THE ETALE TOPOLOGY

BHARGAV BHATT

ABSTRACT. In this article, we study étale morphisms of schemes. Our principal goal is to equip the reader with enough
(commutative) algebraic tools to approach a treatise on étale cohomology. An auxiliary goal is to provide enough evidence
to ensure that the reader stops calling the phrase “the étale topology of schemes” an exercise in general nonsense.

Almost all the material presented here is taken, without too many modifications, from [Gro03] and [BLR90].
Assuming certain standard results in algebraic geometry (and therefore commutative algebra), we have tried to provide
detailed proofs of most of the claims we make. However, as is the bane of the subject, it’s almost impossible to provide
fully detailed proofs (say, as seen in early undergraduate courses) while maintaining brevity. It is nevertheless hoped
that the proofs provided here give more than enough to the reader to reconstruct the entire proof.

1. NOTATION AND CONVENTIONS

All rings will be commutative with 1 and, more restrictively, noetherian. Therefore all schemes will be assumed to
be locally noetherian. If A is a local ring, we will denote its maximal ideal by r(A) and its residue class field by k(A).
A morphism of local rings f : A — B is a ring homomorphism such that f(r(A)) C r(B). The completion of a local
ring A with the r(A)-adic topology is denoted by A.

2. UNRAMIFIED MORPHISMS

2.1. Definition and sorites. We first define the notion of unramified morphisms for local rings, and then globalise it
to get one for arbitrary schemes. Along the way, we mention a few sorites which can be easily verified.

Definition 2.1. A morphism f : A — B of local rings is said to be unramified if f(r(A))B = r(B) and k(B) is a finite
separable extension of k(A).

It’s clear that a morphism f : A — B of local rings is unramified if and only if f: A — B is unramified. By basic
properties of complete local rings, this also implies that B is a finite A module. Moreover, if k(A) is separably closed,
it’s easy to see that A—Bis actually surjective. More generally, if k(B) is the trivial extension of k(A), Bisa quotient
of A. Lastly, if A and B are complete discrete valuation rings, f : A — B is unramified if and only the uniformiser for
A is also a uniformiser for B. Thus, this definition agrees with the definition in number theory.

Definition 2.2. A morphism f : X — Y of schemes is said to be unramified at x € X if it is of finite type at x and the
associated morphism of local rings at x (Oy,, — Ox ) is unramified. The morphism f : X — Y is said to unramified if
it is unramified at all points of x (and therefore is locally of finite type).

By definition, it follows that unramifiedness is local on the source and the target. It’s trivially verified that un-
ramified morphisms are stable under base change and composition. Equally trivially one can see that quasi-compact
unramified morphisms of schemes are quasi-finite (and therefore have relative dimension 0). An important, but once
again easily verified, observation is that a morphism that is locally of finite type is unramified if and only if all its
fibres are unramified. That is, unramifiedness is a fibral property.

2.2. Three other equivalent definitions.

Theorem 2.3. Let f : X — Y be a morphism locally of finite type. Let x be a point of X. The following are equivalent
(1) f is unramified at x
2) Q)l(/y is trivial at x
(3) There exists open neighbourhoods U of x and V of f(x), and a V-morphism U — A}, which is closed immersion
defined by a quasi-coherent sheaf of ideals ¢ such that the differentials {dg|g € T'(A},, #)} span Qfl*(‘/ v at
X
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(4) The diagonal Ay jy : X — X Xy X is a local isomorphism at x.

Proof. 1 <= 12:

For the forward implication, after taking sufficiently small open sets about x and f(x), we may assume that X and ¥
are affine (the formation of the module of Kéhler differentials is compatible with base change and taking open subsets
of the source). Note that this automatically forces f to be of finite type. By Nakayama’s lemma, it suffices to show
that the fibre of Q)l( Jy atx is trivial. Thus, by replacing X — Y with its fibre over f(x), we reduce to the case that ¥
is a field. Now, if X = Spec(A), A is a finite separable k-algebra (k being trivially complete forces A to be finite, and
the unramifiedness hypothesis on f forces separability). But now |X| is just a finite union of points with the discrete
topology. Thus, we may assume that X itself is the spectrum of a finite separable extension field of k. In this case, it’s
a well-known (and easy) result that a finite extension field of a field is separable if and only if the associated vector
space of Kéhler differentials is zero (check [Mat70], section 27, for the proof). The claim follows.

For the reverse implication, since unramifiedness is a fibral property that’s local on the source, we once again
reduce to the case that Y is a field, and X is the spectrum of a finitely generated k-algebra A. By replacing X with an
irreducible component passing through x, we may assume that X is integral (we can do this because if Q;( = 0, then
Q‘Z Iy = 0 for any closed immersion Z — X). Thus, X has a function field K. A basic result in commutative algebra
says that the rank of Q)l( sy at the generic point (which is also the rank of Q}< / ,) 18 at least the transcendence degree of
K /k. It follows from the hypothesis that K /k is a finite algebraic extension and, therefore, that X = Spec(K). We can
once again apply the afore-mentioned lemma to conclude that K /k is separable thereby establishing the claim.

