module.

We will need a few more operators as well. For an integer n we define an operator

T,: HX') — H(X')
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by letting T, (f) be the function which is equal to f on the locus where N has valuation n and 0
off of this set. The operators T,, are mutually orthogonal idempotent operators. We let .7 be the
polynomial ring over C in the T;,. We have thus given H(X') the structure of a . -module. The
actions of Ay , and T;, do not commute. We write &/ * 7 for the coproduct of & and .7 in the

category of non-commutative algebras, so that H(X') is a module over &7 % 7.

(5.3.7) Let ¢y, be the function on X, defined by (¢,v) — ¢ (¢)n(v). A simple computation shows
that, for f € #°(X’), we have

Gy * [ = =>4, (f).

For a compact open set  of X’ let ¢y , 0 be the function which is equal to ¢y, on € and 0 off of
Q. We let ¢ be the set of all compact subsets of X’ which are finite unions of the X . These are
the sets of most importance to us. Any compact subset of X5 is contained in an element of 2. We

call a subset of X5 bounded if it is contained in some compact set.

Proposition. Let f belong to .7°(X"), let ¢ be a non-trivial additive character of F and let n be a
character of F*. Then there is a bounded subset Qo of X| such that for any Q € H containing Q

we have

¢w,n,ﬂ * f = _q2m+1Aw,n_1 (f)

In fact, one may take Qg to be the union of the sets

SUPP((Tnf>v) : supp(Awmfl (Tnf))

Here the product is taken by regarding each factor as a subset of G' via (n')~*.

Proof. As f =5 ., T, f it suffices to prove the proposition for 7;, f. In other words, we may assume
that f is supported on XJ,. Of course, then fV is supported on X' . Let Qo = wg," -supp(Ay ;-1 f)

and let Q € J# contain Q4. We then have

(P )= [ ' (y)p (@y)n(zy)xalry)d*y

B’

= xa(wp'r) . Y (W) (xy)n(zy)d™y

=~ xa(@pr2)(Ay -1 ) (@)
If 2 belongs to supp(Ay, -1 f) then wy"a belongs to Q and so —¢*™* (Ay , f)(@) = (dyn.0* f)().
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If 2 does not belong to the support of Ay -1 f then both (¢ .0 * f)(z) and (Ay -1 f)(x) are zero.

Thus —¢?™ T (Ay -1 f) () = (dy.n.0 * f)(z) for all =, as was to be shown. O
b b,n,

(5.3.8) We now strengthen the previous proposition slightly. We write F¥ for the set of additive
characters on FV. It is a topological group and isomorphic to F. Recall that the conductor of a
character n of F'* is defined to be the minimal integer n such that X(U}n)) = 1. If x(Ur) =1 then

the conductor is defined to be 0.

Proposition. Let f belong to #°(X’), let S be a compact subset of FV \ {0} and let S’ be a set of
characters of F* of bounded conductor. Then there is a bounded subset Qo of X, such that for any

ns

Q e X containing Qo we have

by * [ =—" Ay, (f)

forallyp € S and alln € S'.

Proof. Again, it suffices to treat the case where f is supported on a single coset @w"Up of Ug. Let
Qo be the union of the sets wy" - supp(Ay, -1 f) as ¢ varies in S and v varies in S’. So long as this
set is bounded, the previous proposition implies the present one. We now show that it is bounded.
To begin with, note supp(Ay, ,-1f) = supp(Fx:»(n~1fY)). If we change 1 to ¥(az) for some
a € F* then the support changes by a~!. Thus if we fix a non-trivial character vy of F' so that S

corresponds to some compact subset S; of F'* then

L supp(Ay, -1 f) C St - supp(Ay, -1 f)
pes

Now, if we twist 17 be an unramified character then 7 f is just scaled by a constant since f is supported
on a single coset of Up. In particular, supp(A, ,-1 f) is unchanged. Let S be a subset of S” so that
every element of S’ is an unramified twist of a unique element of Sj. As there are only finitely many

characters of a bounded conductor modulo unramified twists, the set S] is finite. We now have

o = U U supp(Ay »-1.f) C 51+ U supp(Ayg -1 f)

YES NES’ nes;

and so )y is bounded. O

(5.3.9) Let #T(X’) denote the space of functions spanned by functions of the form (¢,v) — f(t)g(v)
where f € .7(F) has total integral zero and g € .7 (F*). We have .#T(X’) C Zps(X").
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Proposition. Let ¢ belong to .#T(X'). There then exists a compact subset S of FV \ {0} and a
set 8" of characters of F* of bounded conductor such that for any bounded set Q¢ we can find an

expression
n
¢ = aidy, n.
i=1
with ; € S, n; € S" and Q; an element of # containing Q.
We need two lemmas before proving this. We leave these to the reader.

Lemma. Let f € S (F). There exists a compact set S of FV such that for any compact subset A

of F' containing supp(f) we have an expression

)y ap(x)

eSS

where ay = 0 for all but finitely many . If f has total integral zero then S can be taken to be a

compact subset of FV \ 0.

