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1. INTRODUCTION

Fix an algebraic variety X over a field k. Hironaka showed [Hir64] that if k has characteristic 0, then one can find
a proper birational map π : Y → X with Y smooth. de Jong showed [dJ96] the same is true in arbitrary characteristic
if we replace “birational” with “generically finite.” Hironaka’s theorem also shows that π can be chosen to be an
isomorphism over Xsm. On the other hand, it is sometimes asserted that de Jong’s method does not allow for any
control on the locus where π is well-behaved. The goal of this note is to show that, in fact, de Jong’s alterations
theorem can be proven while exercising some control over the étale locus of the alteration:

Theorem 1.1. LetX be a variety over a perfect field k, and let F ⊂ Xsm be a finite subset of closed points the smooth
locus. Then there exists an alteration π : Y → X such that Y is smooth and π is finite étale in a neighbourhood of F .

As in Hironaka’s case, a stronger variant of Theorem 1.1 involving pairs (see Theorem 2.6) is also true. An
important corollary of Hironaka’s construction is the existence of good compactifications in characteristic 0. Using de
Jong’s methods, we obtain good compactifications in any characteristic after passage to an étale cover:

Theorem 1.2. Let U be a smooth variety over a perfect field k. Then there exists an étale cover V → U , and a dense
open immersion V ⊂ V which is the complement of a strict normal crossings divisor in a smooth projective variety V .

A fundamental consequence of Hironaka’s theorem and the theory of toroidal embeddings is the semistable reduc-
tion theorem in characteristic 0. Using de Jong’s method, we prove the same in mixed characteristic up to passage to
an étale cover; here a local field is a finite extension of W (k)[1/p] with k a perfect characteristic p field.

Theorem 1.3. Let U be a smooth variety over a local field K. Then there exists a finite extension K ′/K, an étale
cover V → U , and a dense open immersion V ⊂ V which is the complement of a strict normal crossings divisor in a
proper semistable OK′ -scheme V .

Similar results in the rigid analytic category were proven in [Har03] and [Fal88, §III.2]; both these results require
one to work with genuine analytic spaces even when starting with schemes, and hence do not recover Theorem 1.3.

1.1. Acknowledgements. We thank Brian Conrad, Johan de Jong, Christopher Deninger, Davesh Maulik, and An-
nette Werner for useful conversations and encouragement.

2. THE EQUICHARACTERISTIC SETTING

Fix a perfect field k. Our goal in this section formulate a statement that implies Theorems 1.1 and 1.2; this stronger
statement is more robust for inducative arguments, and is formulated in terms of the following category of pairs
inspired by [Bei12, §2]:

Definition 2.1. We define the category Pk of pairs as follows. The objects are (scheme-theoretically) dense open
immersions j : U ↪→ U where U is a smooth quasi-projective k-variety, and U is proper k-variety, and a map is given
by the obvious commutative square. We may abusively write objects of Pk as (U,U). For a map g : (U,U)→ (V, V )
in Pk, we often write g : U → V and g : U → V for the induced maps. We say that a map g : (U,U) → (V, V )
is étale (resp. finite étale) if the map U → V is so. Given a finite subscheme Z ⊂ V , we say that an étale map
g : (U,U) → (V, V ) is a finite étale neighbourhood of Z if the map U → V is finite étale in a neighbourhood of Z.
Let Pss

k ⊂ Pk be the full subcategory of semistable pairs, i.e., pairs (U,U) where U is smooth and projective, and
U − U is a strict normal crossings divisor. A family {fi : (Ui, Ui)→ (V, V )} of maps in Pk or Pss

K is called an étale
cover if each fi is étale, and ∪ifi(Ui) = U .
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Remark 2.2. Given a pair (U,U), all generic points of U lie in U by the scheme-theoretic density. In particular, U
is reduced. If moreover U is normal, then π0(U) = π0(U). Moreover, an étale map f : (U,U) → (V, V ) of pairs is
precisely a proper surjective map U → V which carries U to V and is étale over U .

Example 2.3. A basic example of an étale map in Pk is (U,U
norm

)→ (U,U) where U
norm

denotes the normalisation
of U in U ; this map is a finite étale neighbourhood of any finite subscheme of U . More generally, any U -admissible
modification of U , i.e., a proper birational map V → U which is an isomorphism over U , provides such an example.

Remark 2.4. The category Pk admits certain limits. For example, if f : (X,X) → (Y, Y ) is any map in Pk and
ε : (Y ′, Y ′) → (Y, Y ) is an étale map, then the base change of f along ε exists, is étale over (X,X), and is given by
(X ′, X ′) where X ′ = X ×Y Y ′ and X ′ is the scheme-theoretic closure of X ′ in X ×Y Y ′. Given a finite subscheme
FX ⊂ X , if ε : Y ′ → Y is a finite étale neighbourhood of f(FX), then (X ′, X ′) → (X,X) is a finite étale
neighbourhood of FX . The induced map (X ′, X ′

norm
)→ (Y ′, Y ′) is called the normalised base change of π along ε.

The main theorem of this note is the following:

Theorem 2.5. Let (X,X) ∈ Pk, and fix a finite reduced subscheme FX ⊂ X . Then there exists a finite étale
neighbourhood π : (U,U)→ (X,X) of FX with (U,U) semistable.