2= 3:

For the forward implication, note that f being locally of finite type gives us (heavily non-canonical) open neighbour-
hoods U of x and V of f(x) with f(U) C V, and a closed immersion (over V) j: U — A},.. If j is defined by the sheaf
of ideals ¢, commutative algebra gives an exact sequence

F(II I = 7@y — Qupy — 0

The hypothesis gives us that Qllj v is trivial at x because the stalk of this sheaf at x is also the stalk of Q)l( Jy atx by
virtue of the compatibility of the formation of the module with Kihler differentials with restricting to open subsets on
both the target and the source. By Nakayama’s lemma, we obtained the required implication. The reverse implication
follows trivially from the above exact sequence.

24
Since both the properties are local on the source and the target, we may assume that X and Y are affine and, conse-
quently, that f is of finite type. The desired implications then follow from the fact that Q)l( Jy can be defined as pullback
A*(_7 ] #?%) where ¢ is the sheaf of ideals defining the closed immersion X — X xy X and Nakayama’s lemma. [J

If f:X —Yandg:Y — Z are two morphisms, there is a canonical short exact sequence

f*(gll//z) - )l(/z - Q)l(/y —0

The theorem therefore implies that if gf is unramified, then so is f. The definition of Q}( Jy 3 the pullback
AN( 7] 7 2) (with obvious notation) allows us to conclude that if X — ¥ is a monomorphism (i.e: X — X xy X is an
isomorphism or, equivalently, Hom(7,X) — Hom(T,Y) is injective for all T'), then X — Y is unramified. In particular,
open and closed immersions (and inverse limits of such maps) are unramified.

The theorem also implies that the locus of ramification of a morphism f : X — Y is the closed subset which is the
support of (the coherent sheaf) Q)l( Iy Thus, the set of points where a morphism is unramified form an open subset.
2.3. The functorial characterisation. In basic algebraic geometry we learn that some classes of morphisms can be

characterised functorially, and that such descriptions are incredibly useful. Unramified morphisms too have such a
characterisation which we now present (assuming the morphism is locally of finite type).

Theorem 2.4. Let f : X — S be a morphism that is locally of finite type. Then the following are equivalent

(1) f is unramified
(2) For all S-schemes Y — S which are affine, and subschemes Yy of Y defined by square-zero ideals, the natural
map Homg(Y,X) — Homg(Yy, X) is injective.



Proof. Since both properties are local on the source and the target, we are free to assume that S and X are affine, say
X = Spec(B) and S = Spec(R). Thus, ¥ = Spec(C) is also affine. Let J be a square-zero ideal of C and assume that

we are given the diagram
/N

R——>C——>CJJ

One can easily verify that the association y — y — ¢ gives a bijection between the set of liftings of ¢ and the module
Derg(B,J). Thus, we obtain the implication (1) = (2)

To obtain the reverse implication, consider the surjection ¢ : C = (B®g B)/I> — B = C/J defined by the square zero
ideal J = I/I> where I is the kernel of the multiplication map B ®g B — B. We already have a lifting B — C defined
by, say, b — b® 1. Thus, by the same reasoning as above, we obtain a bijective correspondence between liftings of
id : B— C/J and Derg(B,J). The hypothesis therefore implies that the latter module is trivial. But we know that
J= Q};/R. Thus, B/R is unramified. O
2.4. Some topological properties. The first topological result that will be of utility to us is one which says that
unramified and separated morphisms have “nice” sections.

Proposition 2.5. Any section of an unramified morphism is an open immersion, while any section of a separated
morphism is a closed immersion. Thus, any section of an unramified separated morphism with a connected target is
an isomorphism onto a connected component.

Proof. Fix a base scheme S. If g : X — S is separated (resp. unramified) and f : X’ — X is any S-morphism, then the
graph I'y : X’ — X’ x5 X is obtained as the base change of the diagonal X — X xgX via the projection X' xgX —
X xsX. Since the diagonal is a closed immersion (resp. open immersion), so is the graph. In the special case X' = S,
we obtain the claim. ]

We can now explicitly describe the sections of unramified morphisms.

Theorem 2.6. IfY is a noetherian connected scheme and f : X — Y is unramified and separated, then every section
of f is an isomorphism onto a connected component. There exists a bijective correspondence between sections of f
and connected components X; of X such that the induced map X; — Y is an isomorphism. In particular, the knowledge
of a section is equivalent to the knowledge of its value at any point in the base.

