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ABSTRACT

We analyze the role of social structure in maintaining cooperation
within a population of adaptive agents for whom cooperative
behavior may be costly in the short run. We use the example of a
collection of agents playing pairwise Prisoner’s Dilemma. We call
sustained cooperative behavior in such circumstances a ‘coopera-
tive regime’. We show that social structure, by channeling which
agents interact with which others, can sustain cooperative regimes
against forces that frequently dissolve them. We show in detail the
process through which structured interaction in a population
creates a ‘shadow of the adaptive future’, allowing even a small set
of cooperative strategies to grow into a cooperative regime, a
coherent, self-sustaining entity that is something more than the
sum of the pairwise interactions among its members.
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1. Introduction

In situations with Prisoner’s Dilemma logic, where collectively ben-
eficial actions are costly to individuals in the short run, theories
based on assumptions of rational agents predict that cooperation
should be difficult to sustain. At the same time, sustained voluntary
cooperation is a recurring feature of real social systems. Coopera-
tive action may have results that we admire, as when team members
make sacrifices on behalf of their colleagues, or it may have results
that we dislike, as when firms collude to fix prices in spite of com-
petitive forces. But in either case, the existence of voluntary
cooperation is not in doubt.
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Cooperation is not universal, of course, and a major strength of
rational agent theories is the explanation they provide for the diffi-
culty of sustaining cooperation in a Prisoner’s Dilemma situation.
Nonetheless, there is a disjuncture between the outcomes expected
under theories of rational individual action and the cooperative
actions that are frequently observed in the world, and the disjunc-
ture poses a serious challenge. How should we account for the cases
where a durable ‘cooperative regime’ does form?

A principal response to this challenge has been to invoke the
‘folk theorem’ (e.g. Fudenberg and Maskin 1990), of which
Axelrod’s ‘shadow of the future’ (Axelrod 1984) can be seen as a
special case. If one rational agent expects its present actions to
affect the future behavior of the other, then a less valued outcome
in the short run might be justified in view of a long run with
increased expected value.

However, cooperation in the real world occurs in many situations
that do not meet the conditions for an explanation based upon the
shadow of the future. This approach assumes that the two inter-
acting agents have strategies that remain constant over the interval
of iterated play. But we know, for example, that trustworthy prac-
tices are maintained in securities trading pits even though strategies
are changing rapidly during ‘play’ (Baker et al. 1984). The shadow
of the future approach also assumes that the interaction is between
agents who remain the same. But we know that norms are sustained
over long periods of time in larger systems such as universities and
legislatures, even though individual members may turn over rapidly
and many shirk the costs of enforcing norms against violators
(Axelrod 1986).

For worlds where interaction sequences may be short, where
agents may be rapidly changing their strategies, or where agents
may be turning over, the conventional shadow of the future
approach does not suffice. How then do we account for the emer-
gence in such settings of ‘cooperative regimes’, durable high levels
of cooperative action within large populations of agents?

Our answer focuses on social structure, which determines the
patterned character of interaction among agents or, ‘who tends to
interact with whom?’ Though our approach is via formalized
models, the work is much in the spirit of Giddens’s structuration
theory (1984). He defines social structure as ‘the patterning of inter-
action, as implying relations between actors or groups, and the con-
tinuity of interaction in time’ (Giddens 1979). Our simulations show
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how the micro-level actions taken by local, changing, and self-inter-
ested actors can build and maintain a cooperative regime, which in
turn stabilizes their actions and provides the conditions — Giddens
might say ‘resources’ — that their strategies require (Kluever and
Schmidt 1999). The continuity of interaction patterns, which we
label as ‘context preservation’, plays a crucial role in fostering and
sustaining cooperative regimes by altering the adaptive dynamics
of agent populations.

Our argument proceeds as follows. We describe our framework
for controlled experimentation with simulated populations of
agents playing a pairwise iterated Prisoner’s Dilemma. We compare
several sets of studies completed within this simulation environ-
ment to demonstrate the contribution of context-preserving social
structure to the emergence of cooperative regimes. We present a
micro-level analysis of the process by which cooperation does, or
does not, emerge. It shows the central role played by social struc-
ture in creating a ‘shadow of the adaptive future’. We use this label
to distinguish the effects of future interactions on the survival
chances of variant strategies being generated by the adaptive pro-
cesses of the present. A favorable shadow of the adaptive future
implies conditions that amplify the spread of cooperative strategies.
The paper concludes with a discussion of the potential implications
of our results for concrete issues, such as the maintenance of trust
in the Internet.

2. Experimental Framework

In our simulations a period consists of each of 256 agents! selecting
four others to play iterated Prisoner’s Dilemma. We use the stan-
dard payoff matrix shown in Table 1. Pairs of agents play a game of
length four, short enough to make cooperation difficult to achieve,
but still possible (Riolo 1997a). An agent’s strategy is updated at
the close of each period based on comparison with the other agents
it encountered, according to rules which are described below.
Each agent’s strategy is represented as in Nowak and Sigmund
(1989), by a triplet of real numbers 0 <y, p, q < 1. The first of these,
y, represents the probability that the agent will cooperate on the first
move of a game. The second, p, is the probability that an agent will
cooperate following a cooperative move by the agent with which it
is playing. The last, g, is the probability that the agent will cooperate
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Table 1. Prisoner’s Dilemma Payoffs

Cooperate Defect

Cooperate 3,3 0,5
Defect 5,0 1,1

The first value is the row player’s payoff, the second is for the column player.

after the other agent has defected. We initialize y as equal to p, but
they may vary independently thereafter.2 This large space of possible
strategies contains Tit-for-Tat (TFT: 1,1,0), Always Cooperate
(ALLC: 1,1,1), and Always Defect (ALLD: 0,0,0).

