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Action of π1 on the Universal Cover

Recall that a group action of a group G on a set X is a map G × X → X (which we will denote by
juxataposition) such that (gh)x = g(hx) and ex = x where e is the identity element of g.

Recall that the universal cover (X̃, x̃0) of a base-pointed space (X,x0) can be thought of as a set of
homotopy classes of paths from x0. There is a natural way to define a group action of π1 on X̃: just
concatenate a loop in X onto the path modulo homotopy.

More fomally, we define an action π1(X,x0)× (X̃, x̃0)→ (X̃, x̃0) by [f ]× [g] 7→ [fg]. It is easy to see that
this is well-defined and is a group action. The continuity of the map created by the action of each element
is left as an exercise.

Covers Corresponding to Subgroups of π1

We now prove the main result of this talk. This is part of the Galois correspondence, which says that there is
a bijective correspondence between connected pointed covers of a space (up to isomorphism) and subgroups
of its fundamental group. This portion gives us surjectivity, i.e. it gives us a cover for every subgroup of the
fundamental group.

Proposition: Let X be path-connected, locally path-connected, and semi-locally simply connected. Then
given a subgroup H of π1(X,x0), there exists a cover p : Y → X such that p∗(π1(Y, y0)) = H for some
basepoint y ∈ y0.

Proof:
Step 1: Construct the cover.
Define a relation ∼ on the universal cover X̃ (with paths base-pointed at x0) by saying [γ] ∼ [γ′] if

γ(1) = γ′(1), i.e. the paths are between the same points, and [γγ̄′] ∈ H. We claim that this is an equivalence
relation.

1. Reflexivity: H contains the identity element (the class of the constant loop), so [γγ̄] ∈ H

2. Symmetry: H is closed under inverses, so [γγ̄′] ∈ H implies [γγ̄′]−1 = [γ′γ̄] ∈ H

3. Transitivity: Suppose [γ] ∼ [γ′] and [γ] ∼ [η]. Then [γγ̄′], [γη̄] ∈ H, so by closure under inverses
[γ′γ̄] ∈ H as well. Thus from closure under multiplication [γ′γ̄][γη̄] = [γ′η̄] ∈ H.
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Let Y be the quotient space obtained from X̃ by identifying elements which are equivalent under ∼. We
claim that defining p : Y → X by sending the equivalence class of [γ] to γ(1) gives a covering space. p is
well-defined because equivalent homotopy classes come from paths with the same endpoint.

Step 2: Show that we have a cover.
To show that p and Y define a covering space, we show that the inverse image of a basis element U of

X (as defined in the construction of the universal cover) is a disjoint union of open sets in Y . p−1(U) is
by definition the set of equivalence classes of homotopy classes of paths ending in U . Examine the inverse
image of p−1(U) under the quotient map from X̃ to Y .

We claim that this inverse image is the union of all U[γ] where γ is a path ending in U . Certainly all such
U[γ] map into U under the quotient map and p, as endpoints are preserved. Moreover, [γ] ∈ U[γ], so if we
pick any homotopy class of the equivalence class of paths mapping into U , then it will be in the U for that
homotopy class.

If two paths γ and γ′ have the same endpoint, then for any other path η we have [γ] ∼ [γ′] if and
only if [γη] ∼ [γ′η], so if any two points in neighborhoods U[γ] and U[γ′] are are identified, then the whole
neighborhoods are identified. This gives us the breakdown into disjoint open sets - the image of each
neighborhood under the quotient map gives us one open set, and we throw out “duplicate“ neighborhoods.

Step 3: Show that the cover has the desired property.
Let y0 be the equivalence class of [c] where c is the constant loop. We claim that p∗(π1(Y, y0)) = H.
Lemma: p∗(π1(Y, y0)) is the set of homotopy classes of loops in X based at x0 whose lifts to Y starting

at [c] are loops.
Proof of lemma: Suppose that a loop γ in X lifts to a loop in Y starting at [c]. Then certainly [γ] is

in p∗(π1(Y, y0)) because p applied to this loop is γ. Now suppose that [γ] is in p∗(π1(Y, y0)). Then there
exists a loop η in Y for which p∗([η]) = [pη] = [γ]. Define pη = γ′, which must be a loop in X. Then γ is
homotopic to γ′, which has a lift (namely η) to Y , so by the homotopy lifting property γ has a lift to Y too.

Let γ be a loop in X at x0. Then we can create a lift to Y by sending t to the equivalence class of [γt],
where γt(s) = γ(ts), that is, γt is γ but truncated at γ(t). This lift starts at y0, so by the unique lifting
property this is the only such lift. This lift is a loop iff [γ] ∼ [c], that is, [γc̄] = [γ] ∈ H. �

Galois Covers

Normal subgroups of a group are interesting - are the covers that we get from them (by what we just did)
also interesting? The answer is yes. We begin by defining the interesting property:

Definition: A cover p : Y → X is Galois (or normal) if for each x ∈ X and each pair of points y, y′ in
p−1(x), there exists an isomorphism Y → Y which sends y to y′.

Recall Andrew’s example of a Galois covering - cover S1 (in the complex plane) by itself with the map
z 7→ zn. Then we can send z 7→ ξz where ξ is an nthe root of unity - the collection of these maps gives us
all the isomorphisms that we need. We now relate these ”normal“ covers to normal subgroups.

Proposition: The covering space constructed in our earlier proposition is Galois iff H is a normal subgroup.
Proof: Umut will show that changing the base point of the fundamental group of Y to another point in

p−1(x) corresponds to conjugating H = p∗(π1(Y, y0) (a subgroup of the fundamental group of X) by a loop
[γ], where the lift of [γ] is a path from the old base point to the new base point. H is closed under conjugation,
i.e. normal, if and only if the conjugated group is equal to the new group, i.e. p∗(π1(Y, y0) = p∗(π1(Y, y1)
for all y1 ∈ p−1(x). But the lifting criterion tells us that this condition is equivalent to there being an
isomorphism of Y with itself which takes y0 to y1, which is all we needed. �
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