
UNIFORMIZATION OF DRINFELD MODULAR CURVES

MATT STEVENSON

Abstract. These are notes from a talk in the Arithmetic Geometry Learning Seminar on Drinfeld modules

during the fall of 2017. In this talk, we discuss the uniformization of the Drinfeld modular curves (of fixed rank,

with level structure), following [Dri74, §6]. In addition, we introduce the relevant rigid-analytic background.
The exposition draws heavily on [DH87, Gek86].

1. Uniformization of Complex Modular Curves

If N ∈ Z>0, consider the functor FN : (Sch /Z[ 1
N ])op → (Sets) given by

S 7→
{

elliptic curves E over S, equipped with a full level-N structure
}/
',

where a full level-N structure on an elliptic curve E over S is the choice of an isomorphism (Z/NZ)2 '−→ E[N ]
of S-group schemes.

Theorem 1.1. If N ≥ 3, the functor FN is representable by a smooth affine Z[ 1
N ]-scheme Y (N) of finite type.

Taking the C-points of the moduli scheme Y (N) gives a complex manifold Y(N) := Y (N)(C) called the
modular curve of level N over C, whose points parametrize elliptic curves over C together with an isomorphism
(of abelian groups) between the N -torsion of the elliptic curve and (Z/NZ)2.

Let H := {τ ∈ C : im(τ) > 0} be the complex upper half-plane. Recall that SL(2,Z) acts on H (on the left)
by fractional linear transformations. We will be particularly interested in the action of the principal congruence
subgroup

Γ(N) :=

{
γ =

(
a b
c d

)
∈ SL(2,Z) : γ ≡

(
1 0
0 1

)
mod N

}
of level N ; equivalently, Γ(N) is the kernel of the “reduction mod N” map SL(2,Z) → SL(2,Z/NZ). The
action of Γ(N) on H is discrete (equivalently, properly discontinuous), so the quotient Γ(N)\H exists as a
complex-analytic space.

For any τ ∈ H, the lattice Λτ := Z + Zτ gives rise to an elliptic curve Eτ := C/Λτ over C, along with

a full level-N structure (Z/nZ)2 '−→ Eτ [N ], sending the two generators of (Z/NZ)2 to 1
N ,

τ
N ∈ Eτ [N ]. This

construction gives rise a surjective, Γ(N)-invariant, holomorphic map

H −→ Y(N)

that induces an isomorphism

Γ(N)\H '−→ Y(N)

of complex-analytic spaces. The realization of Y(N) as the quotient of the complex manifold H by the discrete
action of the group Γ(N) is often referred to as the (complex-analytic) uniformization of the modular curve of
level N .

The goal of today’s lecture is to explain the analogue of the above uniformization theorem for the moduli
spaces of Drinfeld modules of fixed rank and with some level structure. To do so, we must first discuss the
correct analytic framework.
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2. Rigid-Analytic Geometry

This section provides a brief overview of the basic definitions in Tate’s theory of rigid-analytic geometry. For
careful introductory treatments, see [Bos14, Con08].

Let K be a complete (nontrivially-valued) non-Archimedean field with norm | · |. The fundamental algebraic
object in the theory is the Tate algebra K{T1, . . . , Tn} over K, which is the Banach K-algebra defined by

K{T1, . . . , Tn} :=

f =
∑
µ≥0

aµT
µ ∈ K[[T1, . . . , Tn]] : aµ ∈ K, |aµ| → 0 as |µ| → +∞

 .

Intuitively, K{T1, . . . , Tn} is the algebra of analytic functions on the closed unit ball over K. More generally,
the basic algebraic building blocks of Tate’s theory are the Banach K-algebras isomorphic to a quotient of a
Tate algebra by an ideal; these are called K-affinoid algebras.

Just as in the theory of schemes, the basic algebraic objects give rise to the basic spaces: to a K-affinoid
algebra, we construct a K-affinoid space Sp(A). In order to call Sp(A) a ‘space’, we must specify 3 pieces of
data: the underlying set, the topology, and the structure sheaf.

