# Note on Modular Manifolds for Elliptic Modules

October 27, 2017

#### Haoyang Guo

#### Abstract

This short note was intended to cover the Section 5 in Drinfeld's paper in the talk at October 20, 2017, which is still incomplete about details though. And the only reference is Drinfeld's paper [Dr]

#### Construction of modular schemes

We fix A be the ring of integers of a local field k of characteristic p. Let S be a scheme over S.

**Definition 0.1.** An elliptic module X of rank d over S is a pair  $(L, \phi)$ , where L is a line bundle with a commutative group scheme structure over S that is locally additive, and  $\phi : A \to \operatorname{End}(L)$  is a ring homomorphism to the ring of endomorphism of the group scheme L over S, satisfying

- For any  $a \in A$ , the differential of  $\phi(a)$  is multiplication by a.
- For any given  $\operatorname{Spec}(K) \to S$ , where S is a field, the induced homomorphism from  $A \to K\{\tau\}$  is an elliptic module of rank d in the previous sense.

Note that this makes X(S) = L(S) become an A-module.

**Example 0.2.** When  $S = \operatorname{Spec}(B)$  and  $L = \operatorname{Spec}(B[T])$  is the trivial bundle over S, the ring of endomorphism  $\operatorname{End}(L)$  is canonically isomorphic to  $B\{\tau\}$ , so  $\phi$  becomes a ring homomorphism from A to  $B\{\tau\}$ . And when  $X = (L, \phi)$  is an elliptic module of rank d, the homomorphism is of the form

$$\phi(a) = \sum_{i=0}^{n} b_i \tau^i.$$

We note that the definition above will make  $b_i$  nilpotent for  $i > d \log_p |a|$ , and  $b_i$  invertible for  $i = d \log_p |a|$ .

**Definition 0.3.** We say an elliptic A-module of rank d is **standard** if for every  $a \in A$ , the endomorphism  $\phi(a)$  is of the form

$$\sum_{i=0}^{d \log_p |a|} b_i \tau^i, \ b_i \in H^0(S, L^{1-p^i}),$$

where  $b_{d \log_n |a|}$  is by definition nowhere vanishing.

Now we introduce the level structure.

**Definition 0.4.** Let I be an ideal of A, and  $X = (L, \phi)$  is an elliptic A-module of rank d. Then an I-level structure on X is a A-module morphism

$$\psi: (I^{-1}A/A)^d \longrightarrow X(S),$$

such that for each  $m \in V(I)$ , as a divisor  $X_m := \ker(\phi(m)) \subseteq X$  coincides with the sum of divisors

$$\sum_{\alpha \in (m^{-1}A/A)^d} \psi(\alpha).$$

**Remark 0.5.** When the image of  $S \to \operatorname{Spec}(A)$  does not intersect V(I), the level structure of I is equivalent to an isomorphism

$$(I^{-1}A/A)^d \times S \cong X_I.$$

Roughly, this is analogues to the *n*-level structure of an elliptic curves over  $\mathbb{F}_q$ , where  $\gcd(n,q)=1$ .

**Theorem 0.6** (Existence of moduli scheme). Let  $I \subseteq A$  be a nonzero ideal with  $\#V(I) \ge 2$ . Then the functor

 $Sch_A \longrightarrow \{elliptic\ A\ modules\ of\ rank\ d\ with\ I-level\ structure\}/iso$ 

is represented by a scheme  $M_I^d$ , which is of finite type over A.

Proof.

**Lemma 0.7** (Lemma 1). Let B be a ring of characteristic p with Spec(B) connected,  $f_1, f_2 \in B\{\tau\}$ , where  $f_i = \sum_{j=0}^{d_i} a_{ij} \tau^j$  such that  $a_{id_i}$  is invertible in B. Let  $h \in B\{\tau\}$  such that

$$hf_1 = f_2h$$
.

Then we have

- If  $d_1 \neq d_2$ , then h = 0.
- If  $d_1 = d_2$  and  $h \neq 0$ , then the leading coefficient of h is invertible.

**Lemma 0.8** (Lemma 2). Let B be a ring of characteristic p,  $f = \sum_{i=0}^{n} a_i \tau^i$ , d > 0, with  $a_d$  invertible and  $a_i$  nilpotent for i > d. Then there exists a unique element of the form

$$h = 1 + \sum_{j=1}^{m} b_j \tau^j, \ b_j \ nilpotent$$

such that

$$\deg(hfh^{-1}) = d.$$

*Proof.* Strategy of the second lemmas: considering the ideal I generated by nilpotent coefficients, show by induction that we could take the conjugation to make the coefficient of index > d into the ideal  $I^{2^N}$ .

