
Drinfel′d Modules: The Carlitz Module, Part 2

Shubhodip Mondal∗

September 22, 2017

Today is the second part of our discussion of Carlitz modules. Last time, we defined the Carlitz exponential,
and described how the Carlitz module structure can be described as a homomorphism to the ring of additive
polynomials k{τ}.

1 Notation and review from last time

We briefly recall some notation and results we had last time.

Notation 1.1. We denote by Fr the finite field of order r = pm, and denote A = Fr[T ]. We also denote
k = Fr(T ), and consider the valuation

v∞ : k −→ R ∪ {∞}

where v∞(1/T ) = 1. We can evaluate the valuation of any rational function by first doing a transformation
T → 1/T and then writing it as (T )e(P (T )/Q(T )) for P (T ) and Q(T ) not divisible by T , in which case this
element has valuation e.

The completion of k with respect to v∞ is denoted K∞. We fix an algebraic closure K∞ of K∞ and we
define C∞ to be its completion.

We also defined [i] = T r
i − T , and defined

D0 = 1, Di = [i][i− 1]r · · · [1]r
i−1

and

L0 = 1, Li = [i][i− 1] · · · [1]

which are analogues of factorials.

One of our main results last time was the following:

Theorem 1.2 (Carlitz [Gos96, Thm. 3.1.5, Lem. 3.2.5, Cor. 3.2.6]). Let

ed(x) :=
∏

α∈A(d)

(x− α)

where A(d) := {α ∈ A | deg < d}. Then,

ed(x) =

d∑
i=0

(−1)d−ixr
i Dd

DiLr
i

d−i
.

We will give an alternative proof of this last fact, using Moore determinants [Gos96, p. 45].

∗Notes were taken by Takumi Murayama, who is responsible for any and all errors. Please e-mail takumim@umich.edu with
any corrections. Compiled on September 26, 2017.
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2 Additive polynomials [Gos96, §§1.1–1.2]

We start with some preliminaries on Fr-linear polynomials. Let Fr ⊆ L be a field extension, and let
P (x) ∈ L[x]. We then have the following:

Proposition 2.1 (cf. [Gos96, Prop. 1.1.5]). Let L be an infinite field containing Fr. Then, a polynomial
P (x) ∈ L[x] is Fr-linear if and only if P (x) ∈ L{τ}.

Here, we say that P (x) is Fr-linear if P (α+ β) = P (α) + P (β) for all α, β ∈ L, and P (λα) = λP (α) for
λ ∈ Fr . The ring L{τ} is the ring of polynomials in τ = xr, with composition as multiplication. This ring is
sometimes called the ring of Frobenius polynomials or the Frobenius algebra.

We note that for Proposition 2.1 to hold, we must assume that L is infinite. For example, if L = Fr, then
(xr − x)2 evaluates to zero for all α ∈ Fr, but it is not in L{τ}.

We will also need the following result:

Theorem 2.2 (cf. [Gos96, Cor. 1.2.2]). Let L be an algebraically closed field containing Fr. Let P (x) ∈ L[x]
be a separable polynomial. Then, P (x) is Fr-linear if and only if roots of P (x) form an Fr-vector space.

Since the roots of ed(x) form an Fr-vector space by definition, we can conclude the following:

Corollary 2.3. The polynomial ed(x) is Fr-linear.

3 The Moore determinant [Gos96, §1.3 and p. 45]

One of the key elements of the induction-free proof of Theorem 1.2 is that the polynomial ed(x) can be
written in terms of Moore determinants.

Definition 3.1. The Moore determinant is

∆(w0, . . . , wd) := det


w0 · · · wd
wr0 · · · wrd
...

wr
d

0 · · · wr
d

d

 .

The Moore determinant can detect linear independence of elements over Fr.

Proposition 3.2 [Gos96, Lem. 1.3.3]. Let L be a field containing Fr. The, the set {w0, . . . , wd} is linearly
independent over Fr if and only if ∆(w0, . . . , wd) 6= 0.

In our case, we have

ed(x) =
∏

α∈A(d)

(x+ α) =
∆(1, . . . , T d−1, x)

∆(1, . . . , T d−1)
,

since ed(x) is zero if and only if x is a polynomial of degree < d, and the constant in the denominator is there
to get the correct scaling; see [Gos96, Prop. 1.3.5.2]. This equality is the analogue of how the Vandermonde
determinant of 1, 2, 3, . . . , n, x is a constant multiple of (x− 1) · · · (x− n).