Theorem 2.5 immediately implies Theorem 1.1 as well as Theorem 1.2. In fact, since a subdivisor of a strict normal
crossings divisor is also a strict normal crossings divisor, we obtain the following analogue of [dJ96, Theorem 4.1]:

Theorem 2.6. Let k be a perfect field. Let X be a variety over k. Fix a closed subset Z ⊂ X and a finite reduced
subscheme FX ⊂ (X − Z)sm. Then there exists an alteration φ1 : X1 → X such that

(1) X1 is a smooth projective k-variety.
(2) φ−1

1 (Z) is a strict normal crossings divisor in X1.
(3) φ1 is finite étale over FX .

Theorem 2.5 also has consequences for the étale topology. Let Smk denote the category of smooth k-varieties
equipped with the étale topology. Using the definition of étale covers given in Definition 2.1, one obtains:

Theorem 2.7. Restriction induces equivalences of topoi: Shvét(Pk) ' Shvét(P
ss
k ) ' Shvét(Smk).

Proof. Consider the functors Pss
k

i→ Pk
r→ Smk where i is the inclusion, and r is given by r(U,U) = U . For any

object (U,U) ∈ Pk, Theorem 2.5 gives an étale cover {(Ui, Ui) → (U,U)} with (Ui, Ui) ∈ Pss
k . A simple argument

using Theorem 2.5 shows that any map in Pk also comes from a map in Pss
k , at least after replacing the source and

target by étale covers. This proves that i induces an equivalence by [Bei12, §2.1]. The claim for r is similar: the
functor r is faithful, any U ∈ Smk compactifies to a pair (U,U) ∈ Pk as U is quasi-projective, and maps U → V in
Smk extend to maps (U,U)→ (V, V ) in Pk, at least after a U -admissible blowup of U . �

Remark 2.8. We had originally hoped that Theorem 2.7 would give a definition of the log crystalline cohomology
of a smooth variety without assuming that good compactifications exist. However, this does not seem to be possible:
the presheaf (U,U) 7→ RΓcrys((U,U),O) of crystalline cohomology complexes of the logarithmic scheme (U,U)
relative to Z/pn (for some n) does not satisfy étale descent on Pss

k , and its étale sheafification is too large, even for
(A1,P1). Indeed, even for n = 1, one has RΓcrys((A

1,P1),O) ' k, but it is easy to check that this value does not
satisfy cohomological descent for the Artin-Schreier cover (A1,P1)→ (A1,P1).

3. PROOF OF THEOREM 2.5

Fix a pair (X,X) and a finite reduced subscheme FX ⊂ X as in Theorem 2.5. Write d = dim(X).

3.1. Strategy. Assume we have constructed a finite étale neighbourhood g : (X ′, X ′) → (X,X) of FX . Then to
prove Theorem 2.5 for the triple ((X,X), FX), it suffices to prove the same for ((X ′, X ′), g−1FX). The goal of the
rest of this section is to construct a sequence of such neighbourhoods g which progressively improve the singularities
of the pair (X,X). In practice, these will typically be produced as follows: we will construct a curve fibration
π : (X,X) → (Y, Y ), a finite étale neighbourhood ε : (Y ′, Y ′) → (Y, Y ) of FY := π(FX) ⊂ Y , and set g to be the
map from the normalised base change of π along ε to (X,X).
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3.2. Preliminary reductions. Clearly we may assume that X is connected. By limit arguments, we may assume
k = k. Since X is quasi-projective, it admits a compactification X ′. The normalised closure of the graph the induced
rational map fromX toX ′ defines proper birationalX-admissible mapsX a← X ′′

b→ X ′ withX ′′ normal and proper.
By Raynaud-Gruson [RG71, Theorem 5.2.2], blowups are cofinal amongst all X-admissible modifications of X ′.
Hence, after replacing X ′′ with a further X-admissible modification, one may assume that b is a blowup. In particular,
both b and X ′′ are projective. Replacing (X,X) with (X,X ′′), we may assume that X is normal and projective.

3.3. Finding projections: [dJ96, §2.11,4.11, 4.12]. Let ((X,X), FX) be as in §3.2. Our goal is to construct a curve
fibration π on X that has the following two properties: (a) at least after shrinking around FX , π realises an elementary
fibration over X (in the sense of [SGA73, Expose XI]), and (b) FX lives in a fibre of π.

Proposition. After replacing (X,X) with a finite étale neighbourhood of FX , we may assume that there exists a map
π : (X,X)→ (Y, Y ) satisfying:

(1) X and Y are normal projective k-varieties.
(2) The map π is a proper generically smooth map, and the smooth locus (X/Y )sm is dense in all fibres.
(3) All fibres of of π are non-empty, geometrically connected, and of equidimension 1.
(4) The map π is smooth over Y .
(5) The open subscheme X ⊂ X ×Y Y is the complement of a divisor finite étale over Y .
(6) The subscheme FX ⊂ X lies in a single smooth fibre of π.

The key is the following.

Lemma. Let W ⊂ PN be a subvariety of dimension d − 2, and let F ⊂ PN (k) be a finite set of rational points
not on W . Then, after possibly replacing PN with the target of a Veronese embedding, the space of codimension
(d − 1)-planes L ⊂ PN that pass through all points of F and miss W completely forms a non-empty Zariski open
dense subset of the set of all codimension (d− 1)-planes L that pass through all points of F .

