
MATH 776
REVIEW OF HOMOLOGICAL ALGEBRA

ANDREW SNOWDEN

Let A be an abelian category. One can take A to be the category of left modules over a
ring without losing much generality.

1. Chain complexes

A chain complex in A is a pair (Mn, dn)n∈Z where Mn is an object of A and dn : Mn →
Mn−1 is a morphism such that dn−1 ◦ dn = 0 for all n. We write a chain complex as

· · · // M2
d2 // // M1

d1 // M0
// · · ·

We typically just write d in place of dn, and leave this implicit when writing a chain complex.
A morphism of chain complexes f : M• → N• consists of giving for each n ∈ Z a morphism
fn : Mn → Nn in A, such that the diagrams

Mn
d //

fn
��

Mn−1

fn−1

��
Nn

d // Nn−1

commute for all n. In this way, we have a category Ch(A) of chain complexes in A. It is
again an abelian category, with kernels, cokernels, and images computed pointwise.

Let M• be a chain complex. Since dn ◦ dn+1 = 0, it follows that im(dn+1) ⊂ ker(dn). The
homology of M• is defined to be the quotient: specifically,

Hn(M•) =
ker(dn)

im(dn+1)
.

The complex M• is said to be acyclic if Hn(M•) = 0 for all n. If f : M• → N• is a morphism
of chain complexes then f naturally induces an isomorphism Hn(M•) → Hn(N•) for all n.
The morphism f is said to be a quasi-isomorphism if these maps are all isomorphisms.

Remark 1.1. There is a variant notion called “cochain complex” that is sometimes used.
The only difference is notation. In a cochain complex, the groups are indexed with a super-
script (so M0, M1, etc.), and the differentials increase degree (so d0 : M0 → M1, etc.). All
the concepts and theorems we prove can be translated to this language. �

2. Chain homotopies

Let f : M• → N• be a morphism of chain complexes. We say that f is null homotopic
if there exist morphisms sn : Mn → Nn+1 such that

fn = dn+1sn + sn−1dn.
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The diagram is

· · · d // Mn+1
d // Mn

d //

fn
��sn||

Mn−1
d //

sn−1||

· · ·

· · · d // Nn+1
d // Nn

d // Nn−1
d // · · ·

Two morphisms f, g : M• → N• are said to be chain homotopic if f − g is null homotopic.
Two complexes M• and N• are said to be homotopy equivalent if there exist morphisms
f : M• → N• and g : N• →M• such that fg and gf are each chain homotopic to the identity
map.

The importance of this concept is due to the following observation:

Proposition 2.1. Let f, g : M• → N• be chain homotopic maps of complexes. Then the
maps Hn(M•)→ Hn(N•) induced by f and g are equal. In particular, if f is null homotopic
then it induces the zero map on homology.

Proof. It suffices to treat the case where f is null homotopic. Let y ∈ Hn(M•). Let x ∈ Mn

be a lift of y with dx = 0. By definition, f(y) is represented by f(x) ∈ Nn. Now, we
have f(x) = dn+1(sn(x)) + sn−1(dn(x)) = dn+1(sn(x)) since dx = 0. But this shows that
f(x) ∈ im(dn+1), and thus maps to 0 in Hn(N•). �

The homotopy category of Ch(A), denoted K(A), is the category whose objects are
chain complexes and whose morphisms are where HomK(A)(M,N) is the set of equivalence
classes of morphisms of complexes under chain homotopy. Thus two complexes are homotopy
equivalent if and only if they are isomorphic in K(A). The above proposition shows that
homology yields a well-defined functor Hn : K(A)→ A.

3. Long exact sequences

Suppose that
0→ A• → B• → C• → 0

is a short exact sequence in Ch(A). Let c be an element of Cn with dc = 0. Lift c arbitrarily
to an element b ∈ Bn. Since db maps to dc = 0, it follows that a = db ∈ An−1. We have
da = d2b = 0.

Proposition 3.1. There is a well-defined morphism ∂ : Hn(C•)→ Hn−1(A•) given by c 7→ a.