Proof. Proposition 2.5 shows that a section of f has to be both an open and closed immersion and, consequently, it’s
an isomorphism onto its image. Therefore, it maps onto a connected component of Y. The rest follows easily. (]

The preceding theorem gives us some idea of the “rigidity” of unramified morphisms. Further indication is provided
by the following proposition which, besides being intrinsically interesting, is also extremely useful in the theory of the
algebraic fundamental group ([Gro03], exposé 5).

Proposition 2.7. LetY is a noetherian connected scheme, and f : X — Y be unramified and separated. Let f,g:S — X
be two Y-morphisms such that f(s) = g(s), and that the induced maps x(g(s)) = x(f(s)) — K(s) are identical (that is,
f and g are geometrically equal at x). Then f = g

Proof. The maps f,g: S — X defines the maps (f,1),(g,1) : S — X xy S. If we denote by i : Spec(x(s)) — S the
canonical map from the residue class field at s, then the hypothesis ensures that f oi = goi and, consequently, (f,1)o
i=(g,1)oi. Therefore, (f,1)(s) = (g,1)(s). However, the maps (f,1) and (g,1) are sections of the unramified
morphism p; : X Xy § — S. Thus, by the preceeding theorem, since (f,1) and (g, 1) agree geometrically at a point,
they agree everywhere. ]

The topological results presented above will be used to give a functorial characterisation of étale morphisms similar
to theorem 2.4.



2.5. Examples. We will end the section with a few examples.

Example 2.8 (The trivial case). Unramified quasi-compact morphisms X — Spec(k) for a field k are forced to be
affine because X has to have dimension 0 and be compact. Noether normalisation (or whatever else you want) forces
X to be the spectrum of a finite separable k-algebra A. Such algebras are simply products of finite separable field
extensions of k. Thus, giving an unramified quasi-compact morphism to a field is not different from giving a finite
number of separable field extensions of k. In particular, an unramified morphism with a connected source and a one
point target is forced to be a finite separable field extensions. As we will see later, X — Spec(k) is étale if and only
if it is unramified. Thus, in this case at least, we obtain a very easy description of the étale topology of a scheme. Of
course, the cohomology of this topology is another story.. .

Example 2.9 (The standard case). Property 3 in 2.3 gives us a canonical source of examples for unramified morphisms.

Fix aring R and an integer n. Any ideal J = (g1, -+ ,gm) in R[x|, - - - ,x,] with the property that the matrix (%) has rank
J

n at a point x € R" defines a morphism f : Spec(R[xy, - - ,x,]/J) — Spec(R) that is unramified at the point x € A} (R).
Clearly we must have m > n. If we can choose m = n (i.e: the differential of the map A — A} defined by the g;’s is
an isomorphism of the tangent spaces), a theorem of Grothendieck allows us to show that f is also flat x and, hence, is
an étale map. Conversely, we will see that all étale maps arise locally in this manner.

Example 2.10 (Number theory). Fix a Galois extension of number fields L/K with rings of integers Oy, and Og. The
injection K — L defines a morphism f : Spec(O;) — Spec(Ok). As discussed above, the points where f is unramified
in our sense correspond to the set of points where f is unramified in the conventional sense. In the conventional sense,
the locus of ramification in Spec(0,) can be defined by vanishing set of the “different” (this is an ideal in O ). (In fact,
the different is nothing but the annihilator of QEL / OK') Similarly, the vanishing set of the discriminant (an ideal in Og)
is precisely the set of points of K which ramify in L (that is, at least one prime lying above them is ramified). Thus,
denoting by X the complement of the closed subset defined by the different in Spec(OL), and by Y the complement
of the closed subset defined by the discriminant in Spec(Og), we obtain a morphism X — Y which is unramified.
Furthermore, it is shown in algebraic number theory that this is also finite and flat. Thus, this is an example of an étale
covering. The same situation of affairs can be mimcked for the function field case too.

3. FLAT MORPHISMS

This section simply exists to summarise the properties of flatness that will be useful to us. Thus, we will be content
with stating the theorems precisely and giving references for the proofs.

3.1. Definitions, sorites, and a theorem of Grothendieck. After briefly recalling the necessary facts about flat
modules over noetherian rings, we state a theorem of Grothendieck which gives sufficient conditions for “hyperplane
sections” of certain modules to be flat.

Definition 3.1. A module N over a ring A is said to be flat if the functor M — M ®4 N is exact. If this functor is also
faithful, we say that N is faithfully flat over A. A morphism of rings f : A — B is said to be flat (resp. faithfully flat) if
the functor M — M ®4 B is exact (resp. faithful and exact).