Our interest is in adaptive settings, where an agent’s strategy
may change over time. We have studied several processes of adap-
tation but, for simplicity, report only one here. At the close of each
period, an agent takes as its own strategy for the next period the
strategy of that agent among those it met whose average score per
move was best — provided that score was strictly greater than the
agent’s own.

Processes of emulation are subject to errors, of course. An agent
may inaccurately perceive the strategy of another it wants to copy,
or may not judge correctly how well another’s strategy has per-
formed. We reflect these errors of emulation in our simulation by
introducing two kinds of ‘noise’. Agents reach the wrong con-
clusion 10 percent of the time in comparing their own recent per
move score with that of the best performing agent they’ve encoun-
tered. This results in their occasionally copying an inferior strategy
or failing to copy a superior one. Agents also make errors in the
actual copying process. For each of the three variables, there isa 10
percent chance that during copying the variable value will be dis-
turbed by Gaussian noise of mean 0 and standard deviation 0.4,
with truncation of values falling above 1 or below 0.

In the studies reported below we systematically vary the social
structure that controls the meetings among the agents. Iterative
play occurs on a quick time scale within each period. Adaptation
occurs on a slower time scale, over a succession of periods as the
inter-agent emulation process spreads strategies that are succeed-
ing and extinguishes those that are not. A complete description of
the experimental procedures used to produce the results presented
in this paper is given in the Appendix.3
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3. Results
3.1. Cooperation Levels in Alternative Social Structures

We ran 30 replications of each experimental condition, each start-
ing with a different random number seed. Thus each replication
generates a distinct ‘population history’ for the given social struc-
ture. The first row of Table 2 reports a study in which each agent
played with four other agents chosen randomly in each period.
(Thus, on average, an agent played eight others, exactly four as the
chooser of partners, and, on average, four as the chosen other.) A
population played for 2500 periods, starting from strategies that
were initialized randomly.

We have devised many measures on these data, but report only
three here:

1. the proportion of 30 populations that achieved a high level of
cooperation at any time in their history (‘Attain High C’);

2. the average score attained by all the populations over the
last 1000 periods of their histories (after the effects of
random initialization have long died away) (‘Mean Payoff");
and

Table 2. Cooperation for Different Social Interaction Conditions

Social structure Attain high C Mean payoff Remain high
RWR 0.30 1.091 0.015
2DK 1.00 2.557 0.997
FRNE 1.00 2.575 0.995
FRN 1.00 2.480 0.942
FFRO0.1 1.00 2.385 0.844
FFR 0.3 1.00 2.100 0.402
FFR 0.5 0.93 1.257 0.061

RWR is ‘Random With Replacement’ each time step; 2DK = ‘2 Dimensions,
Keeping’ neighbors for the entire run; FRNE is ‘Fixed Random Neighbors, Equal’
number and symmetrical; FRN is ‘Fixed Random Neighbors’, not equal numbers
nor symmetrical; FFR 0.1 is ‘FRN with Fraction RWR = 0.1, and similarly for the
other FFR cases. ‘Attain High C’ is the proportion of histories (runs) that achieved
high levels of cooperation. ‘Mean Payoff’ is the average score per move attained
by all populations over the last 1000 steps of all runs. ‘Remain High’ is the
proportion of time the populations remain at high levels of cooperation once they
achieve it.
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3. the proportion of time spent in conditions of high cooperation
among those populations that achieved it (‘Remain High’).

As the first row in Table 2 shows, high levels of cooperation were
attained in only a few of the populations where contact patterns
were randomized each period (the case we label ‘RWR’ to indicate
that agents play others chosen randomly with replacement); and
even when a high cooperation level occurred, it was only momen-
tary. Among those populations that experienced high cooperation,
less than 2 percent of their subsequent time was spent in that state.
As a result, the mean payoff was dismal. It hovered just above the
theoretical minimum mostly because of accidental mutual cooper-
ations stemming from the noisy character of both emulation and
strategy execution. This is a Hobbesian war of all against all. Sus-
tainable cooperative regimes did not emerge. Brief bursts of
cooperation did occur among the adapting agents, but they were
evanescent fads that died out immediately.

By contrast, consider the second row of Table 2. It reports the
result of an equivalent simulation except for a change in the ‘social
structure’ governing agent interaction. Agents were assigned per-
manent positions in a 16 X 16 two-dimensional toroidal lattice.
Each agent chooses to play a game each period with each of its four
neighbors who are ‘kept’ through the entire history. (The case is
therefore labeled ‘2DK’.) Thus each agent played exactly eight
times: four as chooser and four when it is chosen by each of its
neighbors.

In this case all 30 populations attained high cooperation levels,
and, once that happened, the cooperative regime was very success-
fully maintained. Over 99 percent of the subsequent experience was
of widespread cooperative action. The resulting average score is
quite high, near the maximum possible given the noise in strategy
emulation and execution.

The result that two-dimensional spatial embedding favors
cooperation in Prisoner’s Dilemma is not new. Indeed, it might be
called robust. It has been reported by a number of investigators
across settings that vary substantially in their details (Axelrod 1984;
Nowak and May 1992; Lomborg 1996). However, we can — and
should — go beyond attributing cooperative regimes to spatial
embedding of agents. It is necessary to ask, ‘What are the funda-
mental properties of spatial embedding that so dramatically alter
dynamic processes within these populations?’ Unless we pursue
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this deeper question, we will not even be able to judge whether the
observed results would be likely to hold for real actors in real physi-
cal spaces (which, after all, may deviate substantially from toroidal
lattices). Beyond that, we will be unable to infer the relevance of
the results to actors located in other, more abstract spaces, such as
social networks and organizational hierarchies.

