REDUCING FLAT GROUPOIDS TO SMOOTH GROUPOIDS

BHARGAV BHATT

Fix a base scheme S, and let X € Stacks(Sch(S)ppr) be a sheaf of groupoids on the fppf site of S-schemes. Our goal
is to explain a theorem of Artin that says that given an fppf atlas for X, we can usually build a smooth atlas:

Theorem 1. Let t: X — X be a representable, separated, and fppf map with X an algebraic space locally of finite
presentation over S. Assume that the diagonal A : X — X x X is representable. Then then there exists a representable,
smooth, surjective, and separated map T : X' — X with X' an algebraic space locally of finite presentation over S.

Example 2. Theorem 1 implies that for any affine fppf group scheme G over S, the stack B(G) = [S/G] of fppf G-
torsors admits a smooth atlas. If G is smooth, then the quotient map S — B(G) is a smooth atlas. If G is not smooth
however, then the preceeding atlas is not smooth as the fibre is G. In this case, we may produce a smooth atlas by
fixing an embedding i : G — GL,, and using the natural map GL, /G — B(G) as the atlas: the fibre is the smooth group
scheme GL,,. For example, for G = u, over S = Z,, this recipe applied to the tautological embedding i : u, — G
produces the atlas G, — B(u,) determined by the fppf u,-torsor given by the p-power map G,, — G.

The basic idea of the proof of Theorem 1 is to view T representing a space over X parametrising the subschemes
of X which are sections of 7, and then replace it by a space over X that parametrises local complete intersection (Ici)
subschemes of X which are multisections of . As sections of smooth morphisms are Ici, this modified space contains
a component isomorphic to X if 7 is smooth. In general, the tradeoff presented by working with Ici multisections
instead of (possibly very singular) sections gives us a space with a well-behaved deformation theory. To make this
idea precise, we use the following variant of the Hilbert scheme:

Definition 3. Given a representable map X — Y in Stacks(Sch(S)fppr), the functor Hilbici (X /Y) on the category of
Y-schemes is defined as follows:
The set of all closed subschemes i: Z — X xy T
Hilbyi(X/Y)(T — Y) = such that Z is finite flat over 7, and i is a complete
intersection locally on Xr.

The main local property of Hilbys(X/Y) we need is that, independent of any global hypothesis on X or Y, it’s
always represented by a smooth algebraic space covering Y:

Proposition 4. Given a representable, separated, and fppf map ©: X — Y in Stacks(Sch(S)fppt), the structure map
p : Hilbyj(X/Y) — Y is representable, smooth, surjective, and separated.

Proof. To show representability, note that Hilb,; (X /Y) is naturally a subfunctor of Hilb(X /Y). As the latter is repre-
sentable by Artin’s theorems and the separatedness assumption, it suffices to show that the inclusion Hilby; (X /Y) C
Hilb(X /Y) is an open subfunctor. Unwrapping the definitions, this boils to down to verifying the following: if (7,7)
is a local Y-scheme, and Z C Xr is a closed subscheme finite flat over T that is locally a complete intersection in the
fibre X;, then it is locally a complete intersection in all of X7. As Z — T is finite and since there is nothing to show
at points away from Z, it suffices to show that Z C Xr is a complete intersection at the points of X;. This follows
from Grothendieck’s flatness theorem which allows us to lift regular sequences across I'(X7,0) — I'(X;,O) while
specifying containment in the ideal of Z.

For the smoothness claim, fix an artinian local ¥Y-scheme Spec(k), and a point z : Spec(k) — Hilby;(X/Y) rep-
resented by a local complete intersection closed subscheme i : Z < X; finite flat over Spec(k). We will verify that
the deformations of z are unobstructed i.e., we will show that we can extend z across a given square zero thickening
Spec(k) C Spec(k’) in the category of Y-schemes. As |Z| is a finite set of distict closed points, we may work with one
point at a time and, consequently, assume that |Z| is reduced to a point {z}. Let S denote the local ring of Xy at z,
and let I C k' be the ideal defining k. By assumption, there exists a regular sequence f = (fi,..., f,) in Ox, . = S/IS
defining Z. By Grothendieck’s flatness theorem, there exists a regular sequence f = (fi,..., f,) in S reducing to f.
Moreover, the same theorem also ensures that S/(f) is flat over R. Nakayama’s lemma implies that S/(f) is finite
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over R. By spreading out, we see that f is a regular sequence around z € Xz defining a local complete intersection
subscheme Z' C Xy such that Z’ x; k' = Z, and Z is finite flat over k. This verifies that the deformations of z are
unobstructed.