We first begin with some sorites, all of which can be found in [Mat70]. Clearly free and projective modules are
flat. It’s easily verified that flatness is a local property (that is, M is flat over A if and only if M, is flat over A, for all
p € Spec(A)), and that finite flat modules over noetherian local rings are free. If f : A — B is a morphism of arbitrary
rings, f is flat if and only if the induced maps A1, — B, are flat for all g € Spec(B). If f: A — B is a morphism of
local rings, f is flat if and only if it is faithfully flat. Thus, a morphism of arbitrary rings is faithfully flat if and only
if it is flat and the induced map on spectra is surjective. An important result from commutative algebra is that if A is
a noetherian local ring, the completion Alis faithfully flat over A — this is the algebraic way of capturing the idea that
“no local information is lost on passage to the completion.” As a consequence of this, we obtain that a module M is
flat over A if and only if M @A;{ is flat over A (that is, flatness can be checked after a base change to the completion).
Before we move on to the geometric category, we present Grothendieck’s theorem, which provides a convenient recipe
for producing flat modules’.

Theorem 3.2 (Grothendieck). Let f : A — B be a morphism of local rings. If M is a finite B-module that is flat as an
A-module, andt € r(B) is an element such that multiplication by t is injective on M /r(A)M, then M /tM is also A-flat

I We shall use this theorem later to give two equivalent definitions of étale morphisms.
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Proof. This essentially follows from the local flatness criterion of Grothendieck. The idea is to first prove that 7 is
M-regular (i.e: multiplication by 7 is injective on M) and then give a Tor argument using the exact sequence 0 — M —
M — M/tM — 0 where the first map is multiplication by ¢. A carefully written out proof can be found, for instance,
[Mat70], section 20. O

Definition 3.3. A morphism f : X — Y of schemes is said to be flat at x € X if the associated morphism of local rings
at x (Oy,y — Ox ) is flat. The morphism f : X — Y is said to flat if it is flat at all points of x. A morphism f: X —Y
that is flat and surjective is said to be faithfully flat.

Once again, some sorites are in order. The property (of a morphism) of being flat is, by fiat, local on the source and
the target. Consequently, open immersions are flat. Almost as trivially, flat morphisms are stable under base change
and composition. Slightly less trivially, f : X — Y is flat if and only if the functor f* is exact on the category of
quasi-coherent sheaves on Y.

3.2. Some topological properties. We “recall” below some openness properties that flat morphisms enjoy.

Theorem 3.4. For a morphism of finite type f : X — Y, the set of points in X where f is flat is an open set. Moreover,
if f is flat at all points of X, it is an open map. Thus, a flat morphism can be factored as a faithfully flat morphism
followed by an open immersion.

Proof. A proof of the first claim can be found in [Gro66], section 11 or in [Gro03], exposé 1V, section 6. The second
claim depends on three results. The first one is Chevalley’s theorem which states that f preserves constructible sets
(this doesn’t require flatness); the second one is the easy fact that constructible sets (of a noetherian scheme) are open if
and only they are stable under generalisation; the last one is the fact that the “going-down” theorem holds for faithfully
flat morphisms of rings. A proof of all three of these facts and how they imply the claim can be found in section 6 of
[Mat70] ]

Theorem 3.5. A faithfully flat quasi-compact morphism (an fpqc map) is a quotient map for the Zariski topology.

Proof. If f: X — Y is an fpqc map, then f sends constructible sets to pro-constructible sets (easy application of
Chevalley’s theorem using the fact that, over a ring R, any R-algebra is a direct limit of finitely generated R-algebras).
Such sets are closed if and only if they are stable under specialisation. Using this fact, the surjectivity of f, and the fact
that the “going-down” theorem holds for faithfully flat morphisms of rings, one can easily show that f is a quotient
map for the Zariski topology. Like the previous theorem, a proof of this theorem too can be found in section 6 of
[Mat70]. ]

An important reason to study flat morphisms is that they provide the adequate framework for capturing the notion
of a family of schemes parametrised by the points of another scheme. Naively one may think that any morphism
f : X — § should be thought of as a family parametrised by the points of S. However, without a flatness restriction on
[, really bizarre things can happen in this so-called family. For instance, we aren’t guaranteed that relative dimension
(dimension of the fibres) is constant in a family. Other numerical invariants, such as the Hilbert polynomial, too may
change from fibre to fibre. Flatness prevents such things from happening and, therefore, provides some “continuity”
to the fibres.

4. ETALE MORPHISMS

In this section, we will define étale morphisms and prove a number of important properties about them. The most
important one, no doubt, is the functorial characterisation presented in theorem 4.9. Following this, we will also
discuss a few properties of rings which are insensitive to an étale extension (i.e: properties which hold for a ring if and
only if they hold for all its étale extensions) to motivate the basic tenet of étale cohomology — étale morphisms are the
algebraic analogue of local isomorphisms.