Pursuing this question reveals that our randomly paired and our
spatially embedded populations differ in two important properties,
not one. First, the imposition of fixed spatial location means that
agent pairings do not change — even though the adapting agents
may change their strategy after any period. Second, it means that
the contact networks of agents are correlated. Paired agents have
neighbors who are themselves paired. This feature of the interac-
tions, called ‘clustering’ in the graph theory literature (Watts 1999),
will rarely occur by chance in random pairing.* Which of these two
properties is responsible for the difference we have observed?
Does it occur because clustering fosters the diffusion of coopera-
tive strategies, or because a fixed interaction pattern is favorable?

Our experimental framework allows us to answer this question
very cleanly. In a third experimental condition, we paired agents
randomly and left those initial pairings fixed for the full duration of
the population history. We also forced the pairings to be symmet-
ric in order to reproduce that further characteristic of two-
dimensional lattice play. (We label this fixed random network with
equal number of other players as ‘FRNE.") Thus our simulated
agents are in a social structure that has the same fixity of interaction
but none of the clustering of the previous case. In the third row of
Table 2 it can be seen that the results for fixed random pairing are
nearly indistinguishable from the two-dimensional study.®

Before we can conclude that it is context preservation (the per-
sistence of interaction pattern) rather than the clustering (corre-
lated interaction profiles) that lies behind the observed effect of
spatial embedding, there is a very subtle alternative explanation
that we need to rule out. Our original cases of random mixing and
spatial embedding actually differed in a third way. Spatially embed-
ded agents played exactly eight games per period with exactly four
others. Random pairing matches an agent into eight games on
average, but not eight games exactly. There can be variance since
an agent will be randomly chosen four times by others only on
average. Also, the games are typically with eight distinct others,
rather than two games each against exactly four others. To rule out
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these subtleties as the sources of our differences, we used an initial
random pairing that remained fixed and did not retain the symme-
try of play from the two-dimensional case (FRN). The fourth row
of Table 2 shows that this makes only a minor difference that does
not alter the substantive conclusions. When initial pairings are
determined randomly without symmetry but are left fixed, high
levels of cooperation are again attained by all populations and are
maintained consistently to produce high average scores. Context-
preserving social structure suffices for the emergence and main-
tenance of cooperative regimes, without paired agents having
correlated networks.

The point established should be stated with care. We do not
contend that clustering could never contribute to the maintenance
of cooperative regimes. (Indeed, we have run some other experi-
ments not analyzed here in which small positive effects for cluster-
ing are visible.) Rather, our point is that simple context preservation
is a powerful factor, sufficient to sustain a cooperative regime
against short shadows of the future and rapid adaptive processes,
factors that overwhelm cooperation in a world of random mixing
(and, equivalently, in a tournament world where all agents meet all
others with equal frequency).

The last three lines of Table 2 deepen this point. We report
another experiment, which takes as its base the fixed random
network (FRN) case just discussed. In the fifth row of Table 2 we
show results based on 30 populations in which agents played with
fixed partners chosen initially at random, as in the FRN case, but
in each period a new randomly chosen partner was substituted
(temporarily, as in the RWR case) for each fixed network partner
with probability 0.1. (We use the label ‘FFR-0.1" for this case of
Fixed random network with Fraction Random with replacement of
0.1.) This addition of minor ‘noise’ to the basically fixed pairing of
partners makes only a slight difference, so the fifth row of Table 2
strongly resembles the preceding two cases. However, this experi-
mental structure provides us with a parameter that allows us to
smoothly vary the context-preserving property of the social struc-
ture. At a substitution probability of zero, the model is identical to
the FRN case. At a probability of 1.0, it is identical to pure RWR.
Every pairing is chosen at random every period. The sixth and
seventh rows of Table 2 show the results for the intermediate sub-
stitution probabilities of 0.3 and 0.5. The first of these variants
causes a marked departure from the FRN dynamics. The second
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increase in the substitution probability is sufficient to produce his-
tories similar to the pure RWR case. As we ‘turn the dial’, random
substitution of new partners into the fixed network increases, and
therefore context preservation declines. Around a parameter value
of 0.3 the dynamics shift. The ability to sustain cooperative regimes
weakens, and then, at levels of 0.5 and above, it collapses. These
results for sets of population histories (i.e. individual runs of the
model) strongly suggest that context-preservation plays an essen-
tial role in the emergence and maintenance of cooperative regimes.

3.2. Detailed Investigation of Processes Leading to a
Cooperative Regime

To understand this fundamental pattern, we trace through quali-
tatively similar dynamics that are found in the detailed events
within our simulated histories. We show that context-preserving
social structure reshapes this basic pattern into a cooperative
regime by maintaining interaction patterns among agents as their
strategies adapt. In effect, this creates a shadow of the adaptive
future. This concept, distinct from the familiar shadow of the future,
is defined on the time scale of adaptation rather than that of itera-
tive play. Games here are only four moves long, too short for the
effective operation of the traditional shadow notion. What drives
the shadow of the adaptive future is the benefit derived from
keeping together agents whose strategies developed through emu-
lating each other. Since there is no best strategy in Prisoner’s
Dilemma (independent of the others’ strategies), it is crucial for
cooperation that a strategy encounter others with which it is com-
patible. A context-preserving social structure means that strategies
resulting from today’s interactions will be near each other tomor-
row. This fosters the emergence of mutually compatible strategies.

We use the label ‘friendly’ for strategies with high values of p,
those tending strongly to respond to cooperation with cooperation.
The label ‘provocable’ characterizes strategies with low g, that is,
those with a strong tendency to follow a defection with a defection.b

In a context-preserving social structure, if an agent does well by
employing a friendly strategy, it will be copied by its neighbors, and
in the succeeding periods the original strategy will be interacting
with its compatible ‘imitators’. Friendly strategies such as Tit-for-
Tat that diffuse through a context-preserving social structure will
find themselves interacting with other friendly strategies. If an
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unfriendly (low p) strategy does well and is emulated by neighbor-
ing agents, the resulting cluster of unfriendly strategies will be inter-
acting in the following periods, lowering each other’s scores.