Lemma. Let g € S (F*). There exists a set S’ of characters of F* of bounded conductor such that

for any compact subset A’ of F* containing supp(g) we have an expression

g(x) = xa(z Z bn"7

nes’
where by, = 0 for all but finitely many 7.
We now prove the proposition.

Proof of proposition. Let f and g be given. Let S and S’ be the sets furnished by the previous
lemmas. We now show that these sets satisfy the statement of the proposition. Thus let Qy be
a given bounded set. Let Q be any element of J# containing €y and the support of the function
(t,v) — f(t)g(v). Let A be a compact subset of F' containing ¢(2) and let A’ be a compact subset

of F* containing v(£2). Note that these conditions imply

xa(t(@)xo(z) = xa(@),  xa(v(z))xalr) = xalz).

By the lemmas, we have expressions

2) Y ap(),  gl@) =xal(@) Y byn()

Pes nes’
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We thus have

f(t(x))g(v(z)) = xa(z)f(t(z))g(v(z))
= Xa(@)xa(t(@)xa (v(2)) Y aybyd(t@))n(v(z))

= Z awbu¢w,n,ﬂ(x)

which proves the proposition. O

(5.3.10) For a character n of F* and a compact subset  of X/  we let ¢y, o be the function

x — xa(x)n(v(x)). This is just the function ¢y, o with ¢ taken to be the trivial character.
Proposition. The space Sys(X') is spanned by #T(X') and the 1,0 for Q€ K.

Proof. Tt is easy to see that .#,5(X’) is spanned by functions of the form f(¢)g(v) with f € (F)
and g € S(F*). Let f and g be given. Let ) € J# contain the support of f(¢)g(v). Let A’ be a

compact open subset of F'* containing v(2) and write

= xa(z Z bnn

Let A be a non-empty compact open subset of F' containing ¢(€2) and let &« € C be such that

f' = f — axa has total integral zero. We then have

F®)g(w) = F'(t)g(v) + axat)xa ()Y byn(v)

Multiplying each side by xqo we find

Fg(v) = f'(O)gv) + @ bydrna

which proves the proposition. O

(5.3.11) We can now prove the following important proposition.

Proposition. A subspace V C 7°(X') is stable under <7 if and only if it is stable under convolution
by Fns(X').

Proof. Let V be stable under .o7. As .%,s(X’) is spanned by .#f(X’) and functions of the form d1,n,0
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it suffices to show /(X)) *V C V and ¢ 0V C V. Let f € V. We have

(P10 * f)(x) = . P n(zy)xa(ey)duc: (y)

For z fixed, the function y — n(zy)xa(zy) factors through the norm (assuming 2 € J#°, as we can).
Thus ¢1,,0 * f = 0. Now let ¢ be an element of ST(X"). Let S and S’ be the sets produced by
§5.3.9 applied to ¢. Let Qg be the set produced by §5.3.8 to f, S and S’. The conclusion of §5.3.9
gives

n
¢ = Z WiPry; s
i=1

with ¢; € S, n; € S’ and Q; € J containing Qy. The conclusion of §5.3.8 gives ¢y, ;. 0, * f =

qum“Awwi_l (f). We thus see that ¢ = f belongs to V since V is stable by the Ay, »,.
Conversely, say that V is stable under convolution by .#,s(X’). We must show that it is stable

by the Ay,. Let f be an element of V. By §5.3.7 we have Ay ,,(f) = —¢ 2" ¢y 1.0 * f) for

some choice of 2. This proves the proposition. O

(5.3.12) Let 7 be an element of Irrgr. We let x, : X,, — C be the character of m and write
¢r k for the “truncated character,” defined to be x, on X; and 0 off of this set. In our notation,
Or ke = Tk Xr. We write V j for the one dimensional space spanned by ¢, ;. We let 177T be the space
spanned by all of the ¢, and V, be its closure in L?(X’). Of course, these spaces do not change if
7 is replaced by an unramified twist, and so make sense for m € Irrg/. As before, we call 7 even if
£ ®@m =m and odd otherwise. If 7 is even then ¢ ; and Vi ; vanish for k odd. The following is a

simple extension of the Peter-Weyl theorem.
Proposition. The ¢ span Ss(X').

Proof. It suffices to show that a conjugation invariant function supported on G, lies in the span of
the ¢ . Thus let f be such a function. We can then find an non-compact open subgroup U of the
center Z' and a function f’ on G’/U such that the pull-back of f’ to G’ agrees with f on G}.. As the
group G'/U is compact, we have f' = 3 a;x., where the m; are irreducible representations of G’ /U.
Of course, the 7; can also be regarded as irreducible representations of G’. As such, we clearly have

f =>"aiXr, k, which establishes the proposition. O

(5.3.13) We need the following result.
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Proposition. For 7w € Irrg: and f € Ss(X') we have

(f * 6r) (@) = dx ' xn (2) / S W) e (v)

rwg,kUB/
for all x € X! . Here d, is the degree of .