4.1. Definitions and sorites. As the title suggests, we will define the class of étale morphisms — the class of mor-

phisms (whose surjective families) we shall deem to be coverings in the category of schemes over a base scheme

S in order to define the étale site S,;. Intuitively, an étale morphism is supposed to capture the idea of a covering

space and, therefore, should be close to a local isomorphism. If we’re working with varieties over algebraically closed

fields, this last statement can be made into a definition provided we replace “local isomorphism” with “formal local

isomorphism” (isomorphism after completion). One can then give a definition over any base field by asking that the
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base change to the algebraic closure be étale (in the aforementioned sense). But, rather than proceeding via such
aesthetically displeasing constructions, we will adopt a cleaner, albeit slightly more abstract, algebraic approach.

Definition 4.1. A morphism f : A — B of local rings is étale if it is flat and unramified.

As we’ve already discussed the sorites for flat and unramified morphisms, there’s not much more to discuss here.
One thing that we’d like to point out, however, is that étaleness can be checked after completion. Moreover, by
combining flatness with basic properties of complete local rings, we see that if f: A — B is étale, then, in fact, Bisa
finite flat A-module and, hence, B = (A)" The integer 7 is nothing other than the (separable) degree [k(B) : k(A)]. In

particular, if k(A) is separably closed, we obtain that A — Bis an isomorphism, which vindicates our earlier claims.
Lastly, if f : A — B is étale, the unramifiedness forces dim(B) < dim(A) while (faithful) flatness forces the other
inequality. Thus, we obtain that dim(B) = dim(A). Moving on to geometry now

Definition 4.2. A morphism f : X — Y of schemes is said to étale at x € X if it is flat and unramified at x (and,
therefore, of finite type in a neighbourhood of x). The morphism is said to étale if it is étale at all its points.

Note that the unramifiedness hypothesis forces étale morphisms to be locally of finite type; flatness then forces such
morphisms to be open. Since unramifiedness and flatness are both open properties, the étale locus of a morphism is
open. Moreover, it’s trivially verified that étaleness, besides being local on the source and the target, is stable under
base change and composition.

4.2. The structure theorem for étale morphisms. We present a theorem which describes the local structure of étale
morphisms with great clarity. Besides its obvious independent importance, this theorem also allows us to make the
transition to another definition of étale morphisms that captures the geometric intuition better than the one we’ve used
so far.

Theorem 4.3 (Structure Theorem). Let f : A — B be an unramified morphism of local rings with the property that B
is the localisation of a finitely generated A-algebra. Then there exists a finite A-algebra A’, a maximal ideal p € A', a
generator u of A’ (as an A-algebra), a monic polynomial F € A[t] such that F (u) =0 and F'(u) ¢ p and an isomorphism
B — Al, as A-algebras. Furthermore, we may choose A" = A[t]/(F) if f is étale.

Proof. The first step is to use Zariski’s main theorem?” to construct a finite A-algebra A’ and a maximal ideal p of A’
such that A;, 2 B as an A-algebra. The next step is to combine the primitive element theorem with Nakayama’s lemma
to be able to assume that A’ is monogenic. The last step is to show that this A’ works. A carefully written out proof
can be found in section 7 of exposé 1 of [Gro03]. O

Via standard lifting arguments, one then obtains the following geometric statement which will be of essential use
to us.

Corollary 4.4. Let f: X — Y be an étale morphism. Then, for every x € X, there exist affine neighbourhoods V =
Spec(R) and U = Spec(S) of f(x) and x respectively such that f(U) CV and that U is V-isomorphic to an open
subscheme of Spec(R[t]/g)y for some monic polynomial g € Rt] (with g’ = dg/dt and that U is V -isomorphic to an
open subscheme of Spec(R[t]/g) for some monic polynomial g € R[t] (with g’ = dg/dt).

4.3. An equivalent definition. We now give another (equivalent) definition of étale morphisms which, besides having
some geometric interpretation, is often easily verified in practice. More importantly perhaps, this definition also
naturally leads one to the notion of smoothness. As smooth morphisms don’t directly concern us, we don’t discuss
them here and, instead, refer the interested reader to chapter 2 of the Neron models book ([BLR90]) for an almost
perfect account of the basic theory of smoothness, especially its relationship to differential calculus.

Definition 4.5. A morphism f : X — Y (of schemes) is said to be étale if the following two properties hold

(1) For every x € X, there exists an open neighbourhood U of x and an immersion g : U — A}
(2) If ¢ is the sheaf of ideals that defines g, then, locally at g(x), _# can be generated by sections gy, - - - , g, such
that the differentials dg; form a basis for Q}W at g(x).

