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1. Local class field theory

The local Kronecker–Weber theorem tells us that the maximal abelian extension of Qp is
obtained by adjoing all roots of unity to Qp. We can use this to determine the abelianization
of the absolute Galois group GQp . Put

K =
⋃
n≥1

Qp(ζpn), L =
⋃

(n,p)=1

Qp(ζn) =
⋃
n≥1

Qp(ζpn−1).

Then L/Qp is unramified, and the maximal unramified extension since its resiude field is Fp.

We thus see that Gal(L/Qp) ∼= Ẑ. Now, from basic algebraic number theory, we know that
Q(ζpn) is totally ramified as p. We thus have

Gal(Qp(ζpn)/Qp) = Gal(Q(ζpn)/Q) ∼= (Z/pnZ)×,

and so Gal(K/Qp) = Z×p . Since KL is the maximal abelian extension of Qp, we find

Gab
Qp

= Gal(KL/Qp) = Ẑ× Z×p .

The second equality follows from the fact that K and L are linearly disjoint, since K is
totally ramified and L is unramified. Recall that

Q×p = Z× Z×p .

Thus Q×p and G×Qp
look very similar! In fact, we can say that G×Qp

is isomorphic to Q̂×p , the

profinite completion of the group Q×p . In fact, this statement generalizes to finite extensions
of Qp, which is essentially the main content of local class field theory:

Theorem 1.1 (Local class field theory). Let K/Qp be a finite extension. Then there exists
a unique isomorphism

ϕ : K̂× → Gab
K

(called the local Artin map) with the following properties:

(a) For any uniformizer π of K, the restriction of ϕ(π) to the maximal unramified exten-
sion of K is the Frobenius element.

(b) For any finite abelian extension L/K, we have an isomorphism

K×/NmL/K(L×)→ Gal(L/K)

induced by ϕ.
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It follows from (a) that we get a commutative diagram

1 // UK

��

// K̂×
v //

��

Ẑ //

��

1

1 // I // Gal(Kab/K) // Gal(Kun/K) // 1

where I ⊂ Gal(Kab/K) is the inertia group, and the vertical maps are isomorphisms. In
fact, there is a more precise statement: the higher unit groups correspond to higher interita
groups in a specific manner.

2. Global class field theory

The cyclotomic character yields an isomorphism χ : Gal(Q(ζn)/Q) → (Z/nZ)×. If p - n
then p is unramified in Q(ζn), and so we have a Frobenius element Frobp in Gal(Q(ζn)/Q).
Its action on roots of unity is not difficult to determine: we have Frobp(ζ) = ζp (idea: this
is true mod p, and prime-to-p roots of unity maps injectively mod p). Thus χ(Frobp) = p ∈
(Z/nZ)×.

This is a simple computation, but it has a remarkable consequence: p and q are two primes
such that p ≡ q (mod n) then Frobp = Frobq in Gal(Q(ζn)/Q), and conversely. The global
Kronecker–Weber theorem implies the same holds for any abelian extension of Q. That is, if
K/Q is a finite abelian extension then there exists some n such that Frobp = Frobq whenever
p ≡ q (mod n).

This statement generalizes to arbitrary number fields, and is essentially the main theorem
of global class field theory. To formulate the generalization, we need to introduce some
terminology. Fix a number field K, and suppose that L/K is a finite extension. Let S
be the set of primes of K that ramify in L. Given a prime p 6∈ S, we have a well-defined
Frobenius element Frobp ∈ Gal(L/K). Let IS be the group of fractional ideals of K that
are relatively prime to S. This group is simply the free abelian group with basis consisting
of those primes not in S. We can therefore build a homomorphism

ψ : IS → Gal(L/K), p 7→ Frobp.

This is called the global Artin map (or, at least, one version of it).
We now want to use this map to precisely formulate the fact that Frobp is periodic in p.

If K has class number 1, then we could simply ask that there exists some ideal m such that
Frobp = Frobq whenever p = (α) and q = (β) and α ≡ β (mod m). Equivalently, this would
say that p = (β/α)q, where β/α is an element of K× congruent to 1 modulo m. Formulated
in this way, we can generalize to the setting where p and q are possibly non-principal. In fact,
there is one additional idea we need to bring in. In the case K = Q, we have Frobp = Frobq

in Q(ζn) if and only if p = q (mod n). However, both p and −p generate the ideal (p), and we
might have −p = q (mod n) without p = q (mod n). So how do we know which generator
to pick? Well, in this case, we can simply say Frobp = Frobq if and only if (p) = (α)(q) for
some positive element α ∈ Q× that is congruent to 1 modulo n.