Proof. For x € G’ put

Ax) = g F)xr(ey™ Dm(zy™ " dpe (y).

Thus (f * ¢z k) (z) = tr A(z). Now, we have

Ax) = (x) / F )y e (y) = 7(x)B(z).

—k
zw,, Ug/

Since f is invariant under conjugation and 7 is a homomorphism, it follows that m(g)B(z)r(¢g~!) =

B(zx) for any x € G’. Thus, by Schur’s lemma, B(z) is a constant. Thus B(z) = d ! tr B(z) and so

1
Bo)= 1 [ e )
T Jrxw,, Upgs
B! B
Taking the trace of the expression A(x) = 7(z)B(x) now gives the required formula. O

(5.3.14) We now determine the structure of .#,5(X’) as an algebra under convolution.
Proposition. We have the following:

1. We have Vi % Vi = 0 if T is not an unramified twist of 7.

2. If m is odd then ¢r ; * ¢r j = Vol(Up )dy by it j-

3. If w is even then ¢r; x ¢r j = 2Vol(Up/)dy ¢y ivj for i and j even.

4. The Vi are precisely the minimal 7 -stable ideals of .Zps(X').

Proof. The previous proposition shows that for any f € .#,s(X’) the function f * ¢, j belongs to
I~/,r. If 7 and 7/ are unequal elements of Irrgs then ‘Zr N ‘N/ﬁ/ = 0 and so we find ‘N/ﬁ * XN/W = 0. This

gives (1). Now let 7 be an element of Irrg,. The previous proposition gives

(bmi * 6r) (&) = d X (2) / il W) ()

zw;,]UB/
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If x does not belong to wgﬁj Upg' then this is zero. For x € w?ﬂ' Up we get

(bmi * 6r) (&) = d xn (2) / xr XY (W)t (v)

w%,UB/

If 7 is odd then m @ 7V contains the trivial representation once and does not contain &; the above
integral is equal to Vol(Up:). If 7 is even then m @ 7" contains each of the trivial representation and
¢ exactly once; thus, if ¢ and j are even, then the above integral is equal to 2 Vol(Ug/). This gives
(2) and (3). As for (4), the above shows that the V, are minimal .7-stable ideals. Now let I be some
minimal .7-stable ideal and let f € I be some non-zero element. We can then write f = > ar k¢r &
where almost all the ar ; vanish. Say ar, i, is non-zero. By J-stability the element Zﬂ O ko D ko
belongs to I. Convolving with ¢, o, we find that ¢, x, belongs to I. It thus follows that I contains

Vﬂo and therefore by minimality is equal to it. O

(5.3.15) We now determine the structure of H(X’) as an (& * .7 )-module (compare with §4.4.12).
Proposition. We have the following:
1. Fach V is stable under (o * ) and simple as an (& * T )-module.

2. If m and ©' are distinct elements of ﬁél then Vi and Vi are not isomorphic as (o * T )-

modules.
3. We have H(X') = @ V., the sum taken over 7 € Irtgy .
In particular, H(X') is semi-simple and multiplicity-free as an (o x T )-module.

Proof. It is enough to prove the analogous statements for .#°(X’) in place of H(X'). The results of
§5.3.14 show that .°(X’) is semi-simple and multiplicity free as an (#,s(X’)*.7)-module, its simple
constituents being the ‘7,r. (To see that ‘N/W and ‘N/ﬂ/ are not isomorphic look at their annihilators in
Fs(X).) The result of §5.3.11 implies that a subspace of #°(X’) is a simple (& * Z )-submodule if
and only if it is a simple (As(X’) * & )-submodule. Now, a module over a ring is semi-simple and
multiplicity free if and only if it is the direct sum of its simple submodules. We thus see that .7°(X”)
is semi-simple and multiplicity free as an (& * .7 )-module, since its simple (& * 7 )-submodules are
the same as its simple (#s(X’) * Z)-submodules and we know it to be the direct sum of its simple

(s (X)) x T )-submodules. O

(5.3.16) We now compute the Fourier transform in the spanning set ¢ .
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Proposition. For m € Irr°® we have

yX"w((bﬂ,k) = _6(%’ T, w)¢\‘|;,27r\/,—k—n(7r)—2m(1/1)

where

€3, 1Y) = = 2" N m)—2m(), UX7) -
Here ¢x/ = ¢p o tr.

