
FORMAL GLUEING OF MODULE CATEGORIES

BHARGAV BHATT

Fix a noetherian scheme X , and a closed subscheme Z with complement U . Our goal is to explain a result of
Artin that describes how coherent sheaves on X can be constructed (uniquely) from coherent sheaves on the formal
completion of X along Z, and those on U with a suitable compatibility on the overlap. In fact, the main result is a
general (i.e., non-noetherian) local version, which we will state once we have the following definition in place.

Definition 0.1. Given a ring A and an element f ∈ A, a ring map φ : A→ B is said to be f -adically faithfully flat if
φ is flat, and φ/f : A/fA→ B/fB is faithfully flat. The map φ : A→ B is said to be an f -adic neighbourhood if it
is f -adically faithfully flat, and the induced map A/fA→ B/fB is an isomorphism.

We let Mod(A) denote the abelian category of A-modules over a ring A, while Modfg(A) denotes the subcategory
of finitely generated A-modules. The main result is:

Theorem 0.2. Let A be a ring, and let f ∈ A. Let φ : A→ B be an f -adic neighbourhood. Then the natural map

F : Mod(A)→ Mod(Af )×Mod(Bf ) Mod(B)

is an equivalence.

The category Mod(Af ) ×Mod(Bf ) Mod(B) appearing on the right side of the expression in Theorem 0.2 is the
category of triples (M1,M2, ψ) where M1 is an Af -module, M2 is a B-module, and ψ : M1 ⊗Af

Bf ' M2 ⊗B Bf
is a Bf -isomorphism. The natural map referred to in Theorem 0.2 is defined by F(M) = (Mf ,MB , can) where
can :Mf ⊗Af

Bf 'MB⊗BBf is the natural isomorphism. We generally refer to objects of this category as “glueing
data.” The motivation behind this terminology is topological and explained in Remark 0.5.

A useful special case of Theorem 0.2 is when A is noetherian, and B is a completion of A at an element f . The
completionA→ B is flat by basic theorems in noetherian ring theory, and the functorM 7→M⊗AB can be identified
with the f -adic completion functor when M is finitely generated. Thus, we obtain:

Corollary 0.3. Let A be a noetherian ring, let f ∈ A be an element, and let Â be the f -adic completion of A. Then
the obvious functors (localisation and completion) define an equivalence

Modfg(A) ' Modfg(Af )×Modfg(Âf )
Modfg(Â)

Remark 0.4. The equivalence of Theorem 0.2 preserves the obvious ⊗-structure on either side. Thus, it defines
equivalences of various categories built out of the pair (Mod(A),⊗), such as the category of A-algebras.

Remark 0.5. Theorem 0.2 may be regarded as an algebraic analogue of the following trivial theorem from topology:
given a manifold X with a closed submanifold Z having complement U , specifying a sheaf on X is the same as
specifying a sheaf on U , a sheaf on an unspecified tubular neighbourhood T of Z in X , and an isomorphism between
the two resulting sheaves along T ∩ U . The lack of tubular neighbourhoods in algebraic geometry forces us to work
with formal neighbourhoods instead, rendering the proof a little more complicated.

Remark 0.6. We suspect that Theorem 0.2 follows formally from the existence of a good model structure for the flat
topology. Specifically, if one has a model structure where open immersions are cofibrations, then the square

Spec(Bf ) //

��

Spec(B)

��
Spec(Af ) // Spec(A)

will be a homotopy pushout square. Evaluating the fpqc-stack Mod(−) on this pushout diagram would then allow us
to deduce Theorem 0.2 from usual fpqc-descent.
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1. GENERALITIES

Fix a ring A and an element f .

Definition 1.1. An A-module M said to be an f∞-torsion A-module if for each m ∈ M , there exists an n > 0 such
that fnm = 0. The full subcategory of Mod(A) spanned by f∞-torsion modules is denoted Mod(A)[f∞], while the
subcategory spanned by fn-torsion modules is denoted Mod(A)[fn].

We first reformulate the definition of f -adic faithful flatness in terms of the category Mod(A)[f∞].