Now we could give a sketch of the proof. The proof is divided into two parts:

- The first part is a geometric argument, showing that when restricting the functor over some subcategories (that cover the whole category  $Sch_A$ ), any elliptic A-module of rank d is trivialized. Since V(I) has at least two primes, for any elliptic A-module of rank d X over S, there exists at least one  $m \in V(I)$  such that m is not the characteristic of X; in other words, the image of  $S \to \operatorname{Spec}(A)$  factors through  $\operatorname{Spec}(A) \setminus m \to \operatorname{Spec}(A)$ . So we first restricts the functor above onto subcategories  $Sch_{A,m}$ , consisting of all of S such that  $S \to \operatorname{Spec}(A) \setminus m \to \operatorname{Spec}(A)$ . But after taking the restriction, any choice of a nonzero element in  $(m^{-1}A/A)^d$  gives a trivialization of X (a section  $\psi(a)$  which is nowhere vanishing on S). So each elliptic A-module of rank d over such a S is over a trivial bundle.
- Now by the Lemma 2, under the isomorphism, there exists a unique standard elliptic A-module of rank d over the trivial line bundle. Based on this, the moduli of standard elliptic module with level I structure can be constructed by the parametrization of coefficients of  $\phi(a_i)$  and  $\psi$ , where  $a_i$  are finite generators of A over  $\mathbb{F}_q$ , thus exists and affine.

So at the end, we could glue them (by the uniqueness) to get the whole moduli scheme  $M_I^J$ .

### Deformations of elliptic modules

In this section, we will use the result in last talk to show the geometric properties of  $M_I^d$ .

We let  $v \in \operatorname{Spec}(A)$ ,  $\mathcal{O} = A_v$ ,  $\kappa = \overline{A_v/v}$ , and denote by  $\mathcal{C}$  by the category of complete local  $\widehat{\mathcal{O}}^{nr}$ -algebras whose residue field is  $\kappa$ . We pick X to be an elliptic A-module of rank d over  $\kappa$  with level structure  $v^n$ .

Now we consider the functor

$$R \in \mathcal{C} \longmapsto \{deformations \ of \ level \ v^n \ of \ X \ over \ R\}/iso.$$

Here the deformation is in the sense of elliptic A-module of rank d, not the one for formal groups. Then this functor can be represented as follows: Let I be a nontrivial ideal in A with  $v \notin V(I)$ . We lift the  $v^n$  level structure on X to a level structure of level  $Iv^n$ , which corresponds to a point  $x \in M^d_{Iv^n}(\kappa)$ . Then we take the image y of x in  $M^d_{Iv^n} \times_A A^{nr}_v$ , and let  $F_n$  be the completion local ring at y. The ring  $F_n$  represents our functor. To show the representability, we have the picture as belows



On the other hand, given  $R \to C$  with an elliptic A-module of rank d Y over R, we could consider the induced limit

$$\widehat{Y} = \lim Y_{v^n},$$

which is a divisible  $A_v$ -module in the category of formal schemes. (We note that the divisibility can be showed by Hensel's Lemma.) Besides, a  $v^n$ -level structure on Y induces a level structure of level n on  $\widetilde{Y}$ , in the sense of divisible formal group (recall). We recall the ring  $E_n$  constructed in the last talk, which parametrizes (represents) the all possible deformation of divisible formal group  $\widetilde{Y}$  over R. Then by induced structure, we could get a morphism

$$\operatorname{Spec}(F_n) \longrightarrow \operatorname{Spec}(E_n).$$

Here is the main result in this section

**Theorem 0.9.** The homomorphism  $E_n \to F_n$  given above is an isomorphism.

Granting the theorem, the local property of  $M_I^d$  can be deduced from what we know about the ring  $E_n$  last time, and we get the following geometric properties about the modular scheme.

**Corollary 0.10.** Assume I is a nontrivial ideal in A such that  $\#V(I) \geq 2$ . Then  $M_I^d$  is a smooth variety of dimension d over  $\mathbb{F}_q$ . The morphism  $M_I^d \to \operatorname{Spec}(A)$  is smooth over  $\operatorname{Spec}(A) \setminus V(I)$ . And if  $J \subseteq I$ , the morphism  $M_J^d \to M_I^d$  is finite and flat.

*Proof.* The proof is divided into three parts:

- Since a level structure on  $\widehat{Y} = \varinjlim Y_{v^n}$  will also endow a  $v^n$ -level structure on Y, we could reduce to n = 0.
- From the embedding  $\mathbb{F}_p[x] \to A$ , any elliptic A-module of rank d has a natural structure of elliptic  $\mathbb{F}_p[x]$ -modules, so we could get a natural map from  $E'_0 \to E_0$  ( $F'_0 \to F_0$ ). And after the discussion about the action of  $A^*_x$  on those rings, we could reduce from general A to  $A = \mathbb{F}_p[x]$ .

• Prove the case for n = 0,  $A = \mathbb{F}_p[x]$ , v = (x). Here by what we know before about  $E_0$ , and the modular interpretation of  $F_0$ , those two rings are isomorphic to  $\mathbb{F}_p[x, \alpha_1, \dots, \alpha_{d-1}]$ . We then show that the induced map on tangent spaces is injective, thus the morphism we have should be an isomorphism.