Friendly strategies are vulnerable to exploitation. In a randomly
mixing world, adaptation drives them out in favor of unfriendly —
and provocable — alternatives. But in a context-preserving world,
the friendly strategies resulting from adaptation are more likely to
encounter other friendly strategies. Moreover, unfriendly strategies
that remain near their own kind will do less well as a result.
Context-preservation allows the adaptive future to cast its shadow.
The stage is thus set for the emergence of a cooperative regime. The
agents do not require foresight for this to happen. Indeed, our simu-
lated agents have no expectations about the future. The process is
driven entirely by the differential survival of adaptations that occur
in what happen to be favorable contexts.

The differences between average scores in our matched popu-
lation histories demonstrate that persisting patterns of interaction
are clearly a major determining factor for the emergence of
cooperative regimes. But, once again, we should press deeper if we
are to better understand when this harnessing of a shadow of the
adaptive future might be expected in real settings. This time we
exploit another advantage of simulation, the opportunities it pre-
sents for controlled examination of dynamic sequences of events
within single histories. It allows us to explicate in detail the processes
that create and sustain a cooperative regime. This (stochastic) tran-
sition is observed repeatedly in all our simulations that engender
cooperative regimes, and is not found in those that do not.

First, we describe dynamics that occur in all our simulations: an
initial phase of learned mutual defection, bursts of strategies that
are friendly and provocable, and ‘predation’ of non-provocable
strategies by unfriendly ones. In section 3.3 we then describe the
dynamics that distinctively characterize the transition to sustained
cooperation.

3.2.1. The Initial Phase. Since we always begin a simulation with a
random population of strategies located in randomly chosen pos-
itions, the first periods are very similar in all cases. Figure 1 shows
the first 50 periods of average payoff for each of our first four struc-
tural variations, RWR, 2DK, FRNE, and FRN. All show an initial
collapse from an unsustainable level of substantial mutual cooper-
ation that occurs in our randomized initial configuration. With
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minor sampling fluctuation, the first period results are the same in
all conditions: each of the four cells of the Prisoner’s Dilemma
matrix is realized one quarter of the time, making average payoff
2.25. However, since at random initialization there is no structure
to the interaction of strategies, all four cases evidence a rapid
decline, as agents switch to the unfriendly, provocable strategies
that did best in the initial random encounters.

As time passes, the three context-preserving conditions separate
from the random mixing case. Their performance falls, but not as
deeply, and it begins to recover, while the random pairing system
never does. (Brief bursts of cooperation in some individual his-
tories appear here as minor fluctuations of the dismal average of
the 30 populations.)

The left column of Figure 2 shows the full 2500-period history for
a representative individual population drawn from each of the five
conditions RWR, FFR-0.5, FFR-0.3, FFR-0.1, and FRN. The
typical history shown for random pairing in every period (RWR) is
at the top left of Figure 2. The four subsequent histories in the left
column are typical cases for progressively increasing levels of

2.75| A RWR 2.75} B. 2DK
e 2.5 e 2.5
5225 5 2.25
3 3
g 2 8 2
21.75 21.75
< 1.5 < 1.5
1.25 1. 25
10 0 30 40 0 10 20 30 20 5
Step Step
2.75/ C. FRNE 2.75( D. FRN
- 2.5 - 2.5
$2.25 S 2. 25
g 2 g 2
21.75 21.75
< 1.5 < 1.5
1.25 1. 25
10 20 30 40 50 10 20 30 40 5
St ep Step

Figure 1. Average score per move over the initial 50 moves for 4
experimental conditions: RWR, 2DK, FRNE, and FRN (see text for
descriptions). The value for each period in each figure is the average
score per move for all individuals in that period over all 30 histories
(replications) for that condition.
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context-preservation. The striking difference in these histories is
the result of a transition to cooperation that is enacted reliably in
the population with fixed interactions and is absent in the popu-
lation where pairings are repeatedly randomized. Corresponding to
each typical average-payoff history shown in Figure 2 is a ‘p—q plot’,
constructed from data on changes in p and g during every period
of each of the 30 histories in an experimental case. Using every
occasion when the population average of p and of g lay within a
small square region of the surface, the arrow points to the average
values of p and q that resulted after adaptation processes were com-
plete. Thus an arrow pointing up and to the left indicates that
whenever p and g were near the base of the arrow, population
average p fell and population average q rose. The circles on the
plots indicate the amount of time that the populations spent in the
various cells. The largest circle is the most frequently visited cell.
The other cells have circles whose areas indicate the proportion of
time spent there relative to the most frequently visited cell.

Note that Figures 3 and 4 are enlarged versions of the p—q plots
for the RWR and FRN cases, respectively (i.e. the plots at the top
and bottom of the right column of Figure 2). Figures 3 and 4 clearly
show the direction and size of the arrows (and circles) in these two
cases. The general pattern of counter-clockwise flow seen in those
two extreme cases is also found in all the p—q plots for the cases
with intermediate, and increasing, context preservation (FFR-0.5,
FFR-0.3, FFR-0.1), as shown in Figure 2. In the following sections
we describe the differences in these plots, which reflect the effects
of the different degree of context preservation across the cases
shown in Figure 2.