Proof. After possibly applying a large enough Veronese embedding, we may assume: (a) the points in F are in linearly
general position, and (b) all points on W are in linearly general position with respect to points in F . The space G of
codimension (d−1)-planes in PN has dimension (d−1)(N+1)−(d−1)2. The subspaceGF ⊂ G of planes passing
through all points of F has dimension (d − 1)(N + 1 − r) − (d − 1)2, where r = #F . For each point z ∈ W (k),
the subspace GF∪z ⊂ GF of codimension (d− 1)-planes in PN that go through all points of F and z has dimension
(d− 1)(N − r)− (d− 1)2. Hence, the subspace GF,W of all codimension (d− 1)-planes in PN that go through all
points of F and some point of W has dimension ≤ (d− 1)(N + r)− (d− 1)2 + (d− 2) < dim(GF ), which shows
thatGF,W is a proper subspace ofGF . Since bothGF andGF,W are proper andGF is smooth, the claim follows. �

Using this Lemma, we can prove the proposition:

Proof of Proposition. By blowing up if necessary, we may assume Z := X −X is a reduced effective Cartier divisor
on X . For a large enough embedding X ⊂ PN , there exists a codimension (d− 1)-plane H ⊂ PN such that

(1) H ∩ Sing(X) = ∅.
(2) H ∩X is a smooth curve on X containing FX .
(3) H ∩ Z is a finite reduced subscheme.

Indeed, consider the space GF of all codimension (d − 1)-planes H that contain FX for a suitably large projective
embedding. Then the subspace of GF spanned by those planes that satisfy each of the conditions above separately
is a non-empty Zariski open of GF : by the Lemma for (1) since dim(Sing(X)) ≤ d − 2 by normality, by Bertini
for (2), and by the Lemma and Bertini for (3) (as Z is generically smooth, H can be chosen to avoid Sing(Z) by
the Lemma and be transverse to Z at its intersection points by Bertini). Hence, their intersection is also a non-empty
Zariski open, so there exists an H satisfying all three conditions. The construction of [dJ96, §4.11] carried out using
this H to construct the projection (see the last paragraph of loc. cit.) then gives the desired π and f . �

Set FY = π(FX) ⊂ Y to denote the corresponding subscheme of Y 1. Note that the properties ensured by the
Proposition are preserved if we replace (X,X) by (U,X) where U ⊂ X ⊂ X ×Y Y is the complement of larger
divisor finite étale over Y that does not meet FX .

1FY is currently a single reduced point, though subsequent operations will entail adding more points.
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3.4. A remark on base changes [dJ96, §2.18,4.15]. Consider the map π : X → Y at the end of §3.3. In the sequel,
we will need know some stability properties of π under strict transforms along an alteration Y , so we record:

Proposition. Let π : C → B be a map of integral schemes satisfying (2) and (3) from the Proposition in §3.3. Let
f : B′ → B be a generically étale alteration with B′ integral, and let π′ : C′ → B′ be the strict transform of π.

(1) C′ is the reduction of C×B B′.
(2) C′ is integral.
(3) The map π′ also satisfies properties (2) and (3) from the Proposition in §3.3.
(4) If π is smooth at a point b ∈ B(k), then π′ is smooth along f−1(b).
(5) If f is étale at b ∈ B(k), then C′ ↪→ C×BB′ is an isomorphism in a neighbourhood of the fibres over f−1(b).
(6) If Z ⊂ C is the support of an effective Cartier divisor with Z → B finite, then the preimage Z ′ of Z in C′ is

also the support of an effective Cartier divisor with Z ′ → B′ finite. If additionally Z → B is étale over some
b ∈ B, then Z ′ → B′ is étale over f−1(b).

Proof. These facts are standard; we sketch proofs for completeness.
(1) Clearly π′ is a proper generically smooth map. Since the smooth locus of π is dense in all the fibres, the same

is true for the base change πB′ : C×B B′ → B′, and hence also for π′ : C′ → B′. Now the smooth locus of
πB′ is contained in C′ ⊂ C ×B B′ (as this locus in C ×B B′ is flat over B′). The density of this locus in the
fibres implies: for each geometric point y ∈ B′, the closed immersion C′y ⊂ Cy has dense image, and must
thus be a (set-theoretic) equality. This implies |C′| = |C×B B′|, so C′ is the reduction of C×B B′.

(2) All generic points of irreducible components of C′ must lie on the generic fibre of C′ → B′ by definition of
strict transform. Since the generic fibre of π is proper smooth and geometrically connected, the same is true
for the generic fibre of C′ → B′, which shows that C′ has only one irreducible component.

(3) This is clear from the discussion in (1).
(4) The structure sheaf of base change C×BB′ has no OB′ -torsion in a neighbourhood of f−1(b) by smoothness,

so C′ ⊂ C is an isomorphism over these neighbourhoods.
(5) The base change C×B B′ is étale over C in a neighbourhood of f−1(b), so it is already reduced as C is so.
(6) Locally on C′, by (2), any regular function cutting out Z in C (up to passage to reduced subschemes) also pulls

back to a regular function on C′ cutting out Z ′ (up to passage to reduced subschemes), so the first part is clear.
It is also clear that Z ′ → B′ is finite. For the last part, after shrinking B around b, we may assume Z → B is
finite étale. By (1), the canonical map Z ′ → Z ×B B′ is a nil-thickening. As Z ×B B′ → B′ is finite étale,
the scheme Z ×B B′ is reduced (as B′ is so), and thus Z ′ ' Z ×B B′, so Z ′ → B′ is finite étale. �

From now on, we will use the above stability properties without comment.

3.5. Finding multisections [dJ96, §4.13]. Let π : (X,X) → (Y, Y ) be the map constructed at the end of §3.3. We
want to find a multisection of π which intersects all fibres sufficiently, and behaves well over FY ; recall that FY is
currently a reduced scheme supported at a single closed point of Y .