The underlying set of Sp(A) is the set Max(A) of maximal ideals of A. One can check that any K-algebra
map φ : A → B induces a well-defined pullback map φ∗ : Max(B) → Max(A). Moreover, Sp(A) comes with a
distinguished collection of subsets, known as the affinoid subdomains of Sp(A): every affinoid subdomain is (a
finite union of subsets) of the form

{x ∈ Max(A) : |f1(x)| ≤ |g(x)|, . . . , |fm(x)| ≤ |g(x)|}
for f1, . . . , fm, g ∈ A that generate the unit ideal. Here, if f ∈ A and x ∈ Max(A), then f(x) denotes the image
of f in the residue field of A at x (the residue field is a finite extension of K, and hence | · | extends in a unique
way).

The set Max(A) is equipped with a (strong) Grothendieck topology given by the following data:

• a subset U ⊆ Max(A) is an admissible open if there is a (set-theoretic) cover {Ui}i∈I of U by affinoid
subdomains such that for any map φ : A → B of K-affinoid algebras such φ∗(Max(B)) ⊆ U , then
finitely-many of the Ui’s cover φ∗(Max(B));
• a collection {Vj}j∈J of admissible opens is an admissible cover of V =

⋃
j∈J Vj if for any map φ : A→ B of

K-affinoid algebras such φ∗(Max(B)) ⊆ V , the cover {(φ∗)−1(Vj)}j∈J of Max(B) has a finite refinement
by affinoid subdomains of Max(B).

Furthermore, there is a natural structure sheaf on this Grothendieck topology (with A as the algebra of global
sections), which we will not define here.

More generally, a rigid space over K is a locally G-ringed space with an admissible covering by K-affinoid
spaces; that is, a rigid space over K is obtained by gluing together a collection of K-affinoid spaces.

Example 2.1.

(1) The closed unit polydisc is Sp(K{T1, . . . , Tn}), and its underlying set corresponds to Gal(K/K)-orbits

of n-tuples (x1, . . . , xn) ∈ Kn
such that |x1|, . . . , |xn| ≤ 1.

(2) Pick c ∈ K with |c| > 1 and let Ai = K{c−iT1, . . . , c
−iTn} be the K-affinoid algebra of power series

convergent on a ball of radius |c|. There is a sequence of inclusions

Sp(A0) ↪→ Sp(A1) ↪→ . . . ↪→ Sp(An) ↪→ . . .

and these glue to give the rigid affine n-space, denoted An,rig
K (said differently, we have constructed affine

space by expressing it as a nested union of closed balls of increasing radii).

In fact, for any scheme X locally of finite type over K, there is an associated rigid space Xrig, called the rigid
analytification of X, whose underlying point set is the set of closed points of X. The operation X 7→ Xrig is
functorial, and satisfies the GAGA theorems that exist for complex analytification.
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In the sequel, we will be discussing the quotients of rigid spaces by certain group actions, so the following
existence result will be crucial.

Proposition 2.2. [Dri74, §6.2] If X is a separable rigid space and Γ is a group acting discretely on X, then the
quotient Γ\X exists as a rigid space.

The proof proceeds as one might expect: choose an affinoid cover of X such that Γ acts by a finite subgroup
on each member of the cover, and hence one can form the algebra of invariants to form the quotient locally, and
then glue.

3. Drinfeld Modular Curves

Let q be a power of a prime p. Let X be a geometrically irreducible, smooth, projective curve over Fq, and
let K be the function field of X. Fix a place ∞ of K (that is, a closed point of X), and let | · |∞ be the
corresponding norm on K, normalized so that |π|∞ = q−1, where π is any uniformizing parameter at ∞. Let
A = H0(X\{∞},OX) and let I ⊆ A be an ideal such that # Spec(A/I) > 1. Let K∞ be the completion of K
with respect to the norm | · |∞, and let C be the completion of the algebraic closure of K∞.