3.2.2. Bursts of Friendly Strategies. We begin at the top of Figure 2
by noting that even our repeatedly mixing RWR populations do
have bursts of friendly strategies that correspond to increases in
the population’s average value of p. These bursts provide momen-
tary opportunities for a cooperative regime. The single history dis-
played at the top left of Figure 2 shows a brief spike in average
score per move. The p—q plot, based on all 30 histories, displays
one large circle and two smaller ones in the lower left hand corner
of the space. This shows that the populations spent most of their
time with low values of p and of g. The thin trail of short arrows
running to the right along the lower edge of the p—q diagram cor-
responds to the occasional bursts of high-p low-q (friendly, but
provocable) strategies associated with spikes like the one in the
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history. The line of leftward arrows higher in the diagram corre-
sponds to the immediate fall in population average p as the burst
of friendly strategies is wiped out, a process we will describe in the
next section.

We might describe the upward course of a burst this way: when
nearly all strategies are unfriendly and provocable (in essence,
‘always defect’), noisy emulation processes will produce in every
period a few new strategies that are either friendly and/or non-
provocable. Either variant strategy will be expected to do badly in
a predominantly defecting world, and hence will be unlikely to be
retained or emulated in subsequent periods. However, chance also
guarantees that there will occasionally be random meetings of two
variant friendly strategies. (Also, there will be meetings of non-
provocable variants, but unless they are also friendly, they fare
poorly and immediately vanish.) A random pairing of two friendly
strategies does well enough to be emulated. Playing each other, the
agents with high-p strategies may average as much as three points
per move. They may average as little as 0.75 per move with always-
defecting others, and there will typically be seven of those. But the
average performance will work out to 8.25/8, which will be
superior to the average of 8/ 8 that always-defects obtain with each
other.

In this situation, where two friendly variant strategies have met
by chance, they probably will be retained by their agents into the
next time period. Moreover, the friendly strategy will be emulated
by the 14 other agents whom those two encountered (or, more pre-
cisely, by 90 percent of them, on average, since performance com-
parisons involve noise). Thus, the succeeding period will contain
the usual sprinkling of new friendly strategies created by chance
emulation errors, and about 12-13 systematically transmitted strat-
egies with high p.

At this substantially increased density, subsequent pairings of
friendly strategies are considerably more likely. At the increased
density expected in the period following a single chance friendly
pairing, there is a non-trivial chance of two such pairings. The logic
of increased density holds across several higher levels of friendly
pair occurrence, so that any period with a small number of these
events has a modest probability of being succeeded by a period with
a higher count. The most common outcome for any given burst of
dense friendliness is still for the nascent cooperative regime to be
extinguished by the predation process described in the next section.
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But the probabilities are such that 9 of our 30 histories reached an
average score over 2.3, although their time in such cooperative
circumstances was extremely brief.

3.2.3. Predation of the Friendly and Non-Provocable. The failure to
sustain cooperation in these cases of repeated randomization can
be understood from the p—q plot at the top right of Figure 2, for the
RWR case. What is evident in the diagram is that with bursts of
friendly strategies, average p can rise quickly to substantial levels.
This shows as the rightward arrows along the bottom edge. But in
these histories, where context is not preserved, the increase of
friendly strategies is only momentary. Figure 2 shows their decline
in the line of leftward pointing arrows slightly higher in the p—q
space.

The RWR p—q plot (the top right of Figure 2, or Figure 3) also
shows that at any increased q level, p levels will begin to fall. This
is because any of the remaining strategies with low p and q will do
extremely well against another with higher g. A strategy that is
completely unfriendly and provocable always defects and scores 5
points per move against a maximally friendly and non-provocable
strategy, which always cooperates. If the density is sufficient for it
to meet two non-provocable others, and its six other encounters are
with friendly and provocable strategies (which correspond to Tit-
for-Tat), it will average” — using pure types for approximation — (2*5
+ 6*2)/8 = 2.75, while each of the others will average no more than
(0.75 +7*3)/8 < 2.72. The always-defect strategy will be emulated
by all eight others, reducing the population average for p.

In our p—q plots this gives rise to the leftward arrows seen at
higher levels of g in all histories, no matter what the social struc-
ture. Once there is a sufficient density of friendly, unprovocable
strategies, successful predatory exploitation by unfriendly strat-
egies is inevitable. However, in context-preserving structures,
falling levels of friendliness are subsequently restored, while in ran-
domly mixing systems they are not. This crucial difference is the
focus of the following section.

3.3. The Emergence of Cooperative Regimes

What distinguishes the detailed sequences of events in the cases
that form and maintain cooperative regimes from the cases where
this does not occur? The crucial difference is adaptive dynamics at
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low levels of g, just above the minimum. In all histories there are
bursts of friendly strategies when g is extremely low. But what
happens as a few friendly and unprovocable individuals enter the
population, leaving retaliation to other agents? This always
happens when there are errors in emulation, but what conse-
quences it has will depend on the degree of context-preservation.

The succeeding rows of Figure 2 show the dynamics as context
preservation steadily increases up to the fifth row, corresponding to
the pure Fixed Random Network (FRN), where pairings are not
shuffled at all at the close of each period. Here, a pair that cooper-
ated will be paired again (except when noise disrupts one of the
strategies). In such a context-preserving structure, the strategies a
successful agent faces in the future are emulations of the strategy
that agent employed in the past.

The second, third and fourth rows of Figure 2 show typical his-
tories and p—q plots as we ‘turn the dial’ to increase context-preser-
vation. Transitions to high scores per move become more common
in the typical histories, and more persistent. Time spent in the high-
p, low-q, region increases, as shown by the circles in the right-hand
region of the p—q plots. Indeed, the third row of Figure 2, for the case
with substitution probability 0.3, shows a bi-stable condition in which
long stretches at high-p alternate with long stretches at low-p.

