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Electronic communication allows interactions to take place over great distances. We
build an agent-based model to explore whether networks that do not rely on geographic
proximity can support cooperation as well as local interactions can. Adaptive agents
play a four-move Prisoner’s Dilemma game, where an agent’s strategy specifies the
probability of cooperating on the first move, and the probability of cooperating contin-
gentonthe partner’s previous choice. After playing with four others, an agent adjusts its
strategy so that more successful strategies are better represented in the succeeding
round. The surprising result is that if the pattern of interactions is selected at random,
butis persistent over time, cooperation emerges just as strongly as it does when interac-
tions are geographically local. This has implications for both research on social dy-
namics, and for the prospects for building social capital in the modern age.

For over a century, the broadening patterns of inter-
action among people have raised concern that moder-
nity would destroy the basis of community (Tonnies,
1887/1957). Recently, the ability of electronic commu-
nication to support distant interactions that fragment
solidarities and de-emphasize local patterns of interac-
tion (Wellman et al.,1996) has heightened this concern.
One basis of concern is that the patterns of interaction in
physical space are densely clustered, as in a neighbor-
hood, where each individual tends to interact with a
large proportion of the other individuals in the neighbor-
hood; this clustering may be lost in other patterns of in-
teraction. It is well known, however, that having a few
distant connections can foster the diffusion of valuable
information in a social network (Milgram, 1967; Watts,
1999; Watts & Stoats, 1998). What is not known is
whether social networks that are not densely clustered
(i.e., in which there is little overlap among the interact-
ing individuals), can still foster cooperation among ego-
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ists (individuals motivated by rational self-interest)
based uponreciprocity. In this article, we use acomputer
simulation model to examine the question of whether
social networks with distant links can perform as well as
networks based on local geography. This model por-
traysindividuals (agents), represented by nodes in a spa-
tially distributed network, and the interactions among
agents, represented by reciprocal links among nodes.
Our work builds on the work of Holland (1992,
1995), who has shown that in a complex adaptive
system! the pattern of interactions among the agents
can have a strong effect not only on the success of indi-
vidual agents, but also on the performance of the sys-
tem as a whole. Holland has addressed this theme in
many contexts over the years, most often by exploring
the role of labels (“tags”) that may be used to identify
agents as desirable or undesirable interaction partners.
Tags can thus establish patterns of interactions among

IThe notion of complex adaptive system is somewhat different
from the notion of nonlinear dynamical system. A nonlinear dynami-
cal system refers to a system that evolves in time, and in which inter-
actions among elements are nonlinear. A complex adaptive system is
a system composed of many elements, in which the elements adapt to
each other and the environment either through learning or evolution.
Although most complex adaptive systems are nonlinear dynamical
systems, nonlinear dynamical systems do not necessarily learn or
evolve and are not necessarily composed of many elements.
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agents by allowing for the selection of interaction part-
ners (Holland, 1995, 1998; Holland, Holyoak, Nisbett,
& Thagard, 1986). Spatial rules for the selection of in-
teraction partners have also been investigated in this
line of work. It is usually assumed that agents are bi-
ased toward interaction with other nearby agents (Hol-
land, 1992, 1995). Local interaction rules, in turn, have
been shown to promote cooperation (Riolo, Cohen, &
Axelrod, 2001; Sigmund & Nowak, 2001). This is be-
cause local interactions tend to produce clusters of co-
operating individuals, who are less exposed to exploit-
ative agents who might otherwise take advantage of the
tendency to cooperate.

In this article, we show that even random networks
can establish and sustain cooperation, provided that
the network of interactions is stable over time. To ap-
preciate the difference between a random network
and one based on geography, consider the contrast
between two pure types. In both networks, each per-
son has exactly four “neighbors.” First, let us con-
sider a network based on geography, such as the peo-
ple in a small town. In this two-dimensional lattice,
the neighborhoods are correlated (i.e., systematically
overlapping). For example, a person has two neigh-
bors in common with whomever is one step north and
one step east. The correlational structure of such a
geographic network means the number of people at a
certain distance from any given person does not grow
very quickly and that there is a large overlap in the
people who interact with each other. In fact, the num-
ber of others who are exactly d steps away form a di-
amond in this lattice network, and their number in-
creases linearly: N(d) = 4d.

In contrast, consider a network in which every per-
son is connected to four others chosen at random from
a large population, as might be the case in a large cor-
poration that relies heavily on electronic communica-
tions. In this case, the network fans out in a tree struc-
ture. A person has four immediate neighbors (in terms
of communication links, but not necessarily spatially),
each of whom has three other neighbors, and so on. For
arandom network in an infinite population, the number
of others at a given network distance expands exponen-
tially as a function of distance: N(d) = 4*34-1, Thus, for
arandom network in a large finite population, two peo-
ple may share more than one neighbor, but this will be
rare. Rapid fan out of links in a random network can
help the diffusion of information. On the other hand,
rapid fan out as well as the lack of neighborhood clus-
tering raises questions about the prospects for
prosocial behavior in an uncorrelated structure.