To show surjectivity, it suffices to show that for a field k, every finite type k-scheme X admits an Ici closed sub-
scheme of dimension 0. Clearly it suffices to show this for X affine. If dim(X) = 0, there is nothing to show. By
induction, it suffices to show that A = I'(X, ) admits a regular element. This follows from the infinitude of set of
all primes of A coming from the assumption dim(X) > 0, the finiteness of the set of associated primes of A as A is
noetherian, and prime avoidance.

The separatedness of p can be checked using the valuative criterion and the fact the diagonal A : X — X xy X is
a closed immersion (the separatedness of ) as follows: given a Y-trait 7 with generic point 1, two finite flat covers
p1:Zy — T and py : Zy — T with an isomorphism (Zl)n ~ (Zz)n, and two Y-closed immersions ij : Z; < X and
ip 1 Zy — X which agree on (Z;)n ~ (Z2)y, the closed subscheme i Xy i : Z| Xy Z — X Xy X has a dense open
subscheme (Z; Xy Z»)y contained in the diagonal A(X). As the latter is closed, it follows that Z; xy Z, C A(X), as
desired. O

Proposition 4 gives us access to an atlas with good relative properties. In order to prove to build an atlas with good
properties globally, we need an auxilliary object.

Definition 5. For an S-scheme W, define the stack Cov(W) on Sch(S) as follows:

_ The groupoid of pairs (p:Z — T, f : Z— W) where p is a finite flat cover, and f

COV(W)(T) " is some map.

The only result we need concerning Cov(W) is its algebraicity.

Proposition 6. If W is an S-scheme locally of finite presentation, then Cov(W) is a locally algebraic stack on S.

Proof. The sheaf condition is easy to verify. In order to verify the algebraicity, consider first the case S = W. In this
case, Cov(S)(T) is simply the groupoid of finite flat covers of 7. Fixing a relative basis produces a smooth presentation
for Cov(S). Thus, Cov(S) is locally algebraic. For a general W, it now suffices to show that Cov(W) — Cov(S) is
representable. The fibre of this map over a point T — Cov(S) is the sheaf p.(W xgZ) where p: Z — T is cover
corresponding to the chosen point T — Cov(S). As the map p is finite flat, the claim now follows from the general
fact that the restriction of scalars of a representable sheaf remains representable under a finite flat map. (]

We now have enough tools to finish the proof of the main theorem.

Proof of Theorem 1. Assume for a moment that Theorem 1 is proven when X is discrete i.e., a sheaf of sets. Then, for
a sheaf of groupoids X with a map © : X — X as in the statement of the theorem, we may form the diagram

Hilbig; (X /X) x5 X > Hilbye; (X /%)

P

X X

where p is the structure morphism. As X is discrete as a sheaf on S-schemes, so is the sheaf Hilbi(X/X). By
Proposition 4, the map p is smooth, surjective and separated. It therefore suffices to show that Hilby;(X/X) is an
algebraic space. As the structure map p is separated and X has a representable diagonal, it follows that Hilby; (X /X)
also has a representable diagonal. On the other hand, the map pr; is a representable, separated, and fppf being the base
change of such a map. By the assumption that Theorem 1 is known for discrete sheaves, it now suffices to verify that
Hilby; (X /X) xx X is representable. This follows from the representability of X and pr,.

It remains to verify Theorem 1 under the additional assumption that X is discrete. As the map p : Hilby; (X /X) — X
is representable, smooth, surjective, and separated by Proposition 4, it suffices to verify that Hilby;(X /X) is repre-
sentable. Thanks to Proposition 6, it suffices to exhibit Hilby;(X/X) as a representable substack of Cov(X). When
viewed as a stack on Sch(S), a T-point of Hilby.;(X /X) is given by the data of a map T — X, a finite flat cover Z — T,
and a X-map f : Z — X such that the resulting map i : Z — X X T is an Ici closed immersion. Forgetting the map
T — Y, we obtain a morphism i : Hilby¢;(X /X) — Cov(X). As X is discrete, the map T — X is uniquely determined
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by the map Z — X — X if it exists. Thus, Hilb;(X/X) is naturally a subfunctor of Cov(X). To show that it is a
representable subfunctor, note that the essential image of i can be characterised as follows:

The groupoid of pairs (p: Z—T,f:Z—X) € Cov(X)(T)
i(Hilby;(X/X))(T) = such that the induced map Z X7 Z — X xg X factors
through X Xy X — X xgX

The existence of such a characterisation follows from the fact that X is a colimit of the diagram
XXX —=X
On the other hand, the assumption on the diagonal of X and the cartesian square

XXX —=X x5X

L

DC—>DC><SDC

imply that the map X xy X < X x5 X is a representable. It follows from the preceeding characterisation that i is
representable, thereby establishing the claim. (]