With this array we can see a crucial difference between context-
preserving cases, in rows four and five of Figure 2, and the non-pre-
serving cases in rows one and two. In the non-preserving cases of
the first two rows, the arrows for population average g slightly
above minimum (the second line of arrows from the bottom) show
a leftward flow. The slightest increase of non-provocability in the
population is instantly exploited and unfriendly strategies are
copied as a result. However, as context-preservation increases,
moving toward the last rows in Figure 2, this flow reverses. In these
cases, when the population has the same slightly elevated level of
g, it is carried toward higher p values. The population spends its
time in the right-hand corner, rather than the left one. We have a
cooperative regime.

We can examine precisely what happens to any population with
a history that passes through a crucial region of the p—q space,
where p is in the interval [0.3,0.35] and q in [0.05,0.10]. Where there
is random mixing in every period (RWR - top row), the average
value of p for a population in this region moves down by —0.016. In
the fifth row, where there is random initial pairing and no further
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shuffling (FRN), the populations visiting the same crucial p-q
region saw p values increase by 0.052. In the same region of p—q
space, randomly mixing and context-preserving populations are
headed in opposite directions.

We can get an immediate insight into the cause of this key differ-
ence by examining further data on this p—q region of the two con-
ditions. Figures 5 and 6 show the relationship between the p value
of an agent’s strategy (its friendliness) and the average p values of
the strategies it encountered. The data are for all individual agents
during periods of any population history (for a given experimental
condition) where the average values of p and q were in the p—q
region defined above. Figure 5, for the repeated random mixing
case (RWR), shows that the p of encountered agents varied widely
from the agent’s own p value. Figure 6, for the Fixed Random
Network case (FRN), shows a much tighter correlation of the p
values of self and other. While the regression of own p on average
p-value of others is not significant for RWR, it is highly significant
for FRN (slope = 0.1580; F = 717.20; N = 5376).

This substantial difference in who meets whom has transform-
ing consequences. In this key region of the p—q parameter space,
the random mixing regime frequently brings friendly strategies
together with unfriendly ones. Unfriendly strategies prosper and
spread, and the population moves to lower p. In the context-
preserving cases, friendly strategies that succeed are emulated by
their continuing neighbors, and subsequently interact much more
with their own kind. They prosper further. An unfriendly strategy
that has a success interacts in the next period not with more
friendly strategies on which it can prey, but with many of its own
kind, since it has been emulated by continuing neighbors. The
unfriendly strategy no longer prospers and is not emulated. The
two effects move the population to higher average p. With context-
preservation a channel is opened that allows the continuous
restoration of a cooperative regime whenever predation of non-
provocables threatens to carry it to the Hobbesian regime of
unfriendly provocability.

By exploiting simulation tools we have been able to demonstrate
cooperative regimes in populations, and then to probe the detailed
dynamics that distinguish those cases from the histories of other
populations that languish in mutual defection. Our results provide
a precise demonstration of an effect well appreciated by Giddens,
that continuity of interaction is a crucial aspect of social structure.
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Figure 5. For the temporary Random With Replacement (RWR) case
there is no relation between an agent’s own friendliness (p) and the
average friendliness of the other agents it played in a time step in which
the average population p and q values were in the ranges [0.30,0.35] and
[0.05,0.10], respectively. (The line is the regression line through the 7168

points for this case.)

Such continuity preserves the contexts in which strategies have
worked, allowing later variants and emulations of those strategies
to find a supportively similar environment.

4. Implications

Our results are consequential — both in their implications for theory
and for the illumination of important contemporary issues.

A deep implication of our results is the demonstration that the
sociology of a system contributes massively to its adaptive dynam-
ics. This is a point that goes far beyond Prisoner’s Dilemma,
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Figure 6. For the Fixed Random Network (FRN) case, there is a positive
relation between an agent’s own friendliness (p) and the average
friendliness of the other agents it played in a time step in which the
average population p and q values were in the ranges [0.30,0.35] and
[0.05,0.10], respectively. (The line is the regression line through the 5376

points for this case.)

applying just as well to evolutionary accounts of social roles and
routines. Game theory, even though it has made great progress in
admitting processes of learning and adaptation (Fudenberg and
Levine 1998), has paid far too little attention to the details of who
interacts with whom. But these simulations demonstrate that
those details can be decisive, by themselves completely reversing
the course of system evolution. It appears that the continuing
search in game theory for improved equilibrium concepts can use-
fully be augmented with work on the underlying interaction struc-
tures that may be equally determinative of which outcomes are
realized.

A related theoretical implication is the major opportunity to
advance our understanding of social processes by conceiving them
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as occurring on — or in — networks with varying structures. There
are considerable challenges here, since closed-form mathematical
techniques are not always available. But some progress can be
made with simulation, as we have shown. And it is encouraging that
we have been able to approximate the dynamics of quite different
networks by varying the rate of substitution in a random network.
Watts (1999) shows in a similar vein that many qualitative proper-
ties of dynamics on networks can be studied by varying the amount
of random perturbation of highly clustered networks. The two lines
of work are complementary. His studies are comparisons of dynam-
ics on fixed networks that differ in the proportion of random con-
nections; our studies are of dynamics on changing networks.
However, together they suggest that workable approximations for
large classes of network structures may be found. With such
approximations many important insights into dynamics within
structure may become reachable.