Lemma 1.2. Fix a ring map φ : A→ B. Then the following are equivalent

(1) The map φ is f -adically faithfully flat.
(2) The map φ is flat, and the map Spec(B/fB)→ Spec(A/fA) is surjective.
(3) The map φ is flat, and the functor M 7→M ⊗A B is faithful on Mod(A)[f ].
(4) The map φ is flat, and the functor M 7→M ⊗A B is faithful on Mod(A)[f∞].

Proof. (1) and (2) being equivalent is standard, while the equivalence of either with (3) follows by identifying f -torsion
A-modules with A/f -modules, and using that

M ⊗A B =M ⊗A/f A/f ⊗A B =M ⊗A/f B/fB

for f -torsion A-modules M . The rest follows by devissage and the fact that M 7→ M ⊗A B commutes with filtered
colimits and is exact. �

Next, we prove a series of lemmas which tell us that the category Mod(A)[f∞] is insensitive to passing to an f -adic
neighbourhood. First, we need a nice presentation.

Lemma 1.3. Any module M ∈ Mod(A)[f∞] admits a resolution K· → M with each Ki a direct sum of copies of
A/fn for n variable.

Proof. For any M ∈ Mod(A)[f∞], there is a canonical surjection

⊕m∈MA/fnm →M → 0

where nm is the smallest positive integer such that fnm · m = 0. The kernel of the preceding surjection is also an
f∞-torsion module. Proceeding inductively, we construct a canonical resolution of M by A-modules which are direct
sums of copies of A/fn for variable n, as desired. �

Next, we show that passing to f -adic neighbourhoods does not change f∞-torsion modules.

Lemma 1.4. Let φ : A → B be an f -adic neighbourhood. For any module M ∈ Mod(A)[f∞], the natural map
M →M ⊗A B is an isomorphism.

Proof. First assume that M ∈ Mod(A)[f ]. In this case, M is an A/f -module. Hence, we have an isomorphism

M ⊗A B 'M ⊗A/f B/fB 'M ⊗A/fA A/fA 'M

proving the claim. The general case follows by devissage. Indeed, using the isomorphism A/fA ' B/fB and the
flatness of A → B, one shows that A/fnA ' B/fnB for all n ≥ 0. By the same argument as above, it follows that
for any A/fn-module M , the natural map M → M ⊗A B is bijective. Since any M ∈ Mod(A)[f∞] can be written
as a filtered colimit of A/fn-modules for variable n, the claim follows from the fact that tensor products commute
with colimits. �

We can now show that the category Mod(A)[f∞] does not change on passing to an f -adic neighbourhood.

Lemma 1.5. Let φ : A → B be an f -adic neighbourhood. Then the functor M 7→ M ⊗A B defines an equivalence
Mod(A)[f∞]→ Mod(B)[f∞].

Proof. We first show full faithfulness. In fact, we will show that the natural map

HomA(M,N)→ HomB(MB , NB)
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is an isomorphism if M or N is f∞-torsion. When M is finitely presented, this follows from Lemma 1.4 once we
observe that the formation of HomA(M,N) commutes with flat base change onA. In general, we writeM as a filtered
colimit colimiMi where each Mi is finitely presented, and then use the following sequence of isomorphisms:

HomA(M,N) = HomA(colimiMi, N)

= lim
i

HomA(Mi, N)

= lim
i

HomB(Mi,B , NB)

= HomB(colimiMi,B , NB)

= HomB(MB , NB)

where the third equality uses the finitely presented case, while the last one uses the commutativity of M 7→M ⊗A B
with filtered colimits. In particular, the functor Mod(A)[f∞]→ Mod(B)[f∞] is fully faithful.

For essential surjectivity, we simply note that for any N ∈ Mod(B)[f∞], the natural map N ⊗A B → N is an
isomorphism by Lemma 1.4, �

We can improve on the full faithfulness of Lemma 1.5 by showing that Ext-groups whose source lies in Mod(A)[f∞]
are insensitive to passing to f -adic neighbourhoods as well.