Proof. Suppose that b′ is a second lift of c. Then b′ = b + ε for some ε ∈ An. Thus
a′ = db′ = db + dε = a + dε and so a′ and a differ by dε, and thus represent the same class
in Hn−1(A•). Thus the construction is independent of the choice of lift b. We therefore have

a well-defined map ∂̃ : ker(dn : Cn → Cn−1)→ Hn−1(A•).
Now suppose that c = d(c′) for some c′ ∈ Cn+1. Let b′ ∈ Bn+1 be a lift of c′, so that b = db′

is a lift of c. Then a = db = d2b′ = 0. Thus ∂̃ kills im(dn−1 : Cn+1 → Cn), and therefore
induces a map ∂ as claimed. �

The morphism ∂ in the above lemma is called the connecting homomorphism. Its
importance is due to the following result:

Proposition 3.2. The sequence

· · · → Hn(A•)→ Hn(B•)→ Hn(A•)
∂→ Hn−1(A•)→ Hn−1(B•)→ Hn−1(A•)→ · · ·

is everywhere exact.
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Proof. Left as an exercise. �

The sequence in the above proposition is called the long exact sequence associated
to the original short exact sequence of chain complexes. It is functorial in the short exact
sequence, in the obvious sense.

4. Projectives and injectives

An object P of A is projective if in any diagram

P
g

~~
f
��

M
p // // N

where p is a given surjection and f is a given morphism, one can find g making the diagram
commute. Equivalently, the functor Hom(P,−) is exact. The category A is said to have
enough projectives if every object is a quotient of a projective.

The dual notion to “projective” is “injective.” Precisely, an object I is called injective if
in any diagram

I

M �
� i //

f
>>

N

g

OO

where i is a given injection and f is a given morphism, one can find g making the diagram
commute. Equivalently, the functor Hom(−, I) is exact. The category A is said to have
enough injectives if every object injects into an injective.

Example 4.1. Suppose A is the category of R-modules. Then any free R-module is projec-
tive. If R is a Dedekind domain, then any ideal of R is projective; this yields examples of
projective modules that are not free. If R = Z then a module is injective if and only if it is
divisible; thus Q and Q/Z are examples of injective Z-modules. For any R, the category A

has enough projectives and enough injectives. �

5. Projective resolutions

Let M be an object of A. A projective resolution of M is an exact complex

· · · → P2 → P1 → P0
ε→M → 0→ 0→ · · ·

where each Pi is projective. One typically regards P• as a complex, which is 0 in negative
degrees, and refers to the above complex with M tacked on as the augmented complex. One
can also view a projective resolution as a quasi-isomorphism of complexes ε : P• →M , where
M is regarded as a complex concentrated in degree 0:

· · · // P2
//

��

P1
//

��

P0
//

��

0 //

��

· · ·

· · · // 0 // 0 // M // 0 // · · ·
Existence of projective resolutions is straightforward:

Proposition 5.1. Suppose A has enough projectives. Then every object of A has a projective
resolution.
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Proof. Since A has enough projectives, we can find a surjection ε : P0 →M with P0 projec-
tive. Suppose now we have constructed a partial projective resolution

Pn
dn //// · · · // P0

ε // M // 0.

That is, each Pi is projective, and the sequence is exact away from Pn. We can then extend
one more step by choosing a surjection Pn+1 → ker(dn) with Pn+1 projective. This is possible
since there are enough projectives. �

Projective resolutions are obviously not unique in general. For example, if M = 0 and P
is an projective then

· · · → 0→ P → P →M → 0

is a projective resolution of M . However, they are unique up to homotopy. We deduce this
from the following more general result.

Proposition 5.2. Let ε : P• → M be a projective resolution, let δ : Q• → N be any exact
augmented complex, and let f : M → N be a morphism. Then there exists a morphism of
complexes g : P• → Q• lifting f . Moreover, if g′ is a second lift then g and g′ are chain
homotopic.

Proof. We first construct g0. Consider the diagram

P0
ε //

g0
��

M

f
��

Q0
δ // N

Since δ is surjective and P0 is projective, the lifting property of projectives allows us to find
g0. Suppose now we have constructed g0, . . . , gn and we want to construct gn+1. Consider
the diagram

Pn+1
//

gn+1

��

Pn //

gn

��

Pn−1

gn−1

��
Qn+1

// Qn
// Qn−1

(When n = 0 the right column should consist of M and N .) Let K = ker(d : Qn → Qn−1).
Since the bottom row is exact, the differential gives a surjection Qn+1 → K. Of course, the
composition gnd maps Pn+1 into K. Thus, by the lifting property of projectives, we can find
gn+1 : Pn+1 → Qn+1.

