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Action of m; on the Universal Cover

Recall that a group action of a group G on a set X is a map G x X — X (which we will denote by
juxataposition) such that (gh)z = g(ha) and ex = = where e is the identity element of g.

Recall that the universal cover (X, ) of a base-pointed space (X,z) can be thought of as a set of
homotopy classes of paths from zy. There is a natural way to define a group action of m; on X: just
concatenate a loop in X onto the path modulo homotopy.

More fomally, we define an action 7 (X, o) x (X, #o) — (X, %0) by [f] X [g] — [fg]. It is easy to see that
this is well-defined and is a group action. The continuity of the map created by the action of each element
is left as an exercise.

Covers Corresponding to Subgroups of m;

We now prove the main result of this talk. This is part of the Galois correspondence, which says that there is
a bijective correspondence between connected pointed covers of a space (up to isomorphism) and subgroups
of its fundamental group. This portion gives us surjectivity, i.e. it gives us a cover for every subgroup of the
fundamental group.

Proposition: Let X be path-connected, locally path-connected, and semi-locally simply connected. Then
given a subgroup H of 71 (X, x), there exists a cover p : Y — X such that p.(7m1(Y,y0)) = H for some
basepoint y € yo.

Proof:

Step 1: Construct the cover.

Define a relation ~ on the universal cover X (with paths base-pointed at xo) by saying [y] ~ [y/] if
7(1) = +'(1), i.e. the paths are between the same points, and [yy/] € H. We claim that this is an equivalence
relation.

1. Reflexivity: H contains the identity element (the class of the constant loop), so [yy] € H

2. Symmetry: H is closed under inverses, so [yy'] € H implies [yy/] " = [y/5] € H

3. Transitivity: Suppose [y] ~ [7] and [y] ~ [5]. Then [yy],[y7] € H, so by closure under inverses
[Y#7] € H as well. Thus from closure under mul%iplication YAy = [V'7) € H.



Let Y be the quotient space obtained from X by identifying elements which are equivalent under ~. We
claim that defining p : Y — X by sending the equivalence class of [7] to (1) gives a covering space. p is
well-defined because equivalent homotopy classes come from paths with the same endpoint.

Step 2: Show that we have a cover.

To show that p and Y define a covering space, we show that the inverse image of a basis element U of
X (as defined in the construction of the universal cover) is a disjoint union of open sets in Y. p~}(U) is
by definition the set of equivalence classes of homotopy classes of paths ending in U. Examine the inverse
image of p~!(U) under the quotient map from X to Y.

We claim that this inverse image is the union of all U[,; where v is a path ending in U. Certainly all such
U}, map into U under the quotient map and p, as endpoints are preserved. Moreover, [y] € U}, so if we
pick any homotopy class of the equivalence class of paths mapping into U, then it will be in the U for that
homotopy class.

If two paths v and +" have the same endpoint, then for any other path n we have [y] ~ [7/] if and
only if [yn] ~ [y'n], so if any two points in neighborhoods U},) and U}, are are identified, then the whole
neighborhoods are identified. This gives us the breakdown into disjoint open sets - the image of each
neighborhood under the quotient map gives us one open set, and we throw out “duplicate“ neighborhoods.

Step 3: Show that the cover has the desired property.

Let yo be the equivalence class of [c] where ¢ is the constant loop. We claim that p, (71 (Y, y0)) = H.

Lemma: p,(m1(Y,y0)) is the set of homotopy classes of loops in X based at zy whose lifts to Y starting
at [c] are loops.

Proof of lemma: Suppose that a loop v in X lifts to a loop in Y starting at [¢]. Then certainly [7] is
in p.(m1(Y,y0)) because p applied to this loop is y. Now suppose that [y] is in p.(71(Y,yo)). Then there
exists a loop n in Y for which p.([n]) = [pn] = [y]. Define pn = ~+/, which must be a loop in X. Then 7 is
homotopic to 4/, which has a lift (namely 1) to Y, so by the homotopy lifting property ~ has a lift to Y too.

Let v be a loop in X at zp. Then we can create a lift to Y by sending ¢ to the equivalence class of [y;],
where v:(s) = 7(ts), that is, ; is v but truncated at «(¢). This lift starts at yg, so by the unique lifting
property this is the only such lift. This lift is a loop iff [y] ~ [c], that is, [y¢] = [y] € H. O

Galois Covers

Normal subgroups of a group are interesting - are the covers that we get from them (by what we just did)
also interesting? The answer is yes. We begin by defining the interesting property:

Definition: A cover p : Y — X is Galois (or normal) if for each 2 € X and each pair of points y,y in
p~1(x), there exists an isomorphism Y — Y which sends y to y'.

Recall Andrew’s example of a Galois covering - cover S! (in the complex plane) by itself with the map
z — 2". Then we can send z — £z where £ is an nthe root of unity - the collection of these maps gives us
all the isomorphisms that we need. We now relate these "normal“ covers to normal subgroups.

Proposition: The covering space constructed in our earlier proposition is Galois iff H is a normal subgroup.

Proof: Umut will show that changing the base point of the fundamental group of Y to another point in
p~1(z) corresponds to conjugating H = p.(m1(Y, o) (a subgroup of the fundamental group of X) by a loop
[v], where the lift of [¢] is a path from the old base point to the new base point. H is closed under conjugation,
i.e. normal, if and only if the conjugated group is equal to the new group, i.e. p.(m1(Y,y0) = p«(m1(Y,91)
for all y; € p~*(z). But the lifting criterion tells us that this condition is equivalent to there being an
isomorphism of Y with itself which takes yo to y;, which is all we needed. [