Proof. Let n be the conductor of 7 and put n’ = n — 1, so that 7| ) is trivial but 7| -1 is
B’ B’
non-trivial. Let @, be the function on G’ which is equal to 7(z) on G,, and 0 off of this set. Note

that tr @, = xrk- Put m =m(1p). We have

(Fpr y®i)(2) = g2 / () (ey)dy

wg/UB/

= g 2m—2k-l Z w(a)/ Yp (axy)dy

, (71')
ag€wh, Uy /UG B

—g S r@man) [ wsea)dy

’ w™, Ot
agwh, Ug /UG BB

= 5q_2m_2k_2"/_17r(wf3,) Z m(a)Yp (wh ax)

a€Up /UG

Here ¢ is 1 if valz > —2m — 1 —n’ — k and 0 otherwise. Now, say that valx > —2m —n’ — k. The

sum on the last line is then equal to

Z m(a)Yp (whyax) = Z Z 7(ab)p (why abz).

a€Up /UL acUp /UG =D vev ' =0 v "

1

The quantity wBr(w’f;,abx) is in fact independent of b, as we can write b =1 + wg,_ u and then
Y (whabr) = g (whax)p (w’f;,r”’*laux) = Yp(whax)
as wjkgf"/*laux has valuation k +n’ — 1+ valz > —2m — 1. The sum is thus equal to

Z m(a)pp (wh ax) Z m(b) =0

a€Up /UG =Y beul' =Y U
. . .. . n'—1 o .
since 7 is a non-trivial representation of Up,” . We have thus shown that .Zp/ ,(®)) vanishes off of
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the locus in G’ where the valuation is equal to —2m — 1 —n’ — k (which is equal to —2m — n — k).

Now let z have valuation —2m — n — k. Then

(Fp i) () = g2 / () (ey)dy

WZ,UB/

— " Naf;? / @y s (y)dy

—2m—n
wmnB/

=B-(|-|p'") (=)
where

B = q2m-1 / (y)p (v)dy.

—2m—n
WB/

As we have argued before, B is a scalar. Thus

B=d 'trB=q 2" g} / X=(Y)¥B(y)dy

—2m—n
wg Up

Taking traces of our expression for Fp: (®x) gives

ﬁB/ﬂ/’(d)‘ﬂ'yk) =B- ¢|‘|;27rv,—2m—n—k7

which proves the proposition. (That 6(%, m, 1) = —B can be taken as a definition of the left side; in

fact, this agrees with the usual e-factor.) O

(5.3.17) We now compute the operators Ay, ,, explicitly.

Proposition. For m € Irr® we have

Awa’ﬂ(¢ﬂ',k) = /\¢7ﬂ (7T)¢7T,k‘f’ﬂ(7]7r)72m(¢)

where Ay (m) = €(3,nm,9).

Proof. This is a simple computation using §5.3.16. O

5.4 Detecting characters

(5.4.1) The results of §5.3 show that the &7 and 7 structures on .#°(X’) are enough to recover the
one dimensional spaces V; ; spanned by the truncated character functions ¢, ;. The question we

now turn to is: how can one recover the full characters using the &/ and 7 structures? Concretely,
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if x is a function on X’ for which Ty x belongs to Vi for each k then how does one determine if x
is equal to x, or perhaps an unramified twist of this? We address these issues in this section. Here

is an overview:

In §5.4.2 we introduce the space of “cuspidal distributions.” This space has two key properties:

it admits a map from ¢°°(X’) and has an action of .

e In §5.4.3 we show that the cuspidal distributions coming from cuspidal characters are precisely

the eigenvectors of o7 acting on the space of cuspidal distributions.

e In §5.4.4 and §5.4.5 we give an alternative approach towards the problem of determining which
functions are characters. It is not used in what follows, but helped shape our way of thinking

towards the problem, so we decided to include it.

e In §5.4.6 we discuss how the results of this section, and in particular §5.4.5, relate to the local

functional equation and local converse theorem.

(5.4.2) By a cuspidal distribution on X' we mean a linear map .°(X’) — C. We write 2°(X’)
for the space of cuspidal distributions. For f € 2°(X’) and g € .°(X’) we write (f, g)x for the
value of f on g. We have a linear map €°°(X’) — 2°(X’) defined by mapping f € €>°(X’) to the

cuspidal distribution defined by

v = [ algta)d(a).

All the operations on cuspidal functions we have considered (i.e., the Fourier transform, the invo-
lution f +— fV, the operators Ay ,, etc.) extend to operations on cuspidal distributions, as they all
have nice adjointness properties. In particular, the space of cuspidal distributions is a module over

o .

(5.4.3) We can now finally give a complete characterization of irreducible characters. Note that the

only non-trivial structure needed on X’ for this characterization is the Fourier transform Zx .

Proposition. Let x belong to €°°(X],). Then x is of the form ax, with m € Irrgy, and a € C if

and only if it is orthogonal to 5 (X"') and its image in 2°(X') is an eigenvector for o .

