FORMAL GLUEING OF MODULE CATEGORIES

BHARGAV BHATT

Fix a noetherian scheme X, and a closed subscheme Z with complement U. Our goal is to explain a result of
Artin that describes how coherent sheaves on X can be constructed (uniquely) from coherent sheaves on the formal
completion of X along Z, and those on U with a suitable compatibility on the overlap. In fact, the main result is a
general (i.e., non-noetherian) local version, which we will state once we have the following definition in place.

Definition 0.1. Given aring A and an element f € A, aring map ¢ : A — B is said to be f-adically faithfully flat if
¢isflat,and ¢/f : A/fA — B/ fB is faithfully flat. The map ¢ : A — B is said to be an f-adic neighbourhood if it
is f-adically faithfully flat, and the induced map A/fA — B/ f B is an isomorphism.

We let Mod(A) denote the abelian category of A-modules over a ring A, while Mody,(A) denotes the subcategory
of finitely generated A-modules. The main result is:

Theorem 0.2. Let A be aring, and let f € A. Let ¢ : A — B be an f-adic neighbourhood. Then the natural map
F: MOd(A) — MOd(Af) XMod(Bf) MOd(B)
is an equivalence.

The category Mod(Ay) Xnod(s,;) Mod(B) appearing on the right side of the expression in Theorem 0.2 is the
category of triples (M, Ma, 1)) where M is an Ay-module, My is a B-module, and v : My ® 4, By ~ My ®p By
is a By-isomorphism. The natural map referred to in Theorem 0.2 is defined by F(M) = (M, Mp, can) where
can: My®a4, By ~ Mp ®p By is the natural isomorphism. We generally refer to objects of this category as “glueing
data.” The motivation behind this terminology is topological and explained in Remark 0.5.

A useful special case of Theorem 0.2 is when A is noetherian, and B is a completion of A at an element f. The
completion A — B is flat by basic theorems in noetherian ring theory, and the functor M +— M ® 4 B can be identified
with the f-adic completion functor when M is finitely generated. Thus, we obtain:

Corollary 0.3. Let A be a noetherian ring, let f € A be an element, and let A be the f-adic completion of A. Then
the obvious functors (localisation and completion) define an equivalence

Modig(A) ~ Modgg (A ) Xyjoq,,(4,) Modig(A)

Remark 0.4. The equivalence of Theorem 0.2 preserves the obvious ®-structure on either side. Thus, it defines
equivalences of various categories built out of the pair (Mod(A), ®), such as the category of A-algebras.

Remark 0.5. Theorem 0.2 may be regarded as an algebraic analogue of the following trivial theorem from topology:
given a manifold X with a closed submanifold Z having complement U, specifying a sheaf on X is the same as
specifying a sheaf on U, a sheaf on an unspecified tubular neighbourhood 7" of Z in X, and an isomorphism between
the two resulting sheaves along 7' N U. The lack of tubular neighbourhoods in algebraic geometry forces us to work
with formal neighbourhoods instead, rendering the proof a little more complicated.

Remark 0.6. We suspect that Theorem 0.2 follows formally from the existence of a good model structure for the flat
topology. Specifically, if one has a model structure where open immersions are cofibrations, then the square

Spec(Bf) —— Spec(B)
Spec(Ay) — Spec(A)

will be a homotopy pushout square. Evaluating the fpgc-stack Mod(—) on this pushout diagram would then allow us
to deduce Theorem 0.2 from usual fpqc-descent.



1. GENERALITIES

Fix aring A and an element f.

Definition 1.1. An A-module M said to be an f°°-torsion A-module if for each m € M, there exists an n > 0 such
that f™m = 0. The full subcategory of Mod(A) spanned by f°°-torsion modules is denoted Mod(A)[f°°], while the
subcategory spanned by f"-torsion modules is denoted Mod(A)[f™].

We first reformulate the definition of f-adic faithful flatness in terms of the category Mod(A)[f°°].

Lemma 1.2. Fix a ring map ¢ : A — B. Then the following are equivalent

(1) The map ¢ is f-adically faithfully flat.

(2) The map ¢ is flat, and the map Spec(B/ fB) — Spec(A/ f A) is surjective.
(3) The map ¢ is flat, and the functor M — M ® 4 B is faithful on Mod(A)[f].
(4) The map ¢ is flat, and the functor M — M ® 4 B is faithful on Mod(A)[f°].

Proof. (1) and (2) being equivalent is standard, while the equivalence of either with (3) follows by identifying f-torsion
A-modules with A/ f-modules, and using that

M@ABZM(X)A/fA/f@AB:M@A/f B/fB

for f-torsion A-modules M. The rest follows by devissage and the fact that M — M ® 4 B commutes with filtered
colimits and is exact. ]

Next, we prove a series of lemmas which tell us that the category Mod (A)[f°] is insensitive to passing to an f-adic
neighbourhood. First, we need a nice presentation.