2The classical version, as explained in section 4.4 of chapter 1 of [Gro61], suffices for our purposes; we do not need the full power of Deligne’s
generalised version of the main theorem.
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Proof of equivalence. Note that the first property simply expresses the fact that f is locally of finite type. Thus, étale
morphisms for the old definition satisfy the first property. To show that they satisfy the second one as well, we use
corollary 4.4. Following the notation of that corollary, we may assume that U = Spec(R[t,x,y]/(g,xg' — 1,ya— 1))
where V = Spec(R) is an open subscheme of ¥ with U C f~!(V), g is a polynomial in ¢, ¢’ = dg/dt and a is a
polynomial in  and x. It is then trivially verified that the obvious morphism U — Aj — AJ is an immersion with the
requisite properties.

For the converse direction, let f : X — Y be a morphism verifying properties 1 and 2. By the first property, we get
that f is locally of finite type. It remains to show that f is unramified and flat.

To see that f is unramified, using theorem 2.3, it suffices to show that Q}l( = 0. Since this is a local statement, after
fixing x € X, we immediately reduce to the case where ¥ = Spec(R) and g : X — A} is a closed subscheme defined by
J=1(g1, -+ ,gn) with the property that the differentials dg; form a basis for Q}&; at g(x). We are now in a position to
use the exact sequence

(I I =g @y ) — Qhyy —0

where 7 is the sheaf of ideals associated to J. The hypothesis implies that the fibre of Q)l( ¥ is 0 at x which implies
that Q)lf ¥ is trivial at x by Nakayama’s lemma. Thus, we’ve shown that f is unramified.
To prove flatness, we once again reduce to the local case. Following the same notation as that introduced above, we

need to show that R[x,---,x,]/(g1, - ,&x) is flat over R where the x; are co-ordinates on A} and (%) is invertible
J

at g(x). The flatness would follow from Grothendieck’s flatness theorem (theorem 3.2) if we showed that g1,--- , gn
was a k(R)-regular sequence inside k(R)[xj,---,x,]. We know that k(R)[x;,---,x,]/(g1, - ,&u) is étale over k(R)
(we just showed it was unramified, and any morphism to a field is flat) and, consequently, of dimension 0. Hence,
ht(g1,---,8n) = n by basic dimension theory. Since k(R)[x1, - ,x,] is a Cohen-Macaulay ring, it follows, from theo-
rem 17.4 in [?] for instance, that g1, - - , g, is a k(R)-regular sequence which finishes the proof. For a proof that avoids
the use of Cohen-Macaulay rings, we refer the reader to theorem 3 of section 3.10 of Mumford’s exposition ([?]).

4.4. Some topological properties. We present a few of the fundamental topological properties of étale morphisms
as explained in, say, [Gro03], exposé 1, section 5. Of key importance here is theorem 4.8 which, besides providing
one direction of the equivalence promised by the functorial characterisation, also gives motivation to view étaleness
as essentially a topological property. But first, we give what Grothendieck calls the fundamental theorem for étale
morphisms.

Theorem 4.6. Let f : X — Y be a morphism of finite type. Then f is an open immersion if and only if it étale and
radiciel’.

Proof. Using the openness of flat maps that are locally of finite type, we may assume that f is surjective and, therefore,
is a universal homeomorphism as it is assumed to be universally injective. Now, if f : X — Y had a section, the section
would have to be an open immersion (because f is unramified) that is surjective (because f is a homeomorphism). That
is, it would be an isomorphism and that would prove our claim. On the other hand, to show that f is an isomorphism,
it clearly suffices to work after a faithfully flat base change. But f itself provides such a base change! And once we
base change via f, the diagonal provides a section. So we’re done. (|

Next, we present an extremely crucial theorem which, roughly speaking, says that étaleness is a topological prop-
erty.

Theorem 4.7. Let X and Y be two separated noetherian schemes over a base scheme S such that X is étale over S
. Let Sy be a subscheme of S defined by a nilpotent ideal, and denote by Xy (resp. Yo) the pullback X xg Sy (resp.
Y x580). Then the map Homg(Y,X) — Homyg, (Yo, Xo) is bijective.

Proof. After base changing via Y — §, we may assume that ¥ = S in which case the theorem states that any Y-
morphism Yy — X actually factors uniquely through a section ¥ — X. For existence, assume that we are given ¢ : Yy —
X. Since |Yp| = |Y|, by theorem 2.6, the section ¢ is uniquely determined by a connected component X; of X such that
X; Xy Yy — Y is an isomorphism (with inverse defined by (¢,id)). In particular, X; — Y is a universal homeomorphism

3Recall ([Gro60], chapter 1, section 3.5) that f : X — Y is radiciel if X(K) — Y (K) is injective for every field K, and that this is equivalent to
requiring that f be injective and that the maps k(f(x)) — k(x) be epimorphisms in the category of fields (purely inseparable extensions). Lastly,
this is also equivalent to requiring that f be universally injective
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and therefore radiciel. Since X; — X and X — Y are étale, it follows from theorem 4.6 that X; — Y is an isomorphism
and, therefore, it has an inverse which is the required section. The uniqueness follows from repeated application of
theorem 2.4, or directly from theorem 2.6, or, if one carefully observes, from our proof itself. |

From the proof of preceeding theorem, we also obtain one direction of the promised functorial characterisation of
étale morphisms.