The standard formal paradigm for analyzing the
problem of prosocial behavior is the Prisoner’s Di-
lemma Game (PDG; Axelrod, 1984; Axelrod & Ham-
ilton, 1981). In the PDG, each player has two
choices: cooperate or defect. In any given move, the
players each receive R points if both cooperate, and
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only P points if both defect. A defector exploiting a
cooperator gets T points, while the cooperator gets S
(the relationships among the various payoffs in this
game are: T >R >P > S and 2R > T + S). This pat-
tern of payoffs insures that in a single move, it is al-
ways better for a player motivated by self-interest to
defect. Since this save is true for both players, the un-
fortunate result is mutual defection. Agents can maxi-
mize their personal gains, therefore, by suspending
their immediate self-interest in favor of smaller but
systematic gains achieved through sustained mutual
cooperation. The agents’ ability to discover this rule
has been demonstrated in numerous computer simu-
lations, employing both evolutionary mechanisms
and learning mechanisms such as imitation (e.g.,
Axelrod, 1984; Axelrod & Dion, 1988; Axelrod &
Hamilton, 1981; Messick & Liebrand, 1995).

One of the most rebust strategies in the PDG is “tit
for tat,” in which the individual starts with cooperative
behavior, and on each succeeding interaction simply
imitates the previous behavior of his or her interaction
partner. Although this strategy does not allow the indi-
vidual to win in direct play with any particular partner,
in the long run it produces good outcomes because it
elicits and sustains cooperation with cooperative
agents, while punishing exploitative agents with defec-
tion. More generally, although it never pays to cooper-
ate in a single interaction, the shadow of the future al-
lows cooperation based upon reciprocity to emerge and
be sustained in a population of egoists.

In psychology, the PDG has inspired several lines of
research into the factors that foster versus inhibit coop-
erative behavior among individuals or groups (cf.
Pruitt, 1998). Thibaut and Kelley (1959), for example,
investigated how variations in the payoff matrix for in-
teracting agents affected their cooperative versus com-
petitive tendencies. This approach was subsequently
generalized to an N-person dilemma (Messick &
Brewer, 1983), such as resource depletion in the “trag-
edy of the commons” (e.g., Hardin, 1968). Individual
behavior and preferences in the PDG, meanwhile, have
been utilized as diagnostic tools for social orientations,
such as individualism, altruism, cooperation, and com-
petition (e.g., McClintock & Liebrand, 1988). Yet
other lines of research have examined a wide panoply
of psychological and social factors, including
ingroup-outgroup bias, the prospect of future interac-
tion, individual versus group interaction, group size,
communication structure, and norms (cf. Pruitt, 1998;
Schopler & Insko, 1992).

These research programs have generated empirical
generalizations that are consistent with the possibility
that cooperation can emerge among spatially distrib-
uted individuals who have sustained interactions. Di-
rect evidence on this point, however, has yet to be ob-
tained. The simulations we report in this article are
intended to provide such evidence.
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Table 1. Cooperation in Three Kinds of Networks

Neighborhood structure Performance (+s.d.) Instability (+ s.d.) No. Successful Runs (of 30) Time to Threshold Retention

Temporary Random 1.098 £.007 0.031 £.026 1 1923 .000
Two Dimensional 2.557 +.009 0.074 +.006 30 24 .997
Persistent Random 2.575 +£.010 0.078 £.006 30 26 995

Note: Performance is the average score of the 30 runs of each type. It is calculated only over the final 1000 periods to avoid the effects of the initial
conditions. Instability is the variation over time within a single run, measured by the standard deviation of population average scores within a run
over the final 1000 periods. No. Successful Runs is the number of runs out of 30 that ever attained an average population score of 2.3. Time to
threshold is the average number of periods until the threshold is reached. Data for this and the next column are calculated only for the runs, which
succeeded in reaching the threshold. Retention is the proportion of periods after the threshold is first reached in which the population average is

above the threshold.

Simulations

In our simulations, a period consists of each of 256
agents selecting each of its four neighbors to play a
game of exactly four moves each. The neighbors also
select the agent. This symmetry implies that everyone
plays exactly eight games in a period. To make cooper-
ation relatively difficult to achieve, we use games of
only four moves each. An agent’s strategy is updated
after each period based on its experience in comparison
to its four neighbors’ experience (see the following). A
run consists of 2500 periods. We are interested in the
effects of how neighborhoods are structured. Our three
neighborhood structures are:

Temporary random network: The four neighbors are
chosen at random at the start of each period.?