We now prove the uniqueness claim. If g and g′ are two lifts of f then g− g′ is a lift of 0.
It thus suffices to show that if f = 0 then g is null-homotopic. We thus construct maps
sn : Pn → Qn+1 having the requisite properties. To construct s0, consider the diagram

P1
//

g1
��

P0
//

s0~~
g0
��

M

0
��

Q1
// Q0

// N

Since the right square commutes, g0 maps P0 into ker(Q0 → N). Since the bottom row is
exact, Q1 surjects onto this kernel. Thus, by the mapping property for projectives, we can
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find a map s0 : P0 → Q1 such that g0 = ds0. Note that Pn = 0 for n < 0, and so sn = 0 for
n < 0. We thus have g0 = ds0 + s−1d, as requied.

Suppose now that we have constructed s0, . . . , sn−1 satisfying the appropriate identities.
Consider the diagram

Pn+1
//

gn+1

��

Pn //

gn

��sn||

Pn−1

gn−1

��sn−1||
Qn+1

// Qn
// Qn−1

Consider h = gn − sn−1d. We have

dh = dgn − dsn−1d = gn−1d− dsn−1d = (gn−1 − dsn−1)d = (sn−2d)d = 0.

Thus h maps into K = ker(d : Qn → Qn−1). Since Qn+1 surjects onto K, the mapping
property allows us to lift h to a map sn : Pn → Qn+1. Since h = dsn+1, we have gn =
dsn + sn−1d, as required. �

Corollary 5.3. Let ε : P• → M and δ : Q• → M be two projective resolutions of M . Then
P• and Q• are homotopy equivalent.

Proof. The identity map M →M lifts to morphisms of complexes f : P• → Q• and g : Q• →
P•. Since fg and idP• are both lifts of the identity on M , they are chain homotopic. Since
gf and idQ• are chain homotopic. �

Corollary 5.4. Assume A has enough projectives. There exists a well-defined functor A→
K(A) sending an object of A to its projective resolution.

We need one more result about projective resolutions:

Proposition 5.5 (Horseshoe lemma). Consider an exact sequence in A:

0→ L→M → N → 0.

Let ε : P• → L and ϕ : R• → N be projective resolutions. Then there exists a projective
resolution δ : Q• → M such that Qn = Pn ⊕ Rn and the differential Qn → Qn−1 has the
form dn(x, y) = (dn(x) + gn(y), dn(y)) for some gn ∈ Rn → Pn−1. In particular, we have a
commutative diagram

P• //

��

Q• //

��

R•

��
L // M // N

where each row is an exact sequence.

Proof. We have already defined the groups Qn, the only problem is to define the differentials
and the augmentation. We begin with the latter. Since M → N is surjective, the augmen-
tation ϕ : R0 → N lifts through it; let δ′ : R0 →M be a lift. Then we define δ : Q0 →M by
δ(x, y) = ε(x) + δ′(y). One readily verifies that it is surjective.
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We now construct the differential d : Qn+1 → Qn. Consider the diagram

Pn+1
//

��

Qn+1
//

��

Rn+1

��
Pn

��

// Qn
//

��

Rn

��
Pn−1

// Qn−1
// Rn−1

(When n = 0, the bottom row should be replaced with the given short exact sequence.) Let
y ∈ Rn+1. Then

0 = d2(0, dy) = d(gn(dy), 0) = (dgn(dy), 0).

Thus gn ◦ d maps into ker(d : Pn−1 → Pn). Since this is surjected onto from Pn, the mapping
property yields a lift gn+1 : Rn+1 → Pn; thus dgn+1(y) = gn(dy). We use this gn+1 to define
the differential Qn+1 → Qn we leave the remainder of the proof as an exercise. �

Remark 5.6. Everything in this section has an injective analog. Injective resolutions are
usually written using cochain complexes. Thus an injective resolution of M is an exact
complex

0→M → I0 → I1 → · · ·
If A has enough injectives then every object has an injective resolution, and they are unique
up to homotopy. �

6. Derived functors

We now assume that A has enough projectives. Left B be a second abelian category and
let F : A → B be a right-exact functor. Recall that this means that F is additive (i.e.,
commutes with direct sums) and that whenever

0→M1 →M2 →M3 → 0

is a short exact sequence in A, the sequence

F (M1)→ F (M2)→ F (M3)→ 0

is exact in B. Note that this is not a short exact sequence: the first map is not required to
be injective.