Theorem 4.8. Let f: X — S be an étale morphism. Then for all S-schemes Y — S which are affine, and subschemes
Yo of Y defined by square-zero ideals, the natural map Homg(Y,X) — Homg (Yo, X) is bijective.

4.5. The functorial characterisation. We finally present the promised functorial characterisation. Note that this
takes our count of (equivalent) definitions of étale morphisms to four — the one we originally gave, the one provided
by the structure theorem, the alternative one and the one obtained from the functorial characterisation.

Theorem 4.9. Let f : X — S be a morphism that is locally of finite type. Then the following are equivalent
(1) fisétale
(2) For all S-schemes Y — S which are affine, and subschemes Yy of Y defined by square-zero ideals, the natural
map Homg(Y,X) — Homg (Yo, X) is bijective.

Proof. The forward implication was proven in theorem 4.8. For the reverse implication, we use definition 4.5. We
may assume that X is defined as a closed subscheme g : X — A% by an ideal ¢ . Using the alternative definition, it
suffices to show that the natural map g*(_#/_#?%) — g* (Q}&g /S) is an isomorphism. Since this is a local problem, we
may assume that S = Spec(R), A§ = Spec(A) and X = Spec(B) where A = Rxy,---,x,| and B is a quotient of A by
an ideal I. We have the canonical isomorphism B — (A/I?)/(I/I?) which, by the functorial hypothesis, lifts to an
R-linear map B — A/I*. Therefore, the exact sequence 0 — I/I> — A/I> — A/I — 0 splits. If we denote the first map
by i, the second map by v and the splitting A/I — A/I* by 0, then T = id — (¢ o v) defines an A-derivation A/I*> — I /I°.
Consequently, we obtain a map Q}l /R ©A B — I/I? which gives an inverse to the natural map I /1> — Q}x /R ®A B thereby
showing that the latter is an isomorphism, as was required. g

This characterisation says that solutions to the equations defining X can be lifted uniquely through nilpotent thick-
enings.

4.6. Permanence properties. We’ve already seen that the Krull dimension is insensitive to an étale extension. In
what follows, we present a few other such “permanence” properties of étale morphisms.

Proposition 4.10. Let f : A — B be an étale map of local rings. Then depth(A) = depth(B)

Proof. This follows fairly easily from the observation that, on tensoring with B, the Koszul complex of the ideal r(A)
of A gives the Koszul complex of the ideal r(B) of B, and that A — B is faithfully flat. |

Proposition 4.11. Let f : A — B be an étale map of local rings. Then A is regular if and only if B is so.

~

Proof. By the étaleness of A — B and the local flatness criterion ([Mat70], theorem 49), one sees that gr*(B) &
gr*(A) ®y(a) k(B) as graded algebras. Thus, by looking at the degree 1 components, we see that the embedded dimen-
sions of A and B co-incide. By the étaleness of A — B, the (Krull) dimensions of the two rings co-incide as well. Thus,
A is regular if and only if B is so. ]

Proposition 4.12. Let f : A — B be an étale map of local rings. Then A is reduced if and only if B is so.

Proof. 1t’s clear from the faithful flatness of A — B that if B is reduced, so is A. Conversely, lets assume A is reduced
and show that B is so. By assumption, if {p;} is the set of minimal primes of A, the natural map A — [[;A/p; is
injective. By the flatness of B, B — []; B/ p;B is also injective; hence, it suffices to show that each of B/ p;B is reduced.
Thus, after base changing to an irreducible component, we may assume that A is a domain with field of fractions K.
By the flatness of B, the natural map B — B ®4 K is injective; hence, it suffices to show the latter is reduced. Since
K — B®4 K is étale, we are reduced to the case where A is a field. By virtue of example 2.8, we see that B is a product
of fields, and therefore reduced. O

Proposition 4.13. Let f : A — B be an étale map of local rings. Then A is normal if and only if B is so.
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Proof. We use Serre’s normality criterion for a noetherian local ring A of dimension # 0. Recall that this says that
A is normal if and only if it is regular in codimension 1, and for every prime p of height > 2, depth(A,) > 2. Since
A — B is an étale map of local rings, it’s faithfully flat. Moreover, if p € Spec(B) lies over g € Spec(A), then A, — B,
is étale. Hence, the height 1 (resp. > 2) primes of B lie over all the height 1 (resp. > 2) primes of A. The result now
follows from the permanence of regularity and depth for étale extensions. ]

Proposition 4.14. Let f : A — B be an étale map of local rings. Then A is Cohen-Macaulay if and only if B is so.