Two-dimensional network: At the start of each run,
one agent is assigned to each location in a 16 x 16 lat-
tice. Neighborhoods are the four adjacent sites of each
location. In this case the neighborhoods are correlated.

Persistent random network: This is the same as the
temporary random network, except that the network is
retained for an entire run of 2500 periods rather than
being shuffled after each period. Like the two-dimen-
sional case, the neighborhoods are persistent. But un-
like the two-dimensional case, there is no correlational
structure to the neighborhoods.

We have also run experiments with a number of
other neighborhood structures, including neighbor-
hoods induced when agents select who to play based
on arbitrary tags, using tagging-mechanisms similar to
those described in Holland (1995); for details, see Co-
hen, Riolo, & Axelrod (1999, 2001).

The stochastic strategies used by agents are given
by three parameters (y, p, q), where y is the probability
of cooperating on first move, and p and q are the condi-
tional probabilities to co-operate, given that the other
player’s previous move was a C (cooperation) or D (de-
fection) (Nowak & Sigmund, 1989). This class con-
tains, for example, Tit for Tat (1,1,0), ALLC (1,1,1)

2Qur algorithm to maintain symmetry in the random neighbor-
hoods is the following. After all agents have four symmetric neigh-
bors, each agent randomly swaps a neighbor with 256 randomly cho-
sen other agents, with each swap subject to the constraint that each
agent have four unique neighbors (none of whom are itself) and each
neighbor relation is symmetric.

and ALLD (0,0,0) as extremal representatives. For our
runs, we use standard payoff valuesof R=3,P=1,T=
Sand S=0.

The initial population of agents is spread evenly
across the (p, q) space, one agent at each of the 256
combinations of equally spaced levels of p (p = 1/32,
3/32...31/32) and q (q = 1/32, 3/32 ... 31/32). The y
value is initially set to the p value.

The basic learning mechanism is imitation. Spe-
cifically, at the end of each period, each agent identifies
the most successful of its four neighbors in the current pe-
riod. It then adopts that neighbor’s strategy if that neigh-
bor did strictly better than itself in the current period. To
be realistic, the update rule takes account of two sources
of possible error. First, there is a ten-percent chance the
agent makes a mistake when deciding whether or not its
best neighbor did better than itself. Second, regardless of
which of the two strategies is adopted, for each of the
three parameters there is a ten-percent chance that
Gaussian noise is added (M = 0, SD = 0.4, bounded by 0
and 1). Adding noise in the update rule allows new strate-
gies to be introduced into the population, thereby increas-
ing the potential for adaptation.

Results

The results shown in Table 1 are based on 30 replica-
tions for each condition. The average score for a popula-
tion can vary between P = 1 and R = 3. Since the agents
use stochastic strategies and make errors of comparison
and copying when updating their strategies, a conve-
nient threshold for regarding a population as successful
is amean score of 2.3 points.? As expected, populations
with temporary random neighborhoods do hardly better
than mutual defection, have little instability within runs,
only rarely reach the threshold of success, and are not
able to sustain cooperation even then. In contrast, the
populations in a two-dimensional setting achieve and
sustain high levels of cooperation, do so with little insta-
bility, always attain the threshold of success, attain the
threshold of success very quickly, and consistently stay
above the threshold once attained. Most important, the
populations with persistent random networks perform

3This sets the threshold of success higher than 2.25, the expecta-
tion of a random initial population.

343



AXELROD, RIOLO, & COHEN

just as well as populations in the geographic setting of a
two-dimensional network.

Another way to compare the three conditions is to
look at the average performance over time in typical
runs. This comparison is shown in the three panels of
Figure 1. In all three conditions, the population average
begins at 2.25 points because the initial conditions pro-
vide arandom set of strategies, resulting in all four out-
comes being attained with equal likelihood. In the tem-
porary random neighbor case (Fig. 1a), the population
average quickly drops, reflecting an evolution toward
mutual punishment. While the population average oc-
casionally increases for short stretches as clusters of
cooperation occur, these clusters cannot be sustained
when the neighborhoods are constantly reshuffled. In
contrast, both the two-dimensional case (Fig. 1b) and
the persistent random neighborhood case (Fig. 1c)
quickly attain high scores as cooperation based on reci-
procity becomes established. Although there is some
fluctuation due to mutation in these two cases, the high
levels of cooperation are never lost.