Proof. Let m € Irrg,. It is clear that x, is orthogonal to .71 (X’). We now show that x,, regarded
as a cuspidal distribution, is an eigenvector of o/. Write Aiﬂ,n for the adjoint of Ay, Let ¢ be a

test function in °(X’) and let S be a finite set of integers such that ¢ has its support contained
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in Upes Xi—am(p)—n(nm) and A}, ¢ has its support contained in (J,, g X;,. We then have

<A1Z1,7]X7T7¢>X’ = <X‘n’7 'I¢717¢>X’ - Z<¢7r,k7A'/¢;717¢>X' = Z<A’¢,17¢‘n',k7¢>x'

kes kesS

= /\111,17(7() Z<¢ﬂ,k*2m(w)fn(n7r*)7 ¢>X’ = /\w,n(ﬂ-) <X7ra ¢>X’
keS

and so Ay ,Xx = Apy(7)x~ holds in 2°(X").
Conversely, let x be given satisfying the conditions. Let S be a section of Irrg, — Eg/. We can
then write x = )" ar k@~ With m varying over S and k varying over Z, in a unique manner (subject

to the convention that a, ; = 0 for 7 even and k odd). Now, we have

ComX = Ap X = D Gk Ay (T) D k—n () —2m()

for some scalar cy ), from which we conclude

Cop,nlm k. = >\7/)77] (ﬂ-)aﬂ,k-‘rn(nﬂ')-i-Qm(w) .

From this we conclude a, ; = a,(%. Replacing 7 with an unramified twist, we can assume (3, = 1.
We thus find ¢y, = Ay, (7) whenever o is non-zero. The local converse theorem thus implies that

a; is non-zero for at most one 7, which proves the proposition. O

Remark. It is possible to take the above proposition further and give conditions that constrain the
scalar a. For example, x is of the form +y, if and only if the above two conditions are satisfied and

additionally

2 if x is even
/ (x - x")dux = Vol(Up/) x
X1 1 if x is odd
where here we say that x is even if it vanishes on the X/ with n odd and that x is odd otherwise.
One can even go further than this and nail the sign down: x is of the form x, if and only if the two
conditions of the proposition hold, the above condition holds and furthermore for each quadratic

extension K /F the restriction of x to K* C B’ is a non-negative integral combination of characters

of K*.

(5.4.4) We now give an alternative approach towards the problem of determining which functions
are characters. Let €°P®(X’) be the subspace of ¥°°(X_,) consisting of those functions f such that

i (f) € €°(K*) is a linear combination of characters of K> for all quadratic extensions K/F.
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This definition has the advantage of being intrinsic to X’ in that it does not make reference of B’

in any way. Nonetheless, we have:
Proposition. The space " (X) has for a basis {xx} with 7 € Trrg:.
We need a lemma before giving the proof.

Lemma. Let K/F be a quadratic extension and let n: K* — C* be a character. Let f : Z — C by

the function given by

fo= [ o)l sl
wEr Uk
Then f is a finite linear combination of functions of the form n — a™.

Proof. First consider the case where K/F. We can then take wx = wp and so

f(n) = q_znﬁ(wF)"/ n(z)|x — T|%dx.

Uk

Therefore f(n) = ab™ where a is the integral and b = ¢~ 2n(wr).
Now consider the case where K/F is ramified. The idea is basically the same but slightly more

complicated. As wi'Uy = wkUg we find

f(2n) = ¢ n(wp)" /U RELEET

and so f(2n) = ab™ for some a and b. Similarly, since w?K"HUK = whwrUk we find

f(2n+ 1) = ¢ y(ewr)” / n(e)|e — T3 da

wrUk

and so f(2n+ 1) = cd™ for some ¢ and d. We now have

fn) = ab"/? (1”2_1)”) +edn1/2 (1—(2—1)">

which proves the lemma. (The above formula is a special case of the fact that if a function f : Z — C

is a linear combination of exponentials on each coset of mZ, for some integer m, then so is f.) O
We can now prove the proposition.

Proof of proposition. Let 7 belong to Irrg,. Then x|xx is the character of the semi-simple rep-
resentation m|xx, for any embedding K — B’. It follows that y.|gx is a linear combination of

characters of K*. Thus x, belongs to €M (X").
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We now show that the x, span "% (X’). (We take it as a standard fact that the x, are linearly

independent.) Thus let f belong to "**(X"). For each integer k we have a unique expression

f|X,; = Z akaTr\X,;~
relr
(Here and in what follows, we fix a section of Irr — Irr.) The proposition then follows from the

following two statements:

1. There exists a finite set X C Irr such that Grp =0 for m & X.

2. The function k — ar j is a linear combination of functions of the form k — ak.

We now prove these two statements.

First, as f belongs to €' (X") it is uniformly smooth, that is, there exists an integer n such that
7 f factors through G’/ U™ Tt follows easily from this that if 7 is an irreducible representation
for which 7T|Ul(;) is non-trivial then a, = 0. We can thus take X to consist of those 7 for which
7T(Ugf)) =1, i.e., those 7 of conductor < n. This is clearly a finite set. Thus (1) is established.