Proof. Recall that a local ring A is Cohen-Macaulay if and only dim(A) = depth(A). As each of these invariants is
preserved under an étale extension, the claim follows. O

The preceeding propositions give some indication as to why we’d like to think of étale maps as “local isomor-
phisms”. Another property that gives an excellent indication that we have the “right” definition is the fact that for
C-schemes of finite type, a morphism is étale if and only if the associated morphism on analytic spaces (the C-valued
points given the complex topology) is a local isomorphism in the analytic sense (open embedding locally on the
source). This fact can be proven with the aid of the structure theorem and the fact that the analytification commutes
with the formation of the completed local rings — the details are left to the reader.

5. SOME PSEUDO-MATHEMATICAL REASONS TO STUDY ETALE COHOMOLOGY

An important goal of modern algebraic geometry is to define the “right” cohomology theory in the algebraic cat-
egory. What we mean by this is a cohomology theory which does for algebraic geometry what singular cohomology
does for analytic geometry. As the theory of étale cohomology is an attempt to fulfill this requirement, we try to
motivate its construction as a natural analogue of the topological one.

Before we define étale cohomology, perhaps, a few words are in order as to why the standard sheaf cohomology
(cohomology for the Zariski topos, or, as its better known, Zariski cohomology) is inadequate. First off, while Zariski
cohomology groups of varieties are vector spaces over the field of definition of the variety which can possibly be of
characteristic p, an ideal cohomology should have “Z-coefficients” or, failing that, at least characteristic O coefficients.
Secondly, the higher cohomology groups of a constant sheaf are trivial for Zariski cohomology while they carry
incredibly refined information for singular cohomology. Lastly, we’d like a theory with meaningful consequences for
affine varieties as well. After all, affine varieties are not as homogeneous as their analytic counterparts.

The reason for all these failures is, of course, that the Zariski topology is way too coarse. Indeed, the basic open
subsets of C" for the Zariski topology are complements of hypersurfaces! A possible solution, therefore, could entail
defining a new topology with smaller open sets. Unfortunately, as the crutch of analytic geometry depends heavily
on metrics to define “small” open subsets, it isn’t exactly clear what a small open set in the algebraic category should
constitute. However, a cute analytic fact (analytic geometry to the rescue again!) and the theory of Grothendieck
topologies saves the day, as we shall shortly see. Before that, however, lets define étale cohomology.

With the general nonsense of Grothendieck topologies, defining étale cohomology is is a breeze. Indeed, the first
step, after fixing the scheme X whose étale cohomology we want to define, is to define the étale site X,; of X. The
underlying category of this site is the category of all separated étale X-schemes (all morphisms between such schemes
are forced to be étale); the coverings are simply families of (necessarily étale and, therefore, open) maps whose total
image is the whole space. The basic properties of étale morphisms show that this indeed defines a site. The category
of sheaves on this site, the étale topos of X, is denoted by E¢(X). With these definitions in place, the étale cohomology
of X with coefficients in .% € Et(X) is defined as the cohomology of the site X,; with coefficients in .7 .

Next, we point out the cute (and fundamental) analytic fact that justifies the choice of étale cohomology as the
correct analogue of singular coohmology. For an analytic space X, the étale topos Et(X )4 is equivalent, as a category,
to the standard topological topos Top(X) whose cohomology is, by definition, singular cohomology5 . Since sheaf
cohomology can be defined intriniscally in terms of the topos (the global sections functor can be the defined as
the functor represented by the final object of the topos, thereby making no reference to the base space), singular
cohomology can also be computed as the cohomology of the the étale topos.

4This is defined in complete analogy with the algebraic construction above, with (analytic) local isomorphisms replacing the étale morphisms
of algebraic geometry.

SThis follows easily from the sheaf axioms once one observes that if U — X is a local homeomorphism from a topological space U to an analytic
space X, then there is a unique analytic structure on U which makes the preceeding map an analytic map
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Thus, if we are to proceed by analogy with analytic geometry, all that remains is to formulate the right notion of a
local isomorphism in the algebraic category. But that was precisely what we did earlier! Indeed, we have already given
enough reasons to justify the choice of étale morphisms as the correct algebraic analogue of the local isomorphisms in
analytic geometry. Thus, given the analytic fact mentioned above, it is at least reasonable to expect étale cohomology
to be a good replacement for singular cohomology in the algebraic category.

To see a successful execution of the philosophy outlined above, we suggest the reader move on to [Del77].

[BLR90]
[Del77]

[Gro60]
[Gro61]

[Gro66]
[Gro03]

[Mat70]
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