Proposition. There exists a divisor H ⊂ X and an open neighbourhood FY ⊂ U ⊂ Y such that
(1) The map π|H : H → Y is finite, and finite étale over U .
(2) The inverse image of U in H lies in X ×Y U .
(3) H ∩ FX = ∅.
(4) For any geometric point y ∈ Y (k) and any irreducible component C ⊂ Xy , the set-theoretic intersection

(X/Y )sm ∩ C ∩H has size at least 3.

Proof. This follows from the proof of [dJ96, §4.13]. The only thing to check is that the map H → Y constructed
as in loc. cit. is étale around FY and that (2) and (3) above are satisfied. To see this, take the point y in [dJ96, page
70, paragraph 2] to be the unique point of FY , and the set U to only contain hyperplanes H that avoid the finite set
FX ∪ (Xy − Xy) ⊂ Xy (in addition to the requirements of loc. cit.). This shows that there is a Zariski open V in
the set of all hyperplanes H and an open neighbourhood FY ⊂ U ⊂ Y such that (1), (2), (3) are satisfied, and (4) is
satisfied for geometric points in U . It remains to show that hyperplanes in V satisfying (4) for all geometric points
span a non-empty Zariski open subset. Choose a point y′ ∈ Y − U . Repeating the above argument for y′ shows that
a non-empty Zariski open subset of hyperplanes in V satisfy (4) for over an open subset of Y strictly larger than U .
Proceeding this way, we conclude by noetherian induction (see [dJ96, page 70, paragraph 4]). �
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The map g : (U, Y ) → (Y, Y ) is finite étale neighbourhood of FY . After replacing π : (X,X) → (Y, Y ) by
its base change along g (i.e., shrinking X to X ×Y U ), we may assume U = Y in the above Proposition without
destroying any property ensured by the Proposition in §3.3. Let H ⊂ H be the inverse image of Y ; note that H is
smooth by (1) above. Then the induced map ε′ : (H,H)→ (Y, Y ) of pairs is finite étale.

3.6. Adding sections [dJ96, §4.14-4.16]. Let π : (X,X) → (Y, Y ) be as in §3.3. Using the map ε′ from §3.5, we
construct an étale base change of π that has many sections.

Proposition. After replacing π with its normalised base change along a suitable finite étale neighbourhood of FY ,
we can ensure:

(1) π satisfies all properties of the Proposition in §3.3 except (6).
(2) There exist sections σ1, . . . , σn : Y → X such that

(a) For any geometric point y ∈ Y (k) and any irreducible component C of Xy , the set-theoretic intersection
∪iσi(Y ) ∩ C ∩ (X/Y )sm has size at least 3.

(b) The induced sections σ1,Y , . . . , σn,Y : Y → X ×Y Y factor through X , are pairwise distinct in each
fibre over Y , and miss FX completely.

Proof. Consider the map ε′ : (H,H)→ (Y, Y ) from §3.5. The map ε′ : H → Y is a finite étale cover. Let Y ′ denote
the Galois closure of this map, and let Y ′ be the normalisation of Y in the induced map Y ′ → H → Y . Then we
obtain a finite étale neighbourhood ε : (Y ′, Y ′) → (Y, Y ) of FY that is generically on Y a Galois cover. The base
change of π along this neighbourhood then does the job: (1) is clear, while the construction of §3.5 shows (2). �

3.7. Birth of stable curves [dJ96, §4.17-4.22]. Let (π, σ1, . . . , σn) be as in §3.6. Note that the Proposition in §3.6
show that (πY , σ1,Y , . . . , σn,Y ) is a stable curve over Y . The next step is to replace this data by a stable curve over all
of Y by passing to a finite étale neighbourhood of FY .

Proposition. After replacing π with its base change along a finite étale neighbourhood of FY , we may assume:
(1) π satisfies all properties of the Proposition in §3.6 except possibly the normality of X .
(2) The map π : X → Y is flat.
(3) There exists a stable curve (C→ Y , τ1, . . . , τn) ∈Mg,n(Y ).
(4) There is a Y -map β : C→ X carrying τi to σi that restricts to an isomorphism over Y .

Proof. The strict tranform of π along a suitable Y -admissible modification Y ′ → Y is flat by [dJ96, §2.19]; this
property persists under base changes and hence further strict transformations. Hence, we may assume π satisfies
(1) and (2). The argument in [dJ96, §4.17] constructs a finite étale map ε : (Y ′, Y ′) → (Y, Y ) such that the base
change of the stable curve (π|Y , σ1,Y , . . . , σ2,Y ) to Y ′ admits an extension to a stable curve (C→ Y , τ1, . . . , τn) over
Y ′. Replacing π by its base change along ε, we may assume that (1), (2), (3) are satisfied, and also that one has an
isomorphism β|Y as in (4). The extension of β|Y to a morphism over Y is de Jong’s “three point lemma” proven in
[dJ96, §4.18-4.22]; this is where property (2) from the Proposition in §3.6 matters. �

Since the Y -map C → X is an isomorphism over Y , the map (β−1(X),C) → (X,X) is a finite étale neigh-
bourhood of FX . Thus, after replacing (X,X) by this neighbourhood, we may assume that there exists a map
π : (X,X)→ (Y, Y ) and maps σ1, . . . , σn : Y → X such that:

(1) π satisfies all properties of the Proposition in §3.3 except possibly (6) and the normality of X .
(2) The data (π : X → Y , σ1, . . . , σn : Y → X) defines a stable curve over Y .
(3) The sections σ1, . . . , σn, when restricted to Y ⊂ Y , are contained in X and disjoint from FX .

These properties are preserved by replacing π with its base change along a finite étale neighbourhood of FY .