Consider the functor DMr
I : (Sch /A)op → (Sets) given by

S 7→ {Drinfeld modules over S of rank r with level I-structure} / ' .

The goal of the previous lecture was to prove the following representability theorem of Drinfeld:

Theorem 3.1. [Dri74, Proposition 5.3] The functor DMr
I is represented by an affine A-scheme Mr

I of finite
type.

When viewed as a scheme over Fq, M
r
I is smooth of dimension r; however, the structure map Mr

I → Spec(A)
is only smooth away from Supp(I) in general.

The Drinfeld modular curve (of rank r and level I) is the rigid analytification

Mr
I := (Mr

I ⊗A K∞)
rig

of the moduli scheme. The C-points of the rigid spaceMr
I classify isomorphism classes of Drinfeld modules over

C of rank r with level-I structure. In [Dri74, §3], we saw an alternate classification of such objects in terms of
r-lattices1 in C with some level structure: more precisely, there is an equivalence of categories{

homothety classes r-lattices Λ in C with
A/I-module isomorphisms (A/I)r ' Λ/IΛ

}
'−→
{

isomorphism classes of Drinfeld modules
over C of rank r with level-I structure

}
=Mr

I(C),

where an r-lattice Λ ⊆ C is sent to the Drinfeld module φΛ (as defined in [Gek86, Chapter I, 2.3])

The goal of this lecture is to produce a rigid-analytic space Ω̃r over K∞, equipped a discrete group action ΓI
on Ω̃r, and a surjective ΓI -invariant morphism Ω̃r →Mr

I such that the induced map

ΓI\Ω̃r
'−→Mr

I (3.1)

is an isomorphism. The space Ω̃r will (in a certain sense) parametrize a large class of lattices with some
level structure and the ΓI -action will identify equivalent level structures; thus, the isomorphism (3.1) aims to
generalize the above equivalence of categories.

1If r ∈ Z>0, an r-lattice in C is a finitely-generated projective rank-r A-submodule of C that is a discrete subset of C, i.e. it
intersects every ball of finite radius in C in only finitely-many points.
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4. Drinfeld Upper Half Space

In this section, let K be a local non-Archimedean field with valuation ring R, and uniformizer π. Let | · | be
a norm on K and let q−1 = |π|.

For r ≥ 2, consider the rigid projective space Pr−1,rig
K with homogeneous coordinates [z1 : . . . : zr]. The

underlying point set of Pr−1,rig
K consists of Gal(K/K)-orbits of points Pr−1(K), i.e. the closed points of the

K-scheme Pr−1
K . Let Ωr be the set-theoretic complement of all K-rational hyperplanes in Pr−1,rig

K . The goal is
to show that Ωr is naturally a rigid-analytic space over K (by showing that Ωr is an admissible open subset of

Pr−1,rig
K ). The rigid space Ωr is known as the Drinfeld upper half space over K.

In order to prove that Ωr is an admissible open in Pr−1,rig
K , we must first relate Ωr to the (geometric realization

of the) Bruhat–Tits building for the group GL(r,K) (with the key relationship coming from the fact that Ωr is

invariant for the usual action of GL(r,K) on Pr−1,rig
K ). For a complete exposition, see [DH87, §3].

4.1. The Bruhat–Tits Building and the Building Map. Given a R-lattice L in the vector space Kr, let
{L} := {cL : c ∈ K∗} denote the homothety class of L. The set Sr of homothety classes of R-lattices in Kr can
be realized as the vertex set of a simplicial complex B(r,K), known as the Bruhat–Tits building of the group
PGL(r,K). More precisely, define B(r,K) to be the simplicial complex of dimension r−1 given by the following
data:

(1) the 0-simplices correspond to the points of Sd;
(2) the homothety classes {L0}, {L1}, . . . , {Ln} span an n-simplex if there are representatives Li ∈ {Li}

such that

πL0 ( Ln ( . . . ( L1 ( L0.