Lemma 1.6. Given M ∈ Mod(A)[f∞] and N ∈ Mod(A), the natural map

ExtiA(M,N)→ ExtiB(MB , NB)

is an isomorphism for all i.

Proof. We prove the statement by induction on i. The case i = 0 was proven in the course of Lemma 1.5. For larger
i, using Lemma 1.3, one can immediately reduce to the case that M = A/fn for suitable n. In this case, we argue
using a dimension shifting argument; the failure of f to be regular element of A forces us to introduce some derived
notation. Let K denote the two-term complex

A
fn

→ A.

In the derived category D(Mod(A)), there is an exact triangle of the form

K → A/fn[−1]→ A[fn][1]→ K[1]

where A[fn] is kernel of multiplication by fn on A. Applying Exti(−, N) then gives us a long exact sequence

. . .Exti−1A (A[fn], N)→ Exti+1
A (A/fn, N)→ ExtiA(K,N) . . .

Induction on i then reduces us to verifying that ExtiA(K,N) ' ExtiB(KB , NB) for all i. The definition of K gives
us an exact triangle

A[−1]→ K → A
δ→ A

where the boundary map δ is identified with fn, up to a sign. Using the projectivity ofA, we see that ExtiA(K,N) = 0
for i > 1, and for i ≤ 1 there is a short exact sequence

0→ Ext0A(K,N)→ Hom(A,N)
fn

→ Hom(A,N)→ Ext1A(K,N)→ 0.

Hence, we may identify
Ext0A(K,N) = N [fn] and Ext1A(K,N) = N/fnN.

The formation of the groups ExtiA(K,N) clearly commutes with base changing along A → B. On the other hand,
since M ' M ⊗A B for any fn-torsion A-module (see Lemma 1.4), the right hand side of the preceding equalities
does not change on base changing along A→ B. Thus, it follows that

ExtiA(K,N) ' ExtiB(KB , NB)

as desired. �

Lastly, we prove a couple of facts concerning the behaviour of f -torsionfree modules.

Lemma 1.7. LetM be anA-module without f -torsion, and let φ : A→ B be an f -adically flat ring map. An element
m ∈ M is divisible by f in the A-module M if and only if the same is true for m ⊗ 1 ∈ M ⊗A B in the B-module
M ⊗A B.
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Proof. By hypothesis, there is a short exact sequence

0→M
f→M →M/fM → 0.

Assume m ∈M is not divisible by f . Thus, the corresponding element in M/fM is not zero. By the faithful flatness
of A/fA→ B/fB, the resulting elemnt of M/fM ⊗A B 'M ⊗A B/f(M ⊗A B) is also non-zero, which implies
the result. �

Lemma 1.8. Let M be an A-module without f -torsion. Then the natural map M →Mf is injective.

Proof. The kernel of M →Mf is spanned by elements m ∈M satisfying fnm = 0 for some n > 0. The hypothesis
on M and an easy induction on n imply that m = 0. �

2. THE FULL FAITHFULNESS

In this section, we establish the full faithfulness of the functor F of Theorem 0.2. Like in the previous section, we
fix the ring A and the element f under consideration. First, we show that an object in Mod(A)[f∞] is determined by
the glueing data it determines.

Lemma 2.1. Let M be an f∞-torsion A-module. Let φ : A→ B be an f -adic neighbourhood. Then the natural map

M →Mf ×MBf
MB

is an isomorphism.

Proof. The hypothesis implies that Mf = MBf
= 0. It then suffices to check that M ' MB , which follows from

Lemma 1.4. �

Next, we show that an f -torsionfree module is determined by the glueing data it determines.

Lemma 2.2. Let M be an A-module without f -torsion, and let φ : A → B be an f -adically faithfully flat ring map.
Then the natural map

M →Mf ×MBf
MB

is an isomorphism.