3.8. End of proof [dJ96, §4.22-4.28]. Consider the data presented at the end of §3.7. After replacing π with its base
change along a semistable finite étale neighbourhood of FY in (Y, Y ) (provided by induction), we may additionally
assume that (Y, Y ) is a semistable pair. In particular, π : X → Y satisfies all the constraints of [dJ96, §4.23]. We leave
it to the reader to check that the explicit blowups constructed in [dJ96, §4.23-4.28] provide a finite étale neighbourhood
(X ′, X ′)→ (X,X) of FX with (X ′, X ′) semistable: all steps in loc. cit. only entail blowing up along Sing(X), and
hence are isomorphisms over X .
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4. THE MIXED CHARACTERISTIC SETTING

Fix a perfect characteristic p field, and let K be a finite extension of W (k)[1/p].

Definition 4.1. We define the category PK of pairs as follows. The objects are (scheme-theoretically) dense open
immersions j : U ↪→ U where U is a smooth quasi-projective K-variety, and U is a proper flat reduced OK-scheme;
a map is given by the obvious commutative square. We may abusively write objects of PK as (U,U). For a map
g : (U,U) → (V, V ) in PK , we often write g : U → V and g : U → V for the induced maps. Given a pair (U,U)
with U normal, we define the special fibre of U to be the closed fibre of U → Spec(O(U)); note that O(U) is a
finite product of orders in discrete valuation rings (and is normal if U is so). We say that a map g : (U,U) → (V, V )
is étale (resp. finite étale) if the map U → V is so. Given a finite subscheme Z ⊂ V , we say that an étale map
g : (U,U) → (V, V ) is a finite étale neighbourhood of Z if the map U → V is finite étale in a neighbourhood of Z.
Let Pss

K ⊂ PK be the full subcategory of semistable pairs, i.e., pairs (U,U) where (a) U is regular, (b) the structure
map U → Spec(O(U)) has geometrically connected and reduced fibres, and (c) U − U is a strict normal crossings
divisor. A family {fi : (Ui, Ui) → (V, V )} of maps in PK or Pss

K is called an étale cover if each fi is étale, and
∪ifi(Ui) = U .

Remark 4.2. Given a pair (U,U) ∈ PK , all generic points of U lie in U by the scheme-theoretic density. If moreover
U is normal, then π0(U) = π0(U); this is the case for (U,U) ∈ Pss

K . Moreover, an étale map f : (U,U)→ (V, V ) of
pairs is precisely a proper surjective map U → V which carries U to V and is étale over U .

Example 4.3. For any finite extension L/K, one has a pair Spec(L,OL) := (Spec(L),Spec(OL)) ∈ Pss
K . If R ⊂ OL

is a non-maximal order in L, then the pair (Spec(L),Spec(R)) ∈ PK is not semistable. The pair Spec(K,OK) is a
final object of PK , and the structure map Spec(L,OL) → Spec(K,OK) is étale. Another example of an étale map
in PK is given by normalisation: given (U,U) ∈ PK , one obtains (U,U

norm
) → (U,U) where U

norm
denotes the

normalisation of U in U ; this map is a finite étale neighbourhood of any finite subscheme of U . More generally, any
U -admissible modification of U , i.e., a proper birational map V → U which is an isomorphism over U , provides such
an example.

Remark 4.4. The category PK admits certain limits. For example, if f : (X,X) → (Y, Y ) is any map in PK and
ε : (Y ′, Y ′) → (Y, Y ) is an étale map, then the base change of f along ε exists, is étale over (X,X), and is given by
(X ′, X ′) where X ′ = X ×Y Y ′ and X ′ is the scheme-theoretic closure of X ′ in X ×Y Y ′. Given a finite subscheme
FX ⊂ X , if ε is a finite étale neighbourhood of f(FX), then (X ′, X ′) → (X,X) is a finite étale neighbourhood
of FX . The induced map (X ′, X ′

norm
) → (Y ′, Y ′) is called the normalised base change of π along ε. Note that

Pss
K ⊂ PK is not closed under the limits just described: the regularity of U for a semistable pair (U,U) can be lost

when making a ramified base change.

Our main theorem is the following:

Theorem 4.5. Let (U,U) ∈ PK , and let FX be a finite reduced subscheme of U . Then there exists a finite étale
neighbourhood (V, V )→ (U,U) of FX with (V, V ) semistable.

As in equicharacteristic, this implies:

Theorem 4.6. Restriction induces equivalences of topoi: Shvét(PK) ' Shvét(P
ss
K) ' Shvét(SmK).

5. PROOF OF THEOREM 4.5

The proof of Theorem 4.5 is similar to Theorem 2.5. To make arguments flow better, we make define:

Definition 5.1. A map π : (X,X)→ (Y, Y ) is called a compactified elementary fibration if

(1) π : X → Y is a projective map with all fibres geometrically connected and equidimension 1.
(2) The smooth locus of π is dense in all fibres.
(3) π|Y : X|Y → Y is smooth.
(4) The composition X ↪→ X|Y → Y is an elementary fibration in the sense of Artin, i.e., X → Y is smooth,

and D := X|Y −X is a Cartier divisor in X|Y with D → Y finite étale and of constant degree.
Maps of such fibrations are defined by the evident commutative square. We also name the following properties:

6



(1) π has many sections if there are sections σ1, . . . , σn : Y → X distinct in fibres over Y such that ∪iσi(Y )
intersects (set-theoretically) every irreducible component of every fibre of π in at least 3 points.

(2) π is stable n-pointed if it comes equipped with sections σ1, ..., σn : Y → X such that the datum (π : X →
Y , σ1, ..., σn) defines stable n-pointed curve over Y in the sense of Deligne-Mumford.