The geometric realization of B(r,K) is the subset Sr(R) ⊆
∏
v∈B(r,K)[0, 1] consisting of those tuples (tv) such

that
∑
v tv = 1 and the subset {v : tv 6= 0} determines a simplex of B(r,K).

Each n-simplex σ = {v0, . . . , vn} of B(r,K) has its geometric realization |σ| living naturally in (R≥0)n+1, and
we equip it with the induced topology. The geometric realization Sd(R) is equipped with the inductive limit
topology; that is, a subset U ⊆ Sr(R) is open iff U ∩ |σ| is open for all simplices σ. There are two distinguished
subsets of Sr(R), namely the points Sr(Z) with integer coordinates (these are precisely the 0-simplices of
B(r,K)), and the dense subset Sr(Q) of points with rational coordinates.

The geometric realization Sd(R) admits an alternate description in terms of a space of norms, which we
discuss now.

If V is a finite-dimensional K-vector space, a norm on V is a function α : V → R≥0 satisfying

(1) α(x) = 0 iff x = 0;
(2) α(ax) = |a|α(x) for x ∈ V and a ∈ K;
(3) α(x+ y) ≤ max{α(x), α(y)}.

A norm α on V is integral if α(V ) = |K| = {0} ∪ qZ, and it is rational if α(V ) ⊆ {0} ∪ qQ. Moreover, if α is a
norm on V and t > 0, then the dilation tα is still a norm on V . Denote by N(V ) the set of dilation classes of
norms on V . A dilation class is integral or rational if it contains an integral or rational norm.

Example 4.1. Given a lattice L in V , one can construct a norm αL on V as follows: if x ∈ V , set

αL(x) := inf{|a|−1 : a ∈ K, ax ∈ L}.

Notice that this construction behaves well under homothety of the lattice: if c ∈ K∗, then αcL = |c|−1αL. In
addition, given an R-basis x1, . . . , xr ∈ L of L, one can show that

αL(a1x1 + . . .+ arxr) = max{|a1|, . . . , |ar|},

In particular, the unit ball of αL is precisely L.
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The construction in Example 4.1 provides the connection between the Bruhat–Tits building and the space of
norms: if σ = {v0, . . . , vn} is an n-simplex of B(r,K) and t = (t0, . . . , tn) ∈ |σ|, pick representatives Li of vi
such that πL0 ( Ln ( . . . ( L1 ( L0 and tn > 0, and set

θ(t) := max
i=0,...,n

qti+...+tnαLi
.

Miraculously, θ(t) is norm on Kr, and different choices of representatives of the vi’s yield dilation-equivalent

norms. In fact, much more is true: θ defines a bijective map Sr(R)
'−→ N(Kr), sending Sr(Z) and Sr(Q) onto

the classes of integral and rational norms, respectively.
There is a function ρ on the space of norms, defined as follows: for two norms α, β on V , set

ρ(α, β) := logq

(
sup

x∈V \{0}

α(x)

β(x)

)
+ logq

(
sup

x∈V \{0}

β(x)

α(x)

)
.

It is clear that ρ(α, β) is invariant if α and β are dilated, so it depends only on the dilation classes {α} and {β}.
Even better, one can show that the function {α} × {β} 7→ ρ({α}, {β}) defines a metric on the set N(V ), and ρ
is invariant under the GL(V )-action on N(V ) (given by precomposition).

Example 4.2. If L is a lattice in V and α is a norm on V , then one can check that

ρ(α, αL) = logq

(
sup

x∈L\πL
α(x)

)
− logq

(
inf

x∈L\πL
α(x)

)
.

Consider the building map λ : Ωr → N(Kr), which sends a point [z1 : . . . : zr] ∈ Ωr to the (dilation class of)
the norm

(a1, . . . , ar) 7→ |a1z1 + . . .+ arzr|.
Note that this is a norm (as opposed to a seminorm) precisely because the zi’s have no K-linear dependence.
Furthermore, the definition of λ appears to depend on a choice of representative of [z1 : . . . : zr], but different
choices yield dilation-equivalent norms, so λ is well-defined.