We now prove (2). We have

aﬂ'k—QQk/ Fla)xi (z)dp(z ZCK/f 2)xy ()| — T|pda

(at least for m odd; in the even case there should be a 2) where the integral in the sum is over @k Uy
if K is ramified and wKQUK is k is unramified (this is taken to be the empty set if k is odd). Since
f and x, each belong to €' (X’), each is a linear combination of characters when restricted to

K>*. We thus find that k& — a, 5 is a linear combination of functions of the form

k— / n(z)|x — T|%dx.
whk Uk

As shown in the lemma, these functions are linear combinations of functions of the form k — a®.

We have thus established (2) and therefore the proposition. O
(5.4.5) We now simply mention the following result, which follows from the earlier results of this
section.

Proposition. The image of €' (X) — 2°(X) is stable under o/ and semi-simple and multiplicity
free as an o/ -module. Its simple constituents are the one dimensional spaces spanned by the x . with

meIrr®. In fact, Ay n(Xx) = Apn(T)Xx holds in 2°(X) for m € Irr®.
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(5.4.6) We now discuss how some of the above results are just disguised forms of the local functional
equation and the local converse theorem. Let 7 € Irrg,. For a complex number s and a function

¢ € S(X') we define the zeta function as

Zs.6.) = O [ ol 0@ (a)e

where dx is the normalized Haar measure on B’. (The g2 =1 factor out front makes ¢~ 2™ 1dx
the self-dual Haar measure; it will not really be important for us.) The so-called local functional

equation is the identity

Z(l - s,fB/,w((b),’]Tv) = 6(8,7‘(,1/})2(8,(;577()

for some function (s, 7, 1) of the form ab®. Note that because 7 is cuspidal the L-functions which

normally appear on either side are equal to 1. Now, we have the equality

Z(s,¢,7) = q 2O 157wl () xo

Given this, the local functional equation is exactly equivalent to the fact that y, is an eigenvector of
Ay 1. Furthermore, the statement that the eigenspace of x, is one dimensional, as given in §5.4.5,
amounts to the fact that 7 = 7’ if and only if Ay ,(7) = Ay, (7’) holds for all ¢ and 5. This is the
converse theorem for G’. Notice that our result describing the image of ¥Pa'(X) — 2°(X) as an

«/-module thus encapsulates both the local functional equation and the local converse theorem.

Remark. Although we used the local converse theorem for GLs in our analysis of the split side, its
use was not truly necessary. In fact, using our proof of the Jacquet-Langlands correspondence in
the next section, we could deduce the local converse theorem from GLg from the converse theorem

for G’, of which we have given a complete proof.
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Chapter 6

The Jacquet-Langlands

correspondence

(6.1) In §6, we apply the theory developed in the previous sections to prove the Jacquet-Langlands

correspondence. Here is an overview:

e In §6.2 we prove the fundamental identity needed to compare the two sides in the correspon-

dence. This identity is explicit and elementary.
e In §6.3 we use the result of §6.2 to show that the maps p, and p., agree.

e In §6.4 we use the result of §6.3 to show that H(X) and H(X’) are isomorphic as (& x .7 )-

modules, via the natural restriction map.
e Finally, in §6.5 we use §6.4 to deduce the correspondence.
(6.2) We begin by proving the fundamental identity needed for our comparison.

Proposition. Let a and 8 be elements of F* for which (o, 8) = =1 and put v = —af. Then the
quantity

L(z,a) + L(yz, a)
is independent of v € F*.

Proof. First consider the case where vala is even. Necessarily then, valy is odd (as the residue
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characteristic of F' is odd). We have, for x € F'*,

14+¢ ' valz even
12('7530‘) -

0 val z odd.

As precisely one of x and ~yz has even valuation, we see that Is(x, @) + I2(vz, «) is always equal to
1+qt.

Now consider the case where val @ is odd. We then have
1+ n(x) val z even

12(xa OZ) = q71/2

1+ n(—z/a) valz odd.

If v has even valuation, so that x and yx have the same parity of valuation, then

2+ n(z) + n(yx) valz even
12(‘7:705) + 12(756’ Oé) = q71/2

2+ n(—z/a) + n(—yz/a) valz odd.

As precisely one of y and vy is a square if y has even valuation, we see that the quantity inside the

brace is always equal to 1, which proves the result in this case. If v has odd valuation then we find

24+ n(—yz/a)+n(z) valx even
Lz, a) + I(yz,a) = ¢~/

2+ n(yx) +n(—z/a) valz odd.

As —v/a = 3 is a non-square of even valuation, the quantity inside the brace always equals 1. This

establishes the proposition. O

(6.3) We can now compare p, and 7.
Proposition. Let f be an element of 5’0()?’) = fo()N(eu). Thenp,f+7p.f=0.

Proof. If suffices to show that for K/F a quadratic extension and f € ) (K) we have (Pg).f +
(P )«f = 0. By §4.2.8 and §5.2.6 we have

J/2

D [ V)= —*%X 1 ) (x x
(F)ef + 0 00) = i [ G+ i) @ @)
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where

A — 4dga?
J(z) = L(A — 4dga?, dg) + I (7” dK> ,

v = —dgf and [ is an element of F'* for which (dg,3) = —1. By §6.2 we have that J(z) is

independent of z. As f belongs to % (K) we have that

[ G+ i) @dur@) =0,

which proves the proposition. O
(6.4) We now have our main comparison theorem.