This expression of ed(x) in terms of the Moore determinant shows the expression for ed(x) in Theorem 1.2
by writing out the Moore determinants in the numerator and denominator; see [Gos96, p. 45].

4 The Carlitz module and the Carlitz exponential [Gos96, §§3.2–
3.3]

Last time, to prove the convergence statement in Theorem 1.2, we did some rescaling: Choose an (r − 1)th
root λ of −[1] from K∞, and let

ξ∗ :=

∞∏
j=1

(
1− [j]

[j + 1]

)
,
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which we can think of as an analogue of π ∈ R. Set ξ := λξ∗, which we can think of as an analogue of
2πi ∈ C. Then, we showed that

eC(x) :=

∞∑
j=0

xr
j

Dj
,

is an entire function [Gos96, Lem. 3.2.5], such that [Gos96, Thm. 3.2.8]

1

ξ
eC(ξx) = x

∏
06=α∈A

(
1− x

α

)
.

Note that this implies eC(·) is Fr-linear. Replacing x 7→ x/ξ, we get the expression

x
∏

α∈Lr{0}

(
1− x

α

)
= eC(x),

where L := ξA [Gos96, Cor. 3.2.9].
Last time, we also saw:

Proposition 4.1 [Gos96, Prop. 3.3.1]. Let x ∈ C∞. Then,

eC(Tx) = TeC(x) + (eC(x))r.

This shows that the action of T on C∞ via the A-module structure induced by eC is the same as the
usual action of T , added with a Frobenius twist by τ , since (eC(x))r = τ(eC(x)).

Corollary 4.2 [Gos96, Cor. 3.3.2]. If a =
∑d
i=0 aiT

i for ai ∈ Fr. Then,

eC(ax) = aeC(x) +

d∑
j=1

C(j)
a eC(x)r

j

where {C(j)
a } ⊂ A, and C

(d)
a = ad.

We will later talk about how we can define Carlitz modules by choosing a similar collection of elements

of A first. Also we will discuss how the fact that C
(j)
a ⊂ A allows us to replace our ground field k with an

arbitrary A-field.

Proof Idea. By Fr-linearity, it suffices to note that for i ≥ 1, we have

eC(T ix) = ec(T (T i−1x)),

and then use induction. For example,

eC(T 2x) = T 2eC(x) + (T r + T )erC(x) + eC(x)r
2

.

Later on, we will also see how to iteratively compute C
(j)
a from C

(j−1)
a .

We also saw that we can define, for a ∈ A = Fr[T ], the polynomial

Ca(x) = aτ0 +

d∑
j=1

C(j)
a τ j ∈ k{τ},

where d = deg a. From the relation above, it follows that

eC(ax) = ca(eC(x)),

and we have the following:
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Theorem 4.3 [Gos96, Thm. 3.3.4]. The mapping

A −→ k{τ}
a 7−→ Ca

is an injective homomorphism of Fr-algebras, and in particular,

Cab = Ca ◦ Cb = Cb ◦ Ca = Cba.

So although the codomain k{τ} is not commutative, the image of A is commutative. In any case, the
non-commutativity of the ring k{τ} is quite tractable: τa = arxr, while aτ = axr.

Definition 4.4. This map A→ k{τ} is called the Carlitz module. This defines a new A-module structure
on C∞: if x ∈ C∞, then a · x = Ca(x), and in particular, for m ∈ Fr, we have m · x = mx.

Remark 4.5. The Carlitz module is the unique map taking T 7→ T + τ which is identity on elements of Fr.
Therefore, in principle, we could use this as our definition and avoid having to talk about the exponential.
However, while computing the torsions of the Carlitz module, we will see the importance of the exponential.
In the more general case, while defining the Drinfeld module associated to a lattice, its often convenient to
start with an exponential function associated to the lattice.

Since the Carlitz exponential is surjective (see [Gos96, Prop. 2.13], whose proof uses Newton polygons),
the Carlitz exponential induces an isomorphism

eC : C∞/L
∼−→ C∞,

where L := ξA as before. Thus, the Carlitz exponential eC is transporting the A-module on the left-hand
side to the Carlitz module structure on the right-hand side.

We now define the analogue of roots of unity for complex numbers (which are in other words, the Z
torsion elements in C∗) in the case of Carlitz modules.

Definition 4.6. The division values of the Carlitz module are the values

{eC(aξ) | a ∈ k} ⊂ C∞,

where eC(aξ) ∈ C∞ since writing a = b/f ∈ k, we have

Cf (eC(aξ)) = eC(bξ) = 0,

i.e., eC(aξ) is a root of Cf (x) = 0, hence in C∞.