The norm on K is discretely-valued, so |C∗| = qQ; in particular, the image of λ lands in the subset of rational
classes of norms. Moreover, viewing GL(r,K) as acting on N(Kr) by precomposition, it is easy to see that λ is
GL(r,K)-equivariant.

4.2. Rigid Structure on the Drinfeld Upper Half Space.

Theorem 4.3. [Dri74, Proposition 6.1]

(1) If α1, . . . , αk ∈ Sr(Z) and c ∈ Q, then

Xc :=

{
z ∈ Ωr :

k∑
i=1

ρ(αi, λ(z)) ≤ c

}
is an affinoid subdomain of Pr−1,rig

K .

(2) The subset Ωr is an admissible open subset Pr−1,rig
K ; in particular, Ωr naturally admits the structure of

a rigid-analytic space over K.

We will only prove Theorem 4.3(1) in the case k = 1, but this is sufficient to prove (2).

Proof. To prove (1) when k = 1, we may assume that α1 = αΛ, where Λ = Rr is the standard lattice in Kr

(indeed, any other lattice can be obtained from Λ from the GL(r,K)-action). Then,

ρ(αΛ, λ(z)) = logq

(
sup

a∈Λ\πΛ

|a1z1 + . . .+ arzr|

)
− logq

(
inf

a∈Λ\πΛ
|b1z1 + . . .+ brzr|

)
,
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so ρ(αΛ, λ(z)) ≤ c iff for any a, b ∈ Λ\πΛ, we have the inequality

|a1z1 + . . .+ arzr|
|b1z1 + . . .+ brzr|

≤ qc. (4.1)

By passing to a finite q−n-net in Λ\πΛ for n� 0, it suffices to check (4.1) for finitely-many pairs of a, b in Λ\πΛ.
For simplicity, assume that we must check it only for a single pair a, b.

Let W ⊆ Pr−1,rig
K be the locus where b1z1 + . . . + brzr 6= 0. As W is Zariski-open, W is an admissible open

subset of Pr−1,rig
K . The function z 7→ a1z1+...+arzr

b1z1+...+brzr
is analytic on W , so the subset of z ∈W where (4.1) holds is

an affinoid subdomain of W , and hence of Pr−1,rig
K .

For (2), it suffices to show that for any morphism ϕ : Sp(B) → Pr−1,rig
K such that ϕ(Sp(B)) ⊆ Ωr, there is

c ∈ Q such that ϕ(Sp(B)) ⊆ Xc. The image of ϕ lands in some polydisc, and so by homogenizing and rescaling
we may write ϕ as

x 7→ [b1(x) : . . . br(x)]

for some functions bi ∈ B such that |bi(y)| ≤ 1 for all y ∈ Sp(B). We claim that there exists c ∈ Q such that
ρ(αΛ, λ(ϕ(x))) ≤ c for all x ∈ Sp(B), from which it follows that ϕ(Sp(B)) ⊆ Xc.

Define the function ψ : Kr → R≥0 by the formula

ψ(a1, . . . , ar) := inf
x∈Sp(B)

∣∣∣∣∣
r∑
i=1

aibi(x)

∣∣∣∣∣ ,
and notice that ψ(a) = 0 iff a = 0 (if not, one could use the completeness of B to construct a point x ∈ Sp(B)
where ϕ is not defined); in particular, ε := infa∈Λ\πΛ ψ(a) > 0. Furthermore, by our choice of bi’s, the ultrametric
inequality gives that

sup
a∈Λ\πΛ

∣∣∣∣∣
r∑
i=1

aibi(x)

∣∣∣∣∣ ≤ sup
a∈Λ\πΛ

max
i=1,...,r

|ai||bi(x)| ≤ 1.