Figure 2 provides a way to visualize the forces pro-
ducing population histories such as those shown in Fig-
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Figure 1. Average Performance Over Time of a Typical Run for
Each of Three Neighborhood Structures
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Figure 2. A (p, q) Phase Plot for Three Neighborhood Struc-
tures. The p value is the probability of cooperating after the
other player cooperated, and q is the probability of cooperating
after the other player defected. The arrows indicate the direction
of the change in population average values of p and ¢ one period
after the population is in a given pq bin. The size of a circle indi-
cates the number of periods in which the population remains in
that bin. The largest circle in each panel corresponds to the cell
in which the population spent the most time. The areas of other
circles are scaled relative to that cell.

ure 1. For each neighborhood structure, it shows a dia-
gram of movement in the (p, q) space as an indication
of how the strategies change over time. For each small
region (there are 20 x 20 “bins”) of the space in the dia-
gram, we have determined all the periods in which the
population average values of p and q are in that region.*
For each such bin, we have found the average of the p
and q values in the immediately succeeding period.
The arrow originating from the center of each region

4We are ignoring y in this analysis because for the most part y is
correlated with p.
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shows the average one period movement of p and q for
populations that were ever in that region. Each panel
uses data from all 30 replications of the respective con-
dition. In all conditions, both p and q initially fall. This
is a trace of the collapse from the initial state of the
population, in which the p and q values of the agents
are evenly distributed across the entire (p, q) space. In
that initial environment, agents with strategies closer to
ALLD (p =0 and q = 0) do better than more coopera-
tive strategies.

With temporary random neighborhoods (Fig. 2a),
the population spends most of its time near the Always
Defect corner, as indicated by the large circles in the
corresponding cells. Occasional increases in p (the
probability of cooperating after the other player coop-
erated) are quickly reversed. In both two dimensional
and persistent random cases, however, the population
quickly moves out of the Always Defect corner and
sustains cooperation with strategies akin to Tit for Tat
(high p and low q). Moreover, the arrows indicate that
both of these conditions develop counterclockwise
movement when they depart from the region near the
Tit for Tat corner: an increase in q (toward uncondi-
tional cooperation) results in a decrease of p (as the
more gullible strategies are exploited), a decline in q
(as the gullibles are eliminated), and a return to the
more stable region of high p and low q (near the Tit for
Tat corner). Thus the persistent random network set-
ting is very much like the two-dimensional setting and
very different from the temporary random setting not
only in terms of its overall performance (Table 1), but
also in the dynamics by which that performance is
achieved (Figures 1 and 2).

Discussion

The key finding is that a persistent random network
displays virtually the same pattern of success as a
two-dimensional setting. This result establishes the
importance of distinguishing the multiple characteris-
tics of non-geographic interaction patterns. Clustering
(i.e., the correlation of linkage patterns) is not needed
to establish and sustain cooperation over networks,
provided that the linkages are stable. The ability of sta-
ble neighborhood structures to support cooperation
need not be lost in the geographically dispersed social
networks that are now arising all around us.

Our results have both methodological and substan-
tive implications. A methodological implication is that
the dynamics of the pattern of interactions can have a
powerful effect on the behavior of a system. This is es-
pecially important for game theory, which is a leading
theoretical tool in the social sciences. Game theory has
made great progress in the analysis of learning and ad-
aptation (Fudenberg & Levine, 1998), but has paid lit-
tle attention to who interacts with whom. Our simula-

tions show that these details can be decisive. In particu-
lar, whether a random network can sustain cooperation
depends on whether the pattern of interactions is per-
sistent or changing. This suggests that the continuing
search in game theory for improved equilibrium con-
cepts can be usefully augmented by a study of the dy-
namics of the underlying interaction structures (Cohen
et al., 2001).

Our finding that a persistent random network can
support cooperation as well as a geographic network
can has implications for the development of social cap-
ital, which Putnam (2000) has defined in terms of the
“connections among individuals — social networks and
the norms of reciprocity and trustworthiness that arise
from them” (p. 19). High levels of social capital in a so-
ciety depend on a dense network of reciprocal social
relationships. Social capital embodied in norms and
networks of civic engagement supports such things as
successful education, effective government, economic
development, and a generally healthy civil society
(Putnam, 1993a, 1993b).

Putnam (2000), among others, has recently argued
that there has been a serious decline in the amount of
social capital in America, with an attendant decline in
the health of important social institutions. Now that so-
cial, political, and economic networks extend far be-
yond local geographic constraints, the question arises
whether social capital can be built and sustained under
these conditions. For example, numerous commenta-
tors have questioned whether the growth of the Internet
and electronic communication is weakening networks
of social relationships. Our research shows that the an-
swer to these questions lies, at least partially, in
whether the new networks are persistent or transient.
To the extent that new networks of distant interactions
tend to be stable, social capital can flourish.
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