(3) π is called split if for every geometric point y ∈ Y and every singular point x ∈ Xy of the fibre, there exists
a section σ : Y → X with σ(y) = x; this notion will only be used in for stable π, and the sections σ going
through the nodes are not part of the data, and are independent of the sections making π stable (as the latter
cannot go through the nodes).

Remark 5.2. The class of compactified elementary fibrations is stable under étale base changes in PK . Moreover, the
properties defined above are also preserved under such base changes.

For the rest of this section, fix a pair (X,X) ∈ PK .

5.1. Notation. Let d = dim(X) = dim(X) − 1. We always use Z for X[1/p] −X , viewed as a closed subscheme
of X[1/p] via the reduced structure. We use a subscript 0 and η to indicate passage to the special and generic fibres
for OK-schemes.

5.2. Preliminary reductions. As in §3.2, we may assume d > 0 and that X is normal and projective. Moreover,
we may also assume k = k by Artin approximation; alternatively, one may keep expanding K to a slightly larger
unramified extension as necessary in the proof. By [dJ96, Lemma 2.13], we may assume that X is normal with a
geometrically reduced special fibre. By extension of K and passage to connected components, we may assume that
O(X) = OK . In particular, X is normal, and the geometric fibres of X → Spec(OK) are connected and reduced.

5.3. A presentation result.

Proposition. There exists a finite morphism f : X → PdOK
, a point p ∈ Pd(OK), and an OK-flat line ` going through

p such that:
(1) f is étale over an open in PdOK

that contains p.
(2) f−1(`)η is a smooth curve onX

sm

η containing FX and meeting Z transversally in a finite reduced subscheme.

Proof. The idea of the proof is to simply solve the problem separately over the generic and special fibres, and then
observe that the space of solutions in either case is large to come admit a common integral point. In more detail,
choose a large enough projective embedding X ↪→ PNOK

, . By Bertini, there exists an OK-flat (N − d + 1)-plane
L ⊂ PNOK

such that

(1) L0 ∩X0 is a generically smooth curve on X0.
(2) Lη ∩Xη is a smooth curve on Xη containing FX .
(3) Lη ∩ Sing(Xη) = ∅.
(4) Lη ∩ Z is a finite reduced subscheme of Z.

Indeed, let G denote the scheme of all (N − d+ 1)-planes in PNOK
. Then G is a proper smooth OK-scheme, and G0

is the space of all (N − d + 1)-planes in PNk . By Bertini, the planes L0 with L0 ∩ X0 generically smooth span a
non-empty Zariski open subset V0 ⊂ G0. Similarly, the planes Lη satisfying the analogs of (2), (3) and (4) span a non-
empty Zariski open dense subset Vη ⊂ Gη . Choosing an L ∈ G(OK) specialising to a point of V0 and Vη (possible by
smoothness of G) then gives the desired L. By (1), we can choose OK-flat linear subspaces W ′ ⊂W ⊂ L such that
(a) W ′ has relative dimension (N − d− 1) over OK and W ′ ∩X = ∅.
(b) W has relative dimension (N − d) over OK , W0 ∩X0 is a finite reduced subscheme of (L0 ∩X0)sm ∩Xsm

0 , and
the finite reduced subscheme Wη ∩Xη of Lη ∩Xη does not meet FX .

By (a), projecting away from W ′ gives a finite morphism f : X → PdOK
. The plane W defines defines a point

p ∈ Pd(OK) with f finite étale at p by (b). The plane L defines a line ` through p in PdOK
with f−1(`) = L ∩X . In

particular, f−1(`)η is a smooth curve in X
sm

η by (2) and (3) that meets Z transversally by (4). �

Remark 5.3. With some extra work, one can also arrange for the line ` found above to satisfy: the projective closure
FX ⊂ X is contained in the smooth locus of f−1(`)→ Spec(OK). The key is to first apply Neron’s dilation arguments
and perform some X-admissible blowups on X to assume: FX lies in the smooth locus of X → Spec(OK).
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5.4. Finding good projections.

Lemma. Let π : W → Y be a projective smooth map whose fibres are geometrically connected curves. Let X ⊂ W
be an open subscheme. Fix a finite reduced closed subscheme FY ⊂ Y , and let FX ⊂ X ×Y FY be a finite reduced
subscheme of the fibres. Then there exists an open FY ⊂ U ⊂ Y and an open FX ⊂ V ⊂ π−1(U) ⊂ X such that
WU − V is finite étale of constant degree over U .

Proof. We give a proof when FY = {y} is a point, leaving the generalisation to the reader. After shrinking Y
around y, we may assume Y is affine. Choose a π-relatively very ample line bundle O(1) ∈ Pic(W ) and an integer
n > 0 such that H1(W, IWy

(n)) = 0. Choose a section sy ∈ H0(Wy,O(n)|Wy
) such that Z(sy) ⊂ Wy is a finite

reduced subscheme that contains FX ∪ (Wy − Xy); this is possible after replacing n by a larger integer. Choose a
lift s ∈ H0(W,O(n)) of sy; this is possible as H1(W, IWy (n)) = 0. Let Z = Z(s) ⊂ W be the zero-locus; by
using Y -flat hypersurfaces P(H0(W,O(n))) that do not contain any fibre of π, we may choose s so that Z → Y is
flat. After shrinking Y further if necessary, by properness of Z and W −X relative to Y and semicontinuity, we may
assume that W −X ⊂ Z. Set V = W −Z. Then FX ⊂ V ⊂ X by construction. Moreover, Z = W −V is finite flat
over Y , and unramified at y. By shrinking Y further, we may assume that Z → Y is finite étale of constant degree. In
particular, V provides the desired open. �

Lemma. Fix an integer d > 1, a closed point p in Pdk, a line L through p, and an open subset U ⊂ Pdk containing p.
Then there exists some integer n ≥ 3 and a finite set S = {H1, . . . ,Hn} of hyperplanes in Pdk such that

(1) p /∈ Hi for any i.
(2) Hi ∩ L is a closed point zi in U for all i ∈ {1, . . . , n}.
(3) The points zi from (2) are pairwise distinct, i.e., zi 6= zj for i 6= j.
(4) For any line L′ going through p, there exist three distinct indices i1, i2, i3 ∈ {1, . . . , n} such that

(a) Hij ∩ L′ is a closed point wj in U for all j ∈ {1, 2, 3}.
(b) The points w1, w2, and w3 are all distinct.

Proof. Let P be the space of all lines through p, so P ' Pd−1
k . Let G be the space all hyperplanes in Pdk that miss

p, so G is the complement of a hyperplane in the dual Pdk. Choose H1, H2, and H3 in G that satisfy (1), (2), and
(3); set {zi} = Hi ∩ L. Then the set S = {H1, H2, H3} satisfies (4) for the line L, and hence for all lines L′ in
a non-empty Zariski open V ⊂ P. Our strategy is to add more hyperplanes to S so that (1), (2), and (3) are still
satisfied, and (4) is satisfied for a strictly larger open subset than V . Set Z = S ∩ L, i.e., Z = {z1, z2, z3} where
zi = Hi ∩ L. Now choose a line L′ ∈ P − V . Pick 3 distinct points z4, z5, z6 ∈ (L ∩ U) − Z and 3 distinct points
w4, w5, w6 ∈ (L′ ∩U)− (S ∩L′). Choose hyperplanes H4, H5, H6 ∈ G with Hi joining zi with wi for i ∈ {4, 5, 6}.
Replacing S with S∪{H4, H5, H6} gives a finite set S that still satisfies (1), (2) and (3). Moreover, (4) is now true for
an open subset V ′ ⊂ P that is strictly larger than V . Proceeding this way, we conclude by noetherian induction. �

Corollary. After replacing (X,X) by a finite étale neighbourhood of FX , we may assume that there exist:
(1) A compactified elementary fibration π : (X,X)→ (Y, Y ).
(2) A bundle π′ : P→ Y of projective lines.
(3) A finite Y -morphism f : X → P.
(4) A finite set {σ1, . . . , σn : Y → P} of sections of π′.

These can be chosen to satisfy:
(a) The étale locus V ⊂ P of f is dense every fibre of π′.
(b) The induced sections σ1,Y , . . . , σn,Y : Y → P|Y are distinct and factor through V |Y .
(c) The scheme ∪iσi(Y ) meets every fibre of π′ (set-theoretically) in at least 3 distinct points lying in V .

Proof. Choose a finite morphism f ′ : X → PdOK
with a point p ∈ Pd(OK) and an OK-flat line L through p satisfying

the conclusions of the Proposition in §5.3. Applying the above lemma with this choice of p and the open set U being
the étale locus of f ′ gives a finite set S = {H1, . . . ,Hn} of OK-flat hyperplanes satisfying the conclusions of the
Lemma. Since p does not meet FX , by shrinking, we may replace (X,X) by (X,Blf ′−1(p)(X)). Set P = Blp(P

d
OK

)

and Y = P(Tp) ' Pd−1
OK

. This gives us a finite morphism f : X → P and a projective line bundle π′ : P→ Y , which
gives (2) and (3). Set π : X → Y to be the composite. Since f ′ is étale at p, the blown-up map f is étale along the
exceptional divisor E of P. In particular, the étale locus of f meets every fibre since E is a section of π′, which gives
(a). Since the hyperplanes in S miss p, they inverse images under the blowup map give sections σ1, . . . , σn : Y → P

8



of π′, which gives (4). The line L defines an OK-point q ∈ Y with π−1(q) being the preimage in X of the strict
transform of L. In particular, the generic fibre of π−1(q) is a smooth curve on X

sm

η and meets X −X transversally
in a finite reduced set. By construction of S, there exists a sufficiently small open neighbourhood Y of qη ∈ Y η such
that the sections σi are all distinct over Y and the induced map σi,Y : Y → P|Y factors through V |Y ; this gives (b).
The properties on S also ensure that (∪iHi) ∩ L′ ∩ U has size at least 3 (set-theoretically) for any OK-flat line L′

through p. Taking strict transforms shows (c). It remains to prove (1), i.e., to shrink X to a Zariski open around FX
such that the induced map (X,X)→ (Y, Y ) is a compactified elementary fibration. The fibres have equidimension 1
as they are connected subschemes of X equipped with a finite map to P1. The smooth locus is dense in all fibres by
(a), and the rest can be proven using the Lemma above. �

Using π, we define the finite reduced subscheme FY := π(FX) ⊂ Y .

5.5. Adding sections. The next step is to ensure an abundance of good sections:

Proposition. After replacing π with its base change along a finite étale neighbourhood of FY in (Y, Y ), we may
assume that π has many sections.