Proposition. Restricting functions on Xey to X’ gives an isomorphism H(X) — H(X') of (/T )-

modules.

Proof. For a function f on Xy let 7(f) denote its restriction to X’. It follows from §4.3.9 and the
definition of H(X') that r : H(X) — H(X’) is an isomorphism of Hilbert spaces. It is equally clear
that r commutes with the action of 7. It remains to check that r commutes with o/. To verify

this, it suffices to show that for f € H(X) we have

r(FE(H) + Fxrp(r(£)) = 0.
Recall that we have defined Fourier transforms

ﬁ(l)

X S (Xre) = € (X0), Fxr g L (X)) = A (X).

By §4.2.7, §5.2.5 and §6.3 we have

r(FLL) + Frr o (r(f)) = 0.

As the map 7 : Fo(X) — Freg(X’) is a linear isomorphism and an L?-isometry and the transform
Fxr .y is an L2-isometry (§5.2.4), it follows that ﬁ)((lz/) is an L2-isometry. It therefore extends
uniquely to a continuous map

T LX) — L*(Xen)

since .7 (X;.) is dense in L?(X.;1). We have previously shown in §4.4.8 that 9‘)((12} and 35)((% agree on

a dense subset of H(X) (which is a closed subspace of L?(Xey)). It follows that ,9’)((1)@,}(]‘) = 9‘)({221) (f)
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for f € H(X). We thus see that
P(FE (D) + P () = 0

for f in Ae(X)N H(X). As this space is dense in H(X) and r, 97)((211) and Fx 4 are continuous, it

follows that the above equation holds for all f € H(X), which proves the proposition. O

(6.5) We can now prove the Jacquet-Langlands correspondence.

Theorem. If 7 is a cuspidal representation of G then there exists a unique cuspidal representation

7 of G' such that X

X,. = —Xar- FBuvery cuspidal representation ' of G' arises from some .

Furthermore if w and © are thusly related then d, = C - dy for some absolute constant C and

e(s,nm, ) = e(s,nr’, ) for all n and .

Proof. As H(X) — H(X') is an isomorphism of (&7 * 7 )-modules, it follows that for = € Irr,
and k € Z there exists ' € Hg,, unique up to unramified twist, such that V., = V. . Note
that this implies that ¢, ; belongs to .”(Xen) for m € Irrg,. Using the same reasoning as in §5.4.3,
one now finds that for m € Irry we have Ay, (Xx) = Ayy(T)xr, Where here we regard x, as a
cuspidal distribution. As y, is orthogonal to .#(X’), the results of §5.4.3 imply that x,|x =
axy for some 7’ € Irrg,. Of course, we then have Ay, (m) = Ay, (7") for all ¢ and 1, which
shows €(2,nm,v) = €(3,nn’, ). The action of Ay, on Vi = Vi (c.f. §4.4.11 and §5.3.17) shows
that n(nm) = n(nr’). We therefore have €(s,nm,¢) = e(s,nn’,4) for all n and 1. The equality
(Dm0, DY 0)x = a2<¢w/70,¢7¥,)0>xx together with the computation of each side now gives o = =1.
The identities of §4.4.4 and §5.3.16, together with the positivity of d, and d, now give a = —1. We
can now again apply §4.4.4 and §5.3.16 to conclude the statement about formal degrees agreeing up
to an absolute constant (in fact, the constant is $¢2/(q + 1)).

We have now proved everything except for the statement that every cuspidal representation of
G’ arises from a cuspidal representation of G. To see this, observe that because H(X) — H(X')
is an isomorphism of (& x .7 )-modules, the map r : Irrg; — Irrg, demonstrated above induces an
isomorphism 7 : Irrg; — Irrg (this follows from §4.4.12 and §5.3.15). Because r behaves well with
respect to twists and 7 is an isomorphism it follows that r is an isomorphism. This proves the

theorem. O

Remark. By normalizing our Haar measures differently, the constant C' in the above theorem can

be made to equal 1.
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Chapter 7

Future directions

(7.1) We now give some discussion about how the above results might be adapted to GL, with
n > 2. We begin by giving some notation and basic definitions. These override previous notations

and definitions.
e Fix an integer n > 1.

e Let X be the space of monic degree n polynomials over F' which are either irreducible or nth

powers.
o Let X,.s be the subspace of X consisting of those polynomials which are irreducible.

e Let dux be the measure on X analogous to the one we have used above. We give a more

precise definition below.
Let B be a central simple F-algebra of rank n?.

e We call z € B elliptic if its characteristic polynomial belongs to X. We write B for the set

of elliptic elements of B.

o We call x € B regular elliptic if its characteristic polynomial belongs to X,.s. We write B

for the set of regular elliptic elements of B.
e We let m: Beyy — X be the characteristic polynomial map.

o We let dup be the Haar measure on B giving volume 1 to any maximal order.
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e For a function f : Bey — C we let m.(f) be the function on X given by the Radon-Nikodym
derivative of 7, (fdup) with respect to dux, wherever this exists. If f € #(Ben) then . (f)

is well-defined and smooth on X.

e For an additive character ¢ of F' we let #p  be the Fourier transform on B with respect to

1, normalized so that it is an L?-isometry.

o Write B = M(D) where D is a central simple division algebra over F. We define ep to be
(~1)k.