Proof. As M has no f -torsion, the same is true for M ⊗A B. Thus, the vertical maps in the diagram

M //

��

MB

��
Mf // MBf

are injective. We may therefore view M as being an A-submodule of Mf , and similarly for MB . It follows then that
the map M → Mf ×MBf

MB is injective. For surjectivity, let (x, y) ∈ Mf ×MBf
MB be an element. Then there

exists an n such that fnx = m ∈ M . The image of m in MB agrees with fny as both these elements have the same
image in MBf

. Thus, the element m is divisible by fn in MB . By Lemma 1.7, the element m ∈M is divisible by fn

in M itself. Thus, we may write m = fnx′. Since f acts invertibly on Mf , it follows that x = x′ ∈Mf , and thus the
element x ∈ Mf actually comes from M . One can then easily check that the image of x = x′ in MB agrees with y
(as the same is true in MBf

). Thus, the element x′ ∈M maps to (x, y) as desired. �

Combining the previous two cases, we verify that arbitrary modules are determined by their glueing data.

Lemma 2.3. Let M be an A-module, and let φ : A→ B be an f -adic neighbourhood. Then the natural map

M →Mf ×MBf
MB

is an isomorphism.
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Proof. Given an A-module M , let T ⊂M denote its f∞-torsion. Then we have an exact sequence

0→ T →M → N → 0

with N = M/T without f -torsion. It is also easy to see that the functor M 7→ Mf ×MBf
MB is left exact, i.e.,

preserves finite limits. Thus, we may apply it to the preceding short exact sequence to obtain a commutative diagram

0 // T //

a

��

M //

b
��

N //

c

��

0

0 // Tf ×TBf
TB // Mf ×MBf

MB // Nf ×NBf
NB

with exact rows. The map a is an isomorphism by Lemma 2.1, while the map c is an isomorphism by Lemma 2.2. An
easy diagram chase then shows that b is also an isomorphism, as desired. �

Using the preceding results, we can prove the full faithfulness of F.

Lemma 2.4. Let M and N be two A-modules, and let φ : A→ B be an f -adic neighbourhood. The natural map

a : HomA(M,N) ' HomAf
(Mf , Nf )×HomBf

(MBf
,NBf

) HomB(MB , NB)

is an isomorphism. Thus, the functor F is fully faithful.

Proof. The injectivity of a immediately follows from Lemma 2.3. Conversely, given maps gf : Mf → Nf and
gB :MB → NB defining the same map over Bf , we obtain an induced map g :M → N via Lemma 2.3. Subtracting
the map g induces from gf and gB , we may assume that both gf and gB induce the 0 map M → N . It suffices to show
that in this case gf and gB are both 0. However, this is clear since both Mf and MB are generated by M .

�

3. ESSENTIAL SURJECTIVITY

We first recall the general definition of a fibre product of categories.

Definition 3.1. Given a diagram
A

��
B // C

of categories, we define the fibre product A ×C B to be the category of tripes (a, b, f) where a ∈ A, b ∈ B, and f is
an isomorphism in C between the images of a and b; morphisms are defined in the obvious way.

Remark 3.2. In the situation considered above, the fibre product A ×C B inherits properties as well as structures
present on A, B, and C that are preserved by the functors. For example, if all three categories are abelian ⊗-categories
with the functors being exact and ⊗-preserving, then the fibre product A×C B also inherits the structure of an abelian
⊗-category; this will be the case in the example we consider.

We place ourselves back in the situation of Theorem 0.2, i.e., we fix a ring A, an element f ∈ A, and an f -adic
neighbourhood φ : A→ B. Since both B and Af are flat A-algebras, the fibre product Mod(Af )×Mod(Bf ) Mod(B)
is an abelian category with a natural ⊗-structure. Moreover, base changing defines the functor

F : Mod(A)→ Mod(Af )×Mod(Bf ) Mod(B)

which is easily checked to preserve the ⊗-structure. We will show that F is an equivalence; the full faithfulness was
established in Lemma 2.4. First, we show that F has nice cocontinuity properties.

Lemma 3.3. The functor F is exact and commutes with arbitrary colimits.