Proof. Consider the data presented in the Corollary in §5.4. Set H ⊂ X to be the preimage of H ′ := ∪iσi(Y ) ⊂ P
under f . Note that each σi(Y ) is an effective Cartier divisor on P since π′ is a smooth relative curve. By the stability
of Cartier divisors under union and pullbacks under dominant morphisms of integral schemes, we see that H ′ and H
are both Cartier divisors. By construction, H ′ → Y is finite étale over Y , and that H ′|Y → Y factors through V .
Since f is étale over V , it follows that H → Y is finite étale over Y . Moreover, for any irreducible component C of
a fibre of π over y ∈ Y , the set-theoeretic intersection H ∩ C maps onto H ′ ∩Py . By assumption on the sections σi,
it follows that H ∩ C has at least 3 distinct points. The desired claim follows by taking Galois closures as in [dJ96,
Lemma 5.6] and the following two remarks: (a) the flatness of H → Y can be ensured after replacing π with its base
change along a suitable map (Y, Y ′) → (Y, Y ) with Y ′ → Y a Y -admissible modification that flattens H → Y ,
and (b) instead of choosing ad hoc Galois superextensions as in loc. cit., we use the Galois closure to ensure good
behaviour over Y . �

Write σ1, ..., σn : Y → X be the sections resulting from the above proposition. By construction, these are distinct
in the fibers over Y , and there are at least 3 going through each fiber. In particular, the X|Y → Y equipped with the
sections σ1|Y , ..., σn|Y : Y → X|Y defines an object of Mg,n(Y ), i.e., a smooth n-pointed stable curve over Y .

5.6. Stabilisation. We now replace π with a stable curve fibration.

Proposition. After replacing (X,X) with a finite étale neighbourhood of FX , we may assume that there exists a
stable n-pointed compactified elementary fibration π : (X,X)→ (Y, Y ) with sections τ1, ..., τn to π.

Proof. This step is exactly analogous to §3.7, so we only summarise the idea. First, using moduli of stable curves
with level structure, one shows that (X|Y → Y, σ1, . . . , σn) ∈ Mg,n(Y ) extends to a stable n-pointed curve (C →
Y , τ1, . . . , τn) ∈ Mg,n(Y ) after replacing (Y, Y ) by a finite étale cover. Moreover, the 3-point lemma shows that
there is a Y -map β : C → X extending the isomorphism C|Y → X|Y and carrying τi to σi. Replacing (X,X) with
(β−1(X),C) and the σi with the τi’s then gives the claim. �

5.7. Splitting stable curves. Next, we must find sections going through the singular points in the fibres of (X,X)→
(Y, Y ). For this, we use the following abstract statement:

Lemma. Let f : C → S be a semistable curve over a quasi-projective excellent integral scheme S. Fix finitely many
points s1, . . . , sn ∈ S such that f is smooth over each si, as well as dense open subschemes Ui ⊂ Csi . Then there
exists a Cartier divisor H ⊂ C such that

(1) H ∩ Csi is a finite reduced subscheme contained in Ui.
(2) The map H → S is finite, and finite étale in a neighbourhood of each si.
(3) H contains Sing(f).

Proof. Fix an ample line bundle on C, so all Serre twists are taken with respect to this bundle. Let ISing(f) be the
ideal sheaf Sing(f), and let ISing(f)∩Cs

⊂ OCs denote the ideal sheaf of Sing(f) ∩ Cs ⊂ Cs for any s ∈ S. For each
s ∈ S, the natural map ISing(f) → ISing(f)∩Cs

is surjective. Moreover, one can choose an integer n � 0 such that
H0(C, ISing(f)(n))→ H0(Cs, ISing(f)∩Cs

(n)) is also surjective; this is possible by semicontinuity. Fix some such n,
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and consider the corresponding family P = P(H0(C, ISing(f)(n))) ⊂ P(H0(C,OC(n))) of hypersurfaces in C; thus,
eachH ∈ P is given by a hypersurfaceH ⊂ C that contains Sing(f). Using the afore-mentioned surjectivity, together
with the fact that Sing(f) does not contain any component of any fibre of f , one can show: for each s ∈ S, there is
some open neighbourhood s ∈ Vs ⊂ S and a dense open subset Ws ⊂ P such that each H ∈Ws is finite and flat over
Vs ⊂ S. By compactness, there is some dense open W ⊂ P such that each H ∈W is finite and flat over S. It remains
to show that, after shrinking W further if necessary, each H ∈ W is finite étale over each si with H ∩ Csi ⊂ Ui. For
this, observe that ISing(f) → OC and H0(C, ISing(f)(n)) → H0(C,OC) are surjective, where C = ∪iCsi ⊂ C is the
displayed finite union of smooth projective curves in C; here we use that Sing(f) ∩ C = 0, so ISing(f)∩C ⊂ OC is an
equality. Using this, one argues similarly as above. �

Proposition. After replacing (X,X) by a finite étale neighbourhood of FX , we may assume that there exists a split
stable n-pointed compactified elementary fibration π : (X,X)→ (Y, Y ) with sections τ1, ..., τn to π.

Proof. Consider the stable compactified elementary fibration π : (X,X) → (Y, Y ) constructed in §5.6. As in the
previous lemma, choose a Cartier divisor H ⊂ X containing Sing(π) such that H → Y is finite and finite étale over
some U ⊂ Y containing FY . Replacing Y with U and setting H to be the inverse image of Y then gives a finite étale
map (H,H) → (Y, Y ) in PK . Taking Galois closures and base changes as in §5.5 then provides the desired split
curve. �

5.8. End of proof. Consider the split stable curve π : (X,X) → (Y, Y ) with sections τ1, ..., τn to π constructed
in §5.7. By induction and base change, we may assume that (Y, Y ) is a semistable pair. At this point we are in
the situation of [dJ96, §6.15]. Since the construction of [dJ96, §6.16] only involves blowing up in Sing(X), we are
through.
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