Definition 4.7. Let g ∈ A. We set

C[g] :=

{
eC

(
bξ

g

) ∣∣∣∣ b ∈ A} ⊂ C∞,

which are all the roots of Cg(x). They are the g−torsion elements in the Carlitz module. This sub-A-module
(as Carlitz modules) of C∞ is isomorphic to A/(g).

We now prove something quite analogous to the computation of Galois groups for cyclotomic fields.

Proposition 4.8 [Gos96, Prop. 3.3.8]. Let L ⊆ C∞ be an extension of k. Let a ∈ k and let L1 = L(eC(aξ)).
Then, L1 is an abelian extension of L.

Proof. If a = b/f , then

eC

(
b

f
ξ

)
= Cb

(
eC

(
ξ

f

))
,

and so L1 ⊆ L(eC(ξ/f)). We can therefore reduce to the case when b = 1, since if L(eC(ξ/f)) is an abelian
extension of L, then Aut(L1/L) is a quotient of Aut(L(eC(ξ/f))/L), hence is abelian as well.
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We therefore assume that L1 = L(eC(ξ/f)). In this case, since eC

(
b
f ξ
)

= Cb

(
eC

(
ξ
f

))
, we see that

L1 contains all the f -torsion points, which are all the roots of Cf (x), and therefore L1 is a splitting field
for Cf (x) which is a separable polynomial. The extension is therefore Galois, and the f -torsion points are
isomorphic to A/(f) as Carlitz modules.

Let G be the Galois group, and let x ∈ L1. If σ ∈ G and g ∈ A, then we have Cg(σ(x)) = σ(Cg(x)) since∑
j

aj(σ(x))r
j

=
∑
j

σ(ajx
rj ) = σCg(x),

i.e., the Galois group G commutes with the Carlitz module structure since the module structure is defined
by a polynomial with coefficients in A. We then claim that σ(eC(ξ/f)) is a generator for f -torsion points.
Indeed,

Cg

(
σ

(
ec

(
ξ

f

)))
= σ

(
Cg

(
eC

(
ξ

f

)))
= σ

(
ec

(
gξ

f

))
.

We note that σ permutes f -torsion points, since they are all the roots of Cf (x). Now by varying g one can
obtain all f -torsion points. So the above equality implies that,

σ(eC(ξ/f))

is an A-module generator for f -torsion points as well. We therefore see that we can embed G ↪→ (A/f)∗.

Before moving on to Carlitz modules for arbitrary A-fields, we will go back a little bit and try to compute

the C
(j)
a in terms of a recursion. Let

Ca(τ) = aτ0 +

d∑
j=1

C(j)
a τ j

as before. Defining aj := c
(j)
a , we have

Proposition 4.9 [Gos96, Prop. 3.3.10].

a1 =
ar − a
T r − T

, a2 =
ar1 − a1
T r2 − T

, . . . , ai =
ari−1 − ai−1
T ri − T

, . . .

Proof. Write Ca = aτ0 + χa, where χa ∈ A{τ}; for example, χT = τ . We can write CaCT = CTCa, hence

(aτ0 + χa)CT = CT (aτ0 + χa).

In terms of the commutator [·, ·], this is equivalent to

[CT , aτ
0] = −[CT , xa].

Equating coefficients of τ j on both sides gives the desired formulas. We also note that since v 7→ [u, v] is a
derivation of k{τ} where u, v ∈ k{τ}, we obtain a derivational equation for the Carlitz module structure.

5 The Carlitz Logarithm [Gos96, §3.4]

We can define

log(x) =

∞∑
i=0

(−1)i
xr

i

Li
,

which converges at α if v∞(α) > r
1−r . One can also calculate

v∞(ξ) =
r

1− r
,

and so the logarithm converges ”up to the smallest non-zero period of eC(x)”.
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6 Carlitz modules over arbitrary A-fields [Gos96, §3.6]

Definition 6.1. We say that L is an A-field if there is a homomorphism ι : A→ L. We define ℘ := ker(ι).
We say that L has generic characteristic if ℘ = {0}.

To define a Carlitz module structure on L, we do the following: we define

Ĉa =
∑
j

ι(C(j)
a )τ j ,

and define the A-module structure by a · x = Ĉax for x ∈ L. We will abuse the notation and write Ca in
place of Ĉa.

Taking the derivative with respect to x, we get

C ′a(x) = ι(a),

that is, ca is separable if and only if a /∈ ℘.
From now on, we assume that L is algebraically closed (by extending to L). We can then define C[a] ⊂ L

to be the roots of Ca(x), which are the same as the a-torsion points.
We want to describe the a-torsion points of C as an A-module.