Lemma 1.3. Any module M € Mod(A)[f°°] admits a resolution K. — M with each K; a direct sum of copies of
A/ f™ for n variable.

Proof. For any M € Mod(A)[f°°], there is a canonical surjection
BmemA/f'm = M =0

where n,,, is the smallest positive integer such that "~ - m = 0. The kernel of the preceding surjection is also an
f°°-torsion module. Proceeding inductively, we construct a canonical resolution of M by A-modules which are direct
sums of copies of A/ f™ for variable n, as desired. O

Next, we show that passing to f-adic neighbourhoods does not change f°°-torsion modules.

Lemma 1.4. Let ¢ : A — B be an f-adic neighbourhood. For any module M € Mod(A)[f°°], the natural map
M — M ® 4 B is an isomorphism.

Proof. First assume that M € Mod(A)[f]. In this case, M is an A/ f-module. Hence, we have an isomorphism
M®s B~ M®A/f B/fB o~ M®A/fA A/fA ~ M

proving the claim. The general case follows by devissage. Indeed, using the isomorphism A/fA ~ B/ fB and the
flatness of A — B, one shows that A/ f" A ~ B/ "B for all n > 0. By the same argument as above, it follows that
for any A/ f"-module M, the natural map M — M ® 4 B is bijective. Since any M € Mod(A)[f°°] can be written
as a filtered colimit of A/ f™-modules for variable n, the claim follows from the fact that tensor products commute
with colimits. |

We can now show that the category Mod(A)[f°°] does not change on passing to an f-adic neighbourhood.

Lemma 1.5. Let ¢ : A — B be an f-adic neighbourhood. Then the functor M — M ® 4 B defines an equivalence
Mod(A)[f>°] — Mod(B)[f].

Proof. We first show full faithfulness. In fact, we will show that the natural map

Homyu (M, N) — Homp(Mp, Ng)
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is an isomorphism if M or N is f°°-torsion. When M is finitely presented, this follows from Lemma 1.4 once we
observe that the formation of Hom 4 (M, N') commutes with flat base change on A. In general, we write M as a filtered
colimit colim; M; where each M, is finitely presented, and then use the following sequence of isomorphisms:

Homyu(M,N) = Homa(colim; M;, N)
= limHomyu(M;, N)
= hmHomB(Mi7B7NB)

= HOHlB(COhmi Mi7B7NB)

= HOHIB(MB, NB)
where the third equality uses the finitely presented case, while the last one uses the commutativity of M — M ®4 B
with filtered colimits. In particular, the functor Mod(A)[f>°] — Mod(B)[f°°] is fully faithful.

For essential surjectivity, we simply note that for any N € Mod(B)[f°°], the natural map N ® 4 B — N is an
isomorphism by Lemma 1.4, d

We can improve on the full faithfulness of Lemma 1.5 by showing that Ext-groups whose source lies in Mod(A)[f°°]
are insensitive to passing to f-adic neighbourhoods as well.

Lemma 1.6. Given M € Mod(A)[f°°] and N € Mod(A), the natural map
Ext’y(M,N) — Extz (Mg, Ng)
is an isomorphism for all 1.

Proof. We prove the statement by induction on ¢. The case ¢ = 0 was proven in the course of Lemma 1.5. For larger
i, using Lemma 1.3, one can immediately reduce to the case that M = A/f™ for suitable n. In this case, we argue
using a dimension shifting argument; the failure of f to be regular element of A forces us to introduce some derived
notation. Let K denote the two-term complex

Ala
In the derived category D(Mod(A)), there is an exact triangle of the form
K — A/f*[=1] = Alf"[1] = K[1]
where A[f"] is kernel of multiplication by f™ on A. Applying Ext’(—, N) then gives us a long exact sequence
LExt'TUA[fM), N) = Ext' TN (A/f N) — Exty (K, N) ...

Induction on i then reduces us to verifying that Ext’ (K, N) ~ Ext’;(Kp, Ng) for all 4. The definition of K gives
us an exact triangle

A-1]—-K—>A54
where the boundary map ¢ is identified with f™, up to a sign. Using the projectivity of A, we see that ExtiA(K ,N)=0
fori > 1, and for ¢ < 1 there is a short exact sequence

0 — Ext’,(K, N) — Hom(A, N) &5 Hom(4, N) — Ext, (K, N) — 0.
Hence, we may identify
Ext)(K,N) = N[f"] and Ext4(K,N)= N/f"N.
The formation of the groups Extfg(K , N) clearly commutes with base changing along A — B. On the other hand,
since M ~ M ® 4 B for any f"-torsion A-module (see Lemma 1.4), the right hand side of the preceding equalities
does not change on base changing along A — B. Thus, it follows that
ExtYy (K, N) ~ Exty(Kp, Ng)
as desired. ]
Lastly, we prove a couple of facts concerning the behaviour of f-torsionfree modules.