This motivates the following definition. A modulus for K is a pair m = (mf ,m∞) where
the finite part mf is an integral ideal, and the infinite part m∞ is a set of real places of K.
Given a modulus m we let Km,1 be the set of elements a ∈ K× such that a ≡ 1 (mod mf )
and a is positive at the places in m∞. We also write S(m) = S for the set of primes dividing
mf , and let Im = IS(m). If a ∈ Km,1 then the principal ideal (a) belongs to Im. We thus have
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a group homomorphism i : Km,1 → Im. We define the ray class group Cm of K to be the
quotient Im/Km,1. We can now phrase the periodicity statement:

Theorem 2.1 (Reciprocity law). Let L/K be a finite abelian extension, and let S be the set
of primes of K ramifying in L. Then there exists a modulus m of K, prime to S, such that
the Artin map induces a surjection

Cm → Gal(L/K).

In fact, it induces an isomorphism

IS/(i(Km,1) · NmL/K(ISL))→ Gal(L/K).

This theorem gives a lot of information about the Galois group of an abelian extension,
but does not tell us what all the abelian extensions are. This is taken care of by the following
theorem:

Theorem 2.2 (Existence theorem). Given any modulus m of K, there exists an abelian
extension Km/K such that the Artin map induces an isomorphism Cm → Gal(L/K).

The field Km in the above theorem is called the ray class field associated to m. Note
that, by Galois theory, the existence theorem asserts that every quotient of Cm is realized
as the Galois group of some abelian extension. Also, the reciprocity law tells us that every
finite abelian extension is contained in some Km. Thus, for a general number field, Km takes
the place of Q(ζn) and Cm takes the place of (Z/nZ)× (which is the ray class group for the
modulus ((n),∞)).

It follows from the above that Gab
K can be described as the inverse limit of Cm’s. We now

study this, and give a convenient description of it. For the moment, fix a modulus m. Let
I be the group of ideles of K, and Im ⊂ I be the subgroup consisting of ideles x = (xv)
satisfying the following conditions: (a) for a finite place v dividing mf , we have xv ∈ Uv,n(v),
where n(v) is the multiplicity of v in m; (b) for a real place v in m∞, we have xv > 0. Let
U ⊂ Im be the subgroup consisting of ideles (xv) such that xv ∈ Uv for all finite v.

Lemma 2.3. We have an isomorphism Im/(Km,1 · U) = Cm.

Proof. Consider the homomorphism f : Im → IS(m) defined by f(xv) =
∏

v-∞ p
val(xv)
v , where

val(xv) is the valuation of xv ∈ K×v . Note that, since (xv) ∈ Im, we have val(xv) = 0 if v | m,
so f does take values in IS(m). It is clear that f is surjective. Moreover, it is clear that
ker(f) = U . The claim thus follows. �

Lemma 2.4. The inclusion Im ⊂ I induces an isomorphism Im/Km,1 → I/K×.

Proof. The kernel of the map Im → I/K× is K× ∩ Im (intersection computed in I). This
is clearly Km,1. Thus the stated map is well-defined and injective. To prove surjectivity, it
suffices to show that I = ImK×. For this, it suffices to show the following: given elements
xv ∈ K×v for v ∈ S(m) there exists y ∈ K× totally positive such that y ≡ xv modulo Uv,n(v)

for all v ∈ S(m). This is an easy application of the Chinese remainder theorem. �

We thus see that CK = I/K× (the idele class group) maps to each Cm, and does so
compatibly. It is clearly not the inverse limit (since I/K× still has the real numbers in it,
and is therefore not profinite), but it does surject onto the inverse limit. Thus it surjects
onto Gab

K . In fact, we have the following theorem:

Theorem 2.5. Let K be a number field.
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(a) We have a unique homomorphism ϕ : IK → Gab
K (the global Artin map) such that for

every finite place v, the restriction of ϕ to K×v is the local Artin map ϕv. (And for
real places, ϕ induces an isomorphism K×v /Kv,>0

∼= GKv .)
(b) The kernel of ϕ contains K×.
(c) For a finite abelian extension L/K, the map ϕ induces an isomorphism

CK/NmL/K(CL)→ Gal(L/K).

In the adelic language, the existence theorem takes the following form:

Theorem 2.6. Fix an algebraic closure K of K. Then for every open subgroup U of CK

of finite index, there exists a unique abelian extension L of K ontained in K such that
NmL/K(CL) = U .
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