Example 6.1. Let R be a commutative ring and let A = B = ModR. Let N be an R-module.
Then the functor F : A→ B given by F (M) = M ⊗R N is right-exact. �

Definition 6.2. Let i ≥ 0 be an integer. The ith left derived functor of F , denoted LiF ,
is the functor A → B defined by (LiF )(M) = Hi(F (P•)), where P• → M is any projective
resolution. We put LiF = 0 for i < 0. �

The way the definition is formulated, it is perhaps not clear that LiF is well-defined. To
make this clear, we can rephrase as follows. Let Π: A → K(A) be the functor assigning to
an object its projective resolution (Corollary 5.4). Then LiF is the composition

A
Π // K(A)

F // K(B)
Hi //// B
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The only point on which we have not remarked yet is that F induces a well-defined functor
K(A) → K(B). But this is clear: the definition of homotopy simply passes through a
functor.

Proposition 6.3. We have L0F = F .

Proof. Let P• →M be a projective resolution of M . The sequence

P1 → P0 →M → 0

is exact. Applying F , the sequence remains exact:

F (P1)→ F (P0)→ F (M)→ 0.

By definition, (L0F )(M) is the cokernel of F (P1) → F (P0). The above shows that this is
canonically identified with F (M). �

The most important property of the left derived functor is the following:

Proposition 6.4. Consider a short exact sequence in A:

0→M1 →M2 →M3 → 0.

Then there is an associated long exact sequence in B:

· · · → (LiF )(M1)→ (LiF )(M2)→ (LiF )(M3)→ (Li−1F )(M1)→ · · ·

Moreover, this long exact sequence is functorial in the original short exact sequence.

Proof. Let P• →M1 and P ′′• →M3 be projective resolutions. Let P ′• →M2 be the projective
resolution produced by the horseshoe lemma. Recall that

0→ P• → P ′• → P ′′• → 0

is a short exact sequence of complexes, and at each index is split. Since F is additive, the
sequence

0→ F (P•)→ F (P ′•)→ F (P ′′• )→ 0

remains exact. The result now follows from Proposition 3.2. �

Remark 6.5. Suppose Ti : A→ B are functors satisfying the following conditions:

(a) Ti = 0 for i < 0.
(b) T0 = F .
(c) Ti(P ) = 0 for i > 0 and P projective.
(d) To every short exact sequence in A there is functorially associated a long exact se-

quence in the T ’s.

Then Ti ∼= LiF . The proof of this is left as an exercise. �

Remark 6.6. There is a dual version of everything here. Suppose G : A→ B is a left-exact
functor and A has enough injectives. Then one has right derived functors RiG : A→ B. The
definition is as follows: (RiG)(M) = Hi(G(I•)), where M → I• is an injective resolution of
M . �



8 ANDREW SNOWDEN

7. Morphisms of derived functors

Let F,G : A → B be right-exact functors of abelian categories where A has enough in-
jectives. Thus we have derived functors R•F and R•G. A morphism of derived functors
ϕ• : R•F → R•G consists of a natural transformation ϕi : RiF → RiG for each i such that if

0→M1 →M2 →M3 → 0

is a short exact sequence in A then we obtain a morphism of long exact sequences

· · · // (RiF )(M1) //

ϕi

��

(RiF )(M2) //

ϕi

��

(RiF )(M3) //

ϕi

��

(Ri+1F )(M1) //

ϕi+1

��

· · ·

· · · // (RiG)(M1) // (RiG)(M2) // (RiG)(M3) // (Ri+1G)(M1) // · · ·

The cheif fact we need is:

Proposition 7.1. A morphism of derived functors is determined by its 0th member. That
is, if ϕ• and ψ• are morphisms of derived functors R•F → R•G such that ϕ0 = ψ0 then
ϕi = ψi for all i.