Theorem 6.2 [Gos96, Thm. 3.6.2.1]. Let a /∈ ℘ = ker(ι). Then, C[a] ' A/(a).

Proof. First, note that C[a] is an A-module with rdeg(a) elements. We also have that

C[a] '
⊕
i

A/(hi)
bi (6.1)

since A is a PID, where the hi-s are prime and bi > 0. We then use the following:

Lemma 6.3. Let a, f ∈ A. Assume that at least one the elements a, f does not belong to ℘. Then Cf acts
as automorphisms on C[a] if and only if gcdA(f, a) = 1.

Proof. Cf clearly acts on C[a] since we have Cf (Ca(x)) = Ca(Cf (x)). Since C[a] is finite, this action is an
automorphism iff Cf has a trivial kernel, i.e., Cf and Ca has no common non-zero root. Now if gcd(a, f) = 1
then we have an equation of the form uf + va = 1. But that implies that CuCf + CvCa = id, which allows
us to conclude that there cannot be a common non-zero root. Conversely if gcd(a, f) = t, where deg t ≥ 1,
we have a = pt and f = qt. So Ca = CpCt and Cf = CqCt. Now C ′a 6= 0 (C ′f 6= 0) implies that C ′t 6= 0. Now

degCt = rdeg t ≥ r. So Ct has a non-zero root, implying that Ca and Cf has a non-zero common root.

Returning to the proof of Theorem 6.2, we write a =
∏
j f

ej
j , and apply Lemma 6.3 to see that exactly

the irreducible factors of a appear in the decomposition (6.1), since these are the only elements of A that
cannot act by automorphisms on C[a]. Also, the LHS of (6.1) has elements that are f

ej
j torsions but not f tj

torsion for any t < ej .That implies that the decomposition (6.1) must contain factors of the form A/(fj)
bj ,

where bj ≥ ej . Now we just count: we have

rdeg a = #C[a] ≥ r
∑
bj deg fj ≥ r

∑
ej deg fj = rdeg a,

hence bj = ej , and therefore

C[a] '
⊕
i

A/(fj)
ej ' A/a.

We can also show the following:

Theorem 6.4 [Gos96, Thm. 3.6.2.2]. Let (f) = ℘. Then, C[f i] = {0} ⊂ L.
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Proof. Since C ′f (x) = ι(f) = 0, we see that Cf (x) is not separable, hence it has < rdeg(f) roots in L. An

argument similar to that of Theorem 6.2 says that C[f ] ' A/(f)j for some j. Indeed, for any prime h 6= f ,
h /∈ ℘ and by the above lemma, Ch acts as an automorphism on C[f ]. Now,

rj deg f = #(A/f j) = #C[f ] < rdeg(f).

Therefore, j = 0. This also says something abut Cf :

Cf ≡ xr
deg f

mod ℘A[x],

and moreover,

Cfi = xr
i deg f

mod ℘A[x].

One can also interpret the results above in terms of finite group schemes, since

C[f i] ' L[x]/xr
i deg f

.

We now formulate a generalization of Lemma 6.3.

Corollary 6.5. Let a, b ∈ A. Then Cb acts as an automorphism on C[a] iff gcd(a, b) = f i for some i ≥ 0,
where (f) = ℘.

Proof. Let a′ be such that gcd(a′, f) = 1 and fma′ = a. Then C[a] = C[a′] and a′ /∈ ℘. Now by the lemma,
Cb acts as automorphism on C[a′] iff gcd(a′, b) = 1, implying that gcd(a, b) = f i for some i ≥ 0. Converse is
also clear.

Now suppose we have a prime element f of A. We define ℘ := (f). Then, we have a map

A −→ A/℘ = F℘.

Let F℘n be the extension of F℘ of degree n. It is an A-field of characteristic ℘ and can be equipped with a
Carlitz module structure. We then have

Proposition 6.6 [Gos96, Thm. 3.6.3]. Via C, we have F℘n ' A/(fn − 1) as Carlitz A-modules.

Proof. The left-hand side is a finite set and an A-module. Since A is infinite, there exists m 6= 0 in A such
that m annihilates Fpn . This implies that Fpn is an A-submodule of a cyclic module. Since A is a PID, this

implies that Fpn is cyclic. Now we already saw that Cfn = xr
n deg f

mod ℘A[x]. This implies that fn − 1
annihilates Fpn as an A-module. Now as before, we can count number of points on either side to show that it
must be isomorphic to A/(fn − 1).
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