With respect to contemporary social concerns, work such as ours
and other work on dynamics on networks, such as that of Watts
(1999), opens the door to a better-grounded understanding of the
impacts of the massive communications upheaval now occurring.
Falling costs of communication, over the Internet and by telephone,
are dramatically raising the rates of interaction among physically
and socially dispersed agents, and therefore could be decreasing the
clustering of their social networks. The issues this raises are not
new, stretching back to the concern of (Tdnnies 1887) for the
waning of Gemeinnschaft. But the contemporary growth of con-
nection to distant agents is dramatic, and a reason for renewed
attention. Our results suggest that the simplest projection may be
inadequate. Decreased clustering may not entail the loss of
cooperative regimes. In our simulations, context preservation and
the shadow of the adaptive future suffice to overcome the effects
of random network connectivity and constantly changing strat-
egies.8 The results provide only an ‘existence proof’, of course. But
even if we cannot guarantee cooperative regimes, it is a gain to
understand how they are possible in the novel conditions of the
distant social interactions now unfolding all around us.
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1. Although we have not done the full analysis reported here for population sizes
other than 256, our simulation runs for populations up to 4096 agents display
very similar aggregate statistics to those reported here and appear to us to
sustain all the relationships we report for the 256 agent case.

2. While the y values do in fact vary from the p values in individual agents, there
is a strong correlation between agents’ y and p values, and the average y closely
tracks the average p. Thus to simplify the analysis, we only report analysis of
the p values.

3. Complete details for a wider set of experiments, including other strategy rep-
resentations, other adaptive methods, and other social structures, are available
in Cohen, Riolo, and Axelrod (1999). Here we discuss only a subset of the
experimental conditions and results that are especially pertinent to the main-
tenance of cooperative regimes when agents are embedded in different social
structures. A very careful reader will notice very minor discrepancies that are
due to improved treatment of infrequent tie events programmed since com-
pletion of the working paper. Those changes did not produce any differences
that altered the basic results reported in either paper.

4. To appreciate the difference between a network based on geography and one
based on arbitrary links, consider the contrast between two pure types. In both
networks, each person has exactly four ‘neighbors’. In a two-dimensional
lattice, the neighborhoods are correlated. For example, a person has two neigh-
bors in common with whoever is one step north and one step east. The corre-
lational structure of such a geographic network means the number of people
at a certain distance from any given person does not grow very quickly. In fact,
the number of others who are exactly d steps away form a diamond in this
lattice network, and their number increases linearly: N(d) = 4d. In contrast,
consider a network in which every person is connected to four others chosen
at random from a large population. In this case, the network fans out in a tree
structure. A person has four immediate neighbors, each of whom has three
other neighbors, and so on. For a random network in an infinite population,
the number of others at a given network distance expands exponentially: N(d)
=4 x 391, For a random network in a large finite population, two people may
share more than one neighbor, but this will be rare. Rapid fanout of links in a
random network can help the diffusion of information. On the other hand,
rapid fanout as well as the lack of neighborhood clustering raises questions
about the prospects for prosocial behavior in an uncorrelated structure. The
table in the Appendix reports on the fanout measured in some typical graphs
used in the studies reported here; in short, the fanout for random graphs of size
256 is very close to that predicted above for d up to about 4, after which the
finite size effects begin to reduce the fanout at an increasing amount. And as
expected, for larger graphs the fanout approximates the theoretical limit up to
higher d values.

5. Statistically, the FRNE populations actually have a better average score than
the 2DK populations, but the magnitude of the difference is not important for
our argument, and the direction of the difference actually makes the clustered
spatial embedding slightly inferior to its fixed random equivalent.
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6. The friendliness property of a strategy is not identical to the property labeled
‘niceness’ in Axelrod (1984). Strategies that are nice are not the first to defect.
Provocability as used here is similar to the earlier usage.

7. The unfriendly and provocable always-defect receives 5 points per move from
each of its meetings with non-provocable others, and the always-defect receives
2 points per move from each of its six games with friendly and provocable
others, i.e. 5 points in the first move and 1 point on each of the three subsequent
moves.

8. We elaborate this point in Axelrod, Riolo, and Cohen (2000).
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Appendix: Experimental Methods

A single run of the model lasts 2500 periods (after the initial one). The
result of a run is a history of agent activity and change, as well as a history
of resultant population-level aggregate measures. Because these models
include many stochastic processes, we generate 30 histories for each case
(i.e. for each combination of experimental parameter values), each run
beginning with a different seed for the random number generator.

Abstractly, a run of the model, to generate a single history, proceeds as
follows:
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Population(0) = GenerateRandomPopulation
for each Period T
for each individual A from Population(T)
for 4 IPD games
X = GetOtherToPlay
PlayPrisonersDilemma( A, X, 4 Moves )
UpdateCummulativePayoffs( A, X))
endfor
endfor
NormalizePayoffs
Population(T+1) = ApplyAdaptiveProcedure( Population(T) )
endfor

Note that we picked four moves per game because under the general con-
ditions we are using, the shadow of the future imposed by that game length
makes the attainment of cooperation difficult but not impossible (Riolo
1997a, b). Since the strategies do not take the move number into account,
four moves per game corresponds to w = 0.75 in Axelrod (1984).

In our simulations a period consists of each of 256 agents in the population
selecting four others to play iterated Prisoner’s Dilemma (IPD) games. An
IPD game consists of four moves played between agent A and one other
agent, X. We use the standard payoff matrix shown in Table 1. Each agent’s
strategy is represented as in Nowak and Sigmund (1989), by a triplet of real
numbers 0 <y, p, q < 1. The first of these, y, represents the probability that
the agent will cooperate on the first move of a game. For moves after the first
move, the second, p, is the probability that an agent will cooperate following
a cooperative move by the agent with which it is playing. The last, g, is the
probability that the agent will cooperate after the other agent has defected.
We initialize y as equal to p, but they may vary independently thereafter.

For period 0, the initial population is generated by evenly distributing
the agents throughout the strategy space. In each subsequent period each
individual plays IPD games with a small sample of other agents from the
population; which others (and the exact number) each agent ends up
playing in a period depends on the selection procedure (GetOtherToPlay),
which is determined by the social structure being studied, as described
below. As a result of these games, each individual accumulates an average
payoff per move for the period. After all agents have played, agents are
changed by the adaptive procedure being used for the run, as described
below. Then the next period commences.