If B is a central simple division algebra over F' of rank n? then B = B and 7 : B — X is proper.

The measure dux can be taken to be 7. (dug).

(7.2) Consider the following statement:

Statement (FT,,). Let ¢ be a non-trivial additive character of F. Then there exists a map

Fxy o LX) — L*(X)

which is self-adjoint, an isometry, preserves . (X) and has the following property. Let B be a central
simple F-algebra of rank n?. Let f be a Schwartz function on B which either has reqular elliptic
support or is a linear combination of truncated matriz coefficients of essentially square integrable

representations. Then

Ix (7 (flBa)) = €8m((FBy f)|Ban)-

Note that the map Fx 4, if it exists, is determined uniquely by the final condition imposed on it.
(This uses the facts that the map m, : 7 (Bre) — 7 (Xieg) is surjective and that .7 (Xcg) is dense

in L?(X).) By “truncated matrix coefficients” we mean functions like the ¢y , .+, that we used.

(7.3) For a totally disconnected locally compact group G let Irrg; (G) denote the set of irreducible ad-
missible representations of G whose matrix coeflicients are square integrable. Consider the following

statement:

Statement (JL,). Let B and B’ be central simple F-algebras of rank n®. Then there is a bijection

Irrgi (B*) — Irrgi ((B") )

characterized by the following property: if m corresponds to w' then epxr(x) = €p Xn (') whenever
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xz € B and ¥’ € B’ are regular elliptic elements with the same characteristic polynomial. The

bijection also preserves e-factors and L-functions.

(7.4) We can now discuss the manner in which our work extends to GL,. To begin with, our
methods show

JL,, = FT,, forall n.

This can be seen using explicit computations of the Fourier transforms of matrix elements of square
integrable representations, such as those in §4.4.2. (Of course, there are a lot of details to fill in,
but we believe that no new ideas are needed in addition to our work.) In the other direction, our
methods show

FT, — JL, forn=23.

This can be proved by considering the structure of the cuspidal space H(X) as a module over & x 7.
We carried this out for n = 2; for n = 3 the same argument works. The essential feature which fails
for n > 3 is the form of the local converse theorem which we use. The entirety of this thesis was

devoted to proving FTy and the above implication for n = 2, which gave us a proof of JLs.

(7.5) We proved FTy by attaching a Fourier transform on X to each rank 4 central simple algebra
over I’ and then verifying that all of these Fourier transforms agreed. To prove that they agreed, we
factored them into something intrinsic to X followed by an operator p and then showed that the p’s
agreed. We feel that this approach should work, in theory, to prove FT,,. The problem lies in the
comparison of the p operators. We succeeded in our situation because we could explicitly compute
the p’s and then just look at the resulting formulas to see that they agreed. For n > 2 such an
explicit computation does not seem feasible, at least not by our methods, so a new idea is needed.
Nonetheless, comparing these p operators amounts to showing that two rather elementary integrals

agree. If one could establish this for n = 3 then one would have a purely local proof of JLg.

(7.6) We should remark that while we have put some thought into the claims in §7.4 and §7.5, we

have not worked carefully through the details, so they should be taken with a grain of salt.

(7.7) As mentioned in the introduction, the statement JL, has been proven (by global means).
Thus the statement FT,, is true. We find the Fourier transform #x . to be very intriguing: it is a
natural transform on the space functions on the space of irreducible monic polynomials. There are

a number of questions we have about it:
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e To compute Fx (f) one has to pick a central simple algebra B and choose a lift of f to a
function on B. Is there a more natural description of %x 4, one that does not involve any

choices? In particular, can one describe Fx , without mentioning central simple algebras?

e Is there a natural way to extend Fx y to the space of functions on the space of all monic

polynomials?

e We feel that the principle of functoriality should imply, at least on a philosophical level, that

Fx . interacts nicely with certain operations on polynomials. Can this be made precise?

(7.8) As mentioned, our methods only show FT,, implies JL,, for n = 2,3. We have one idea about
how our approach could be modified to obtain JL,, for larger n. In the case n = 2 we defined
a convolution operation on the space of Schwartz functions on X with regular elliptic support
by pushing forward the multiplicative convolution operation on the non-split quaternion algebra.
The Fourier transform on X could be recovered from this structure by convolving with a specific
function. For general n, if one could define such convolutions on X using any central simple algebra

and compare the resulting operations then one should be able to deduce JL,,.
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