## The action by adeles

In this section, we introduce the action of  $GL(d, \mathbb{A}_f)$  on the modular scheme.

We let  $\mathbb{A}$  be the ring of adeles of k, and  $\mathring{A}_f$  be the ring of finite adeles. And let  $\widehat{A} = \varprojlim A/I$  be its completion.

Since  $M_J^d \to M_I^d$  is finite flat between qcqs schemes, we could define the inverse limit as the big modular scheme.

$$M^d = \varprojlim M_I^d.$$

We now use the modular interpretation to define the action of  $GL(d, \mathbb{A}_f)/k^*$  on  $M^d$ .

Let S be a A-scheme, X be a elliptic A-module of rank d over S together with a morphism  $\psi: (k/A)^d \to X(S)$ , such that for each  $I \subset A$ , the restriction on  $(I^{-1}/A)^d$  is a structure of level I. Let  $g \in \mathrm{GL}(d, \mathbb{A}_f)$  be a matrix with coefficient in  $\widehat{A}$ , which is an endomorphism of  $(k/A)^d$  with finite kernel P. We denote by H to be the sum of divisors

$$\sum_{\alpha \in P} \psi(\alpha).$$

Then H corresponds to a A-finite submodule of X, and X/H is also an elliptic A-module of rank d, since  $\psi$  commutes with A-actions. This actually endows a unique morphism  $\psi_1: (k/A)^d \to X/H(S)$  such that the following diagram commutes

$$\begin{array}{c|c} (k/A)^d & \xrightarrow{\psi} & X(S) \\ g & & \downarrow \\ (k/A)^d & \xrightarrow{\psi_1} & X/H(S). \end{array}$$

Here in order to show that the morphism  $\psi_1|_{I^{-1}/A}$  is a level structure, we will need a small result in the last talk. And after that, by checking the local coordinates, we see g gives a left action on  $M^d$ . But note that since the scalar matrix  $k^*$  acts trivially (this is because  $X/X_a \cong X$  for  $a \in A$ , and  $\psi$  commutes with A-actions, so  $\psi_1 = \psi$ ), we could extend the action to  $\mathrm{GL}(d, \mathbb{A}_f)/k^*$ . So follow this we get a morphism  $g: M^d \to M^d$ .

This action actually makes the modular scheme of given level become the quotient of the big modular scheme. Let  $I \subset A$  be a nontrivial ideal with  $\#V(I) \geq 2$ , and let  $U_I = \ker(\operatorname{GL}(d, \widetilde{A}) \to \operatorname{GL}(d, A/I)$ ). Then for any  $J \subseteq I$ , the morphism

$$M^d_J \times_A (\operatorname{Spec}(A) \backslash V(J)) \longrightarrow M^d_I \times_A (\operatorname{Spec}(A) \backslash V(J))$$

is a finite etale Galois covering (bundle) with structure group  $U_I/U_J$ . So since  $M_I^d$  is normal, by reducing to the affine, the whole  $M_I^d$  equals to  $U_I \setminus M_I^d$ , so we get

$$M_I^d = U_I \backslash M^d$$
.

## Congruence relations

At the end of the note, we give the congruence relation of modular schemes.

Let  $v \in \operatorname{Spec}(A)$ , and let  $M_{(v)}^d$  be the fiber of  $M^d$  over v. Then to each point of  $M_{(v)}^d$  it corresponds to a elliptic A-module of rank d, which also corresponds to a formal  $A_v$ -module, since  $\phi(v^n)(T)$  is approaching to 0 as  $n \leadsto \infty$ . Here is our main theorem:

**Theorem 0.11.** Let  $W \subseteq M_{(v)}^d$  be the subset of points that correspond to formal  $A_v$ -modules of height 1. Then we get

- 1. The subset W is an open, affine and everywhere dense subset in  $M_{(v)}^d$  that is  $GL(d, \mathbb{A}_f)$ -invariant.
- 2. Let  $B \subset GL(d, k_v)$  be a group of matrices  $(a_{ij})$  with  $a_{i1} = 0$  for i > 1. Let B' be the preimage of B in  $GL(d, \mathbb{A}_f)$ . Then the  $GL(d, \mathbb{A}_f)$ -scheme W is the induced scheme by some (any) B'-scheme  $W^0$  that has the following properties
  - (a) The matrices  $(a_{ij}) \in B \subset B'$  for which  $|a_{11}|_v = 1$  and the lower right corner (i, j > 1) coincides with the identity acts trivially on  $W_{red}^0$ .
  - (b) The matrix

$$\left(\begin{array}{ccc} \pi_v & & 0 \\ & 1 & \\ & & \ddots \\ 0 & & 1 \end{array}\right)$$

acts on  $W_{red}^0$  as the geometric Frobenius of  $A_v/\pi_v$ .

### References

[Dr] V.G. Drinfel'd. Elliptic Modules, Mathematics of the USSR-Sbornik (1974), 23 (4): 561.