In this report we systematically vary the social structure that controls
which others an agent plays each period (i.e. it controls what X is returned
by the GetOtherToPlay procedure). We sometimes refer to the others an
agent plays as its neighbors. In this paper we report on four social struc-
tures (or mixtures of these four):
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RWR-Random With Replacement: This interaction process is one kind
of complete-mixing model often utilized in analytic population-level models.
Each agent A plays four others chosen with equiprobability from the entire
population (not including A itself). The others are chosen with replacement,
so it is possible (but rare) that an agent would play the same other twice in
one period. Note, however, that while on average each agent A will play 8
others in a period (exactly 4 others A chooses, with A being chosen by 4
others, on average), there is some variance in the number of others the
agents play, with some agents playing more or less than 8 games per period.

2DK-Two-Dimensional torus, Keep Neighbors: In contrast to RWR,
2DK provides complete continuity and clustering of neighborhoods. At the
start of each run, the agents are placed at random on a 16 by 16 torus. Each
period each agent plays its 4 NEWS (North-East-West-South) neighbors.
Since those agents also have 4 NEWS neighbors (i.e. the neighbor relation
is symmetrical), each agent plays exactly 4 other agents, playing each twice
during a period. The agents never move, so they keep the same neighbors
over all periods in a run.

FRN-Fixed Random Neighbors: This social structure is like RWR, in
that neighbors are picked at random, non-symmetrically, but it is also like
2DK, in that the neighbors remain the same throughout each run. At the
start of each run, each agent A picks 4 other agents to be its neighbors,
chosen with equiprobability and with replacement from the entire popu-
lation (not including A itself). Thus as with RWR, on average each agent
plays 8 different agents each period, but there is considerable variation
with some playing more and some playing fewer others. However, unlike
RWR, with FRN these neighbors are retained for the entire run, so the
agents play the same set of others every period.

FRNE-Fixed Random Neighors, Equal numbers: This social structure
is designed to be like 2DK in that each agent has exactly 4 other agents as
(symmetric) neighbors, but each agent’s neighbors are chosen at random,
so that there are none of the correlations between neighbors-of-neighbors
that are induced by a 2DK-type topology. As in 2DK, the agents keep their
neighbors for the entire run. Thus at the start of each run, each agent A
randomly selects 4 other agents to be its neighbors, and they in turn choose
A to be one of their neighbors. After all agents have 4 symmetric neigh-
bors, the neighbors are randomly mixed to ensure there are no correlations
induced by the order in which agents choose others. The randomization is
done as follows: After all agents have 4 symmetric neighbors, each agent
randomly swaps a neighbor with 256 randomly chosen other agents, with
each swap subject to the FRNE constraints that each agent have 4 unique
neighbors and each neighbor relation is symmetric. Note that this method
of constructing the neighborhood relationship is similar to the algorithm
Watts describes for his B-model of relational graphs (Watts 1999), for g =
1.0.

In order to verify that the FRNE neighborhoods generated as described
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above indeed have less clustering (correlation) than 2DK neighborhoods,
we measured the distribution sequence (Watts 1999: 32), i.e. the number
of agents exactly d steps away (and no less) from each agent. As mentioned
in note 4, for infinite 2DK graph with 4 NEWS neighbors for each agent,
the number of different agents exactly d away (and no less) increases lin-
early, N(d) = 4d. But for a graph in which each agent’s 4 neighbors are
chosen at random from a large (infinite) population, the number of others
at a given network distance expands exponentially: N(d) = 4 x 39-1, Table
Al gives the number of agents d steps away, averaged over all agents in a
typical FRNE population of 256 agents from our experiments. (Results
from other graphs are almost identical.) The table also gives the expected
number d away for 2DK and for random graphs constructed with an infi-
nite population.

Table Al.
d Avg. N(d) Predicted random 2DK
1 4.00 4 4
2 11.74 12 8
3 32.38 36 12
4 74.59 108 16
5 98.42 324 20
6 33.23 972 24

The number of agents found to be d steps away from a given agent in an FRNE
social structure constructed as described in the Appendix, averaged starting from
all 256 agents in a population. Also shown are the number of agents predicted to
be d away from a given agent in 2DK and random graphs of infinite size.

As can be seen the number of agents d away in the FRNE graph grows
approximately exponentially, at least until d = 3 or 4, after which the finite
size effects of the small population begin to grow. The fanout is clearly
much broader than that predicted for a 2DK neighborhood structure.
Similar results are found for other FRNE graphs we have tested; and, as
expected, for larger populations (e.g. 4096), the measured N(d) remains
close to the infinite population value for even larger values of d.

At the end of each period, all agents are subjected to an adaptive pro-
cedure which may change their strategies. Each agent A identifies the most
successful of its neighbors (i.e. the agents A played in the current period).
The most successful is the neighbor agent X with the highest average
payoff per move resulting from all games X played during the current
period. Ties are broken randomly if more than one neighbor has the same
highest average payoff per move among A’s neighbors. The agent A then
updates its strategy by adopting X’s strategy if X did strictly better than A
in the current period, i.e. if X’s average payoff per move is higher than A’s
average payoff per move (again, over all games each played in the current
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period). The update rule includes two sources of possible error. First, there
is a 10 percent chance the agent makes a mistake when deciding whether
or not its best neighbor did better than itself. This results in the agent’s
occasionally copying an inferior strategy or failing to copy a superior one.
Second, regardless of which of the two strategies (its own or its best neigh-
bors) is adopted, for each of the three parameters (y,p,q) there is a 10
percent chance that Gaussian noise is added to the parameter (mean 0, s.d.
0.4, bounded by 0 and 1), i.e. sometimes resulting in a strategy that is differ-
ent from the one being adopted.