Proof. The exactness follows from the A-flatness of Af and B, while the cocontinuity is a general fact about tensor
products. �

Next, we verify that objects in the category of glueing data admit a nice presentation in terms of actual A-modules.
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Lemma 3.4. Given an object (M1,M2, ψ) ∈ Mod(Af )×Mod(Bf )Mod(B), there exists aA-module P , an f∞-torsion
A-module Q, and a right exact sequence

F(P )→ (M1,M2, ψ)→ F(Q)→ 0

in the category Mod(Af )×Mod(Bf ) Mod(B).

Proof. Let (M1,M2, ψ) be as above. For an x ∈ M1, let nx be the minimal positive integer such that the image of
fnx · x in M1 ⊗Af

Bf ' M2 ⊗B Bf lifts to an element yx in M2. The choice of such a lift yx defines a morphism
F(A)→ (M1,M2, ψ) via fnxx on the first factor, and yx on the second factor. Thus, after fixing a lift yx of fnxx for
each x ∈M1, we obtain a morphism

⊕x∈M1
F(A)

T→ (M1,M2, ψ).

The first component of this map is surjective because f is a unit in M1. Thus, the cokernel is of the form (0, Q, 0) for
some Q ∈ Mod(B). Moreover, since Q ⊗B Bf = 0, we have Q ∈ Mod(B)[f∞]. By Lemma 1.5, it follows that
(0, Q, 0) ' F(Q) where second term is defined by viewing Q as an A-module in the obvious way. Thus, we obtain an
exact sequence

⊕x∈M1F(A)
T→ (M1,M2, ψ)→ F(Q)→ 0.

Since the functor F commutes with colimits (see Lemma 3.3), we can absorb the coproduct on the left to rewrite the
above sequence as

F(P )→ (M1,M2, ψ)→ F(Q)→ 0

with P ∈ Mod(A), and Q ∈ Mod(A)[f∞] as desired. �

We need the following abstract fact about abelian categories to finish the proof.

Lemma 3.5. Let F : A → B be an exact fully faithful functor between abelian categories A and B, and let A′ ⊂ A

be a full abelian subcategory of A. Assume that F induces an isomorphism Ext1A(a1, a2) → Ext1B(F (a1), F (a2))
when a1 ∈ A′ and a2 ∈ A (where the Ext groups being considered are the Yoneda ones). Further, assume that for
every object b ∈ B, there exist objects a ∈ A, and a′ ∈ A′ ⊂ A, and a right exact sequence

F (a)→ b→ F (a′)→ 0.

Then F is an equivalence.

Proof. It suffices to show that F is essentially surjective. Given b0 ∈ B, choose a0 ∈ A and a′0 ∈ A′ and an exact
sequence

0→ b1 → F (a0)→ b0 → F (a′0)→ 0

where b1 ∈ B is the kernel of F (a0)→ b0. Applying the same procedure to b1, we can find a1 ∈ A, a′1 ∈ A′, and an
exact sequence

F (a1)→ b1 → F (a′1)→ 0.

Since the map b1 → F (a0) → b0 is 0, the same is true for the map F (a1) → b1 → F (a0) → b0. Thus, we obtain a
sequence

F (a′1) = b1/F (a1)→ F (a0)/im(F (a1))→ b0 → F (a′0)→ 0.

The object F (a0)/im(F (a1)) is isomorphic to an object of the form F (a2) for some a2 ∈ A as the functor F is fully
faithful and exact. Thus, we may rewrite the above sequence as

F (a′1)→ F (a2)→ b0 → F (a′0)→ 0.

The same reasoning as above shows that F (a2)/im(F (a′1)) is isomorphic to an object of the form F (a3) for some
a3 ∈ A. Thus, we obtain a short exact sequence

0→ F (a3)→ b0 → F (a′0)→ 0

which realises b0 as an extension of F (a′0) by F (a3). Since a′0 ∈ A′, we know that all such extensions lie in the
essential image of F by assumption. Thus, so does b0, as desired. �

We now observe that the proof is complete.

Proof of Theorem 0.2. Theorem 0.2 follows formally from Lemma 3.5, Lemma 3.4, Lemma 2.4, and Lemma 1.6. �
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