Proof. It suffices to assume ϕ0 = 0 and show ϕi = 0 for i > 0. We proceed inductively, so
suppose that we have shown ϕi = 0. Let M be a given object of A, and choose a short exact
sequence

0→M → I → N → 0

with I injective. Since (Ri+1F )(I) = 0, and similarly for G, we obtain a diagram

(RiF )(N) //

0
��

(Ri+1F )(M)

ϕi+1

��

// 0

(RiG)(N) // (Ri+1G)(M) // 0

Thus ϕi+1 = 0. �

8. Ext

The most important example of a derived functor is Ext, which is the derived functor of
Hom. To be precise, for objects M and N of A, we have left-exact functors

ΦM : A→ Ab, ΨN : Aop → Ab

X 7→ Hom(M,X) Y 7→ Hom(Y,N)

If A has enough injectives, we can form the derived functor R•ΦM . If A has enough pro-
jectives, then Aop has enough injectives, and we can form the derived functor R•ΨN . The
important fact is that when both are defined they agree, in the following sense:

Proposition 8.1. Suppose A has enough projectives and enough injectives. Then (RiΦM)(N) =
(RiΨN)(M) for all M and N .

Proof. Fix M . We will show that N 7→ (RiΨN)(M) is the ith derived functor of ΦM . Let
P• → M be a projective resolution. We note that (RiΨN)(M) = Hi(Hom(P•, N)), by
definition. We check the conditions of Remark 6.5:

• We have (RiΨN)(M) = 0 for i < 0 by definition.
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• We have (R0ΨN)(M) = ΨN(M) = ΦM(N).
• Let I be an injective. Since I is injective, the functor Hom(−, I) is exact, and so

Hom(P•, I) is exact away from degree 0. Hence (RiΨI)(M) = 0 for i > 0.
• Consider a short exact sequence

0→ N1 → N2 → N3 → 0

Applying Hom(Pi,−) yields an exact sequence, since Pi is projective. Thus, applying
Hom(P•,−), we obtain an exact sequence of complexes

0→ Hom(P•, N1)→ Hom(P•, N2)→ Hom(P•, N3)→ 0.

Taking homology, we thus get a long exact sequence in the (R•ΨNi
(M), as required.

The proposition now follows from Remark 6.5. �

Definition 8.2. Assume A has enough projective or enough injectives. We then define Exti

to be the ith right derived functor of Hom. �

To be completely clear, we spell out exactly how to compute Ext. Let M and N be given.
Suppose that P• →M is a projective resolution of M . Then Exti(M,N) is the homology of
the sequence

Hom(Pi−1, N)→ Hom(Pi, N)→ Hom(Pi+1, N).

Similarly, suppose that N → I• is an injective resolution of N . Then Exti(M,N) is the
homology of the sequence

Hom(M, I i−1)→ Hom(M, I i)→ Hom(M, I i+1).

The proposition ensures that the two computations give the same answer, when they are
both defined.

We now compute a few simple examples.

Proposition 8.3. Let A = Ab. Then

Exti(Z/nZ,M) =


M [n] i = 0

M/nM i = 1

0 i > 1

Proof. We have the following projective resolution of Z/nZ:

· · · → 0→ Z
n→ Z→ Z/nZ→ 0.

Applying Hom(−,M) to P•, we obtain the complex

Hom(Z,M)
n→ Hom(Z,M)→ 0→ · · · .

Of course, Hom(Z,M) = M . The result thus follows. �

9. Tor

Let R be a ring (not necessarily commutative). Let R Mod and ModR denote the category
of left and right R-modules. Given a right R-module M and a left R-module N , we have
right-exact functors

ΦM : R Mod→ Ab, ΨN : ModR → Ab,

X 7→M ⊗R X Y 7→ Y ⊗R N
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Since module categories always have enough projectives (simply use free modules), we can
form the left-derived functors of ΦM and ΨN . As with Ext, the two derived functors agree:

Proposition 9.1. We have (LiΦM)(N) = (LiΨN)(M) for all M and N .

Definition 9.2. We define Tori to be the ith left-derived functor of either ΦM or ΨN . �

Thus to compute Tori(M,N), one picks a projective resolution of M , applies − ⊗R N ,
and computes homology; or one picks a projective resolution of N , applies M ⊗R −, and
computed homology.
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