It follows that

sup
x∈Sp(B)

ρ(αΛ, λ(ϕ(x))) = sup
x∈Sp(B)

logq

(
sup

a∈Λ\πΛ

∣∣∣∣∣
r∑
i=1

aibi(x)

∣∣∣∣∣
)
− logq

(
inf

a∈Λ\πΛ
inf

x∈Sp(B)

∣∣∣∣∣
r∑
i=1

aibi(x)

∣∣∣∣∣
)

≤ logq(1)− logq(ε).

Thus, if c ∈ Q is larger than − logq(ε), then we have ϕ(Sp(B)) ⊆ Xc, as required. �

5. Uniformization of the Drinfeld Modular Curve

We revert now to the notation of §3. Let A
(∞)
K be the ring of adèles of K without the component ∞, and let

O(∞)
K be the subring of integral elements. Given a matrix g = (gv)v 6=∞ ∈ GL(r,A

(∞)
K ), the subset

Λg :=
⋂
v 6=∞

(gv · Orv ∩Kr)

of Kr is an A-lattice (and comes equipped with a distinguished basis for this lattice); see [BS97, Lemma 1.4.6].
Set

GL(r,O(∞)
K,I ) := ker

(
GL(r,O(∞)

I )→ GL(r,A/I)
)
.

In [Dri74], Drinfeld writes UI for GL(r,O(∞)
K,I ). Two matrices g, g′ ∈ GL(r,A

(∞)
K ) give the same A-lattice with

level-I structure if they differ by the GL(r,O(∞)
K,I )-action.

Let MonK(Kr, C) denote the set of injective K-linear maps Kr → C. Given an A-lattice Λ in Kr and a map
j ∈ MonK(Kr, C), the subset j(Λ) is an r-lattice in C. Thus, there is a well-defined map

GL(r,A
(∞)
K )×MonK(Kr, C)/C∗ −→Mr

I(C), (5.1)
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where we think of Mr
I(C) as homothety classes of r-lattices in C with level-I structure. In fact, there is a

GL(r,K)-action on the product GL(r,A
(∞)
K )×MonK(Kr, C) given by

g · ((gv)v 6=∞, j) :=
(

(g · gv)v 6=∞ , j ◦ g−1
)
,

for g ∈ GL(r,K), and we have j(Λh) ' j′(Λh′) precisely when (h, j) and (h′, j′) are related by the GL(r,K)-
action. In particular, (5.1) factors through the quotient by GL(r,K) to give a map

GL(r,K)\
(

GL(r,A
(∞)
K )×MonK(Kr, C)/C∗

)
−→Mr

I(C) (5.2)

Now, there is a bijection Ωr(C)
'−→ MonK(Kr, C)/C∗ given by

[z1 : . . . : zr] 7→ ((a1, . . . , ar) 7→ a1z1 + . . .+ arzr) ,

and the inverse sends a map j ∈ MonK(Kr, C) to the point [j(e1) : . . . : j(er)], where e1, . . . , er are the standard
basis vectors of Kr. Thus, we can rewrite (5.2) as

GL(r,K)\
(

GL(r,A
(∞)
K )× Ωr(C)

)
−→Mr

I(C). (5.3)

The same story holds if one replaces C with K∞. Consider the rigid space

Ω̃r := GL(r,K)\
(

GL(r,A
(∞)
K )× Ωr

)
.

The map (5.3) defines a GL(r,O(∞)
K,I )-invariant morphism Ω̃r −→ Mr

I of rigid spaces, and hence it descends to
a morphism

φI : GL(r,O(∞)
K,I )\Ω̃r −→Mr

I

of rigid spaces from the quotient.

Theorem 5.1. [Dri74, Proposition 6.6] The morphism φI is an isomorphism of rigid spaces.

The calculations in this section show that φI is a bijection, and one can show that φI induces an isomorphism
on all completed local rings; in particular, φI is a local isomorphism. Finally, Drinfeld shows that φI is a
quasi-compact morphism (this is the difficult part), from which it follows that φI is an isomorphism.
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