Lemma 1.7. Let M be an A-module without f-torsion, and let ¢ : A — B be an f-adically flat ring map. An element
m € M is divisible by f in the A-module M if and only if the same is true form ® 1 € M ® 4 B in the B-module
M ®4 B.



Proof. By hypothesis, there is a short exact sequence

0— ML M~ M/fM — 0.

Assume m € M is not divisible by f. Thus, the corresponding element in M/ f M is not zero. By the faithful flatness
of A/fA — B/ fB, the resulting elemnt of M/ fM ®4 B~ M ®4 B/f(M ® B) is also non-zero, which implies
the result. |

Lemma 1.8. Let M be an A-module without f-torsion. Then the natural map M — My is injective.

Proof. The kernel of M — My is spanned by elements m € M satisfying f™m = 0 for some n > 0. The hypothesis
on M and an easy induction on n imply that m = 0. ]

2. THE FULL FAITHFULNESS

In this section, we establish the full faithfulness of the functor F of Theorem 0.2. Like in the previous section, we
fix the ring A and the element f under consideration. First, we show that an object in Mod(A)[f°°] is determined by
the glueing data it determines.

Lemma 2.1. Let M be an f°°-torsion A-module. Let ¢ : A — B be an f-adic neighbourhood. Then the natural map
M — Mf X]ijf Mp
is an isomorphism.

Proof. The hypothesis implies that My = Mp, = 0. It then suffices to check that M ~ Mp, which follows from
Lemma 1.4. 0

Next, we show that an f-torsionfree module is determined by the glueing data it determines.

Lemma 2.2. Let M be an A-module without f-torsion, and let ¢ : A — B be an f-adically faithfully flat ring map.
Then the natural map

M — Mf XMBf Mp
is an isomorphism.
Proof. As M has no f-torsion, the same is true for M ® 4 B. Thus, the vertical maps in the diagram
M —— Mp
Mf E— MBf

are injective. We may therefore view M as being an A-submodule of M, and similarly for Mpg. It follows then that
the map M — My x Ms, Mg is injective. For surjectivity, let (x,y) € My x Ms, Mp be an element. Then there
exists an n such that f"z = m € M. The image of m in Mp agrees with f™y as both these elements have the same
image in Mp,. Thus, the element m is divisible by f" in Mp. By Lemma 1.7, the element m € M is divisible by f"
in M itself. Thus, we may write m = f"x’. Since f acts invertibly on My, it follows that x = x’ € My, and thus the
element z € M actually comes from M. One can then easily check that the image of = 2’ in Mp agrees with y
(as the same is true in Mp,). Thus, the element ' € M maps to (,y) as desired. ]

Combining the previous two cases, we verify that arbitrary modules are determined by their glueing data.
Lemma 2.3. Let M be an A-module, and let ¢ : A — B be an f-adic neighbourhood. Then the natural map
M — Mf XMBf MB

is an isomorphism.



Proof. Given an A-module M, let T C M denote its f°°-torsion. Then we have an exact sequence
0—-T—-M—>N-—=0

with N = M/T without f-torsion. It is also easy to see that the functor M +— My X Mp, Mp is left exact, i.e.,
preserves finite limits. Thus, we may apply it to the preceding short exact sequence to obtain a commutative diagram

0 T M N 0

; | ]

OHTf XTBf TBHMJC XMBf MBHNJC XNBf NB

with exact rows. The map a is an isomorphism by Lemma 2.1, while the map c is an isomorphism by Lemma 2.2. An
easy diagram chase then shows that b is also an isomorphism, as desired. |

Using the preceding results, we can prove the full faithfulness of J.
Lemma 2.4. Let M and N be two A-modules, and let ¢ : A — B be an f-adic neighbourhood. The natural map
a:Homu (M, N) ~ Homa,(My, Ny) XHomp , (Ms ,,Ns ) Homp(Mp, Np)
is an isomorphism. Thus, the functor J is fully faithful.

Proof. The injectivity of a immediately follows from Lemma 2.3. Conversely, given maps gy : My — Ny and
gB : Mp — Np defining the same map over B, we obtain an induced map g : M — N via Lemma 2.3. Subtracting
the map g induces from gy and g, we may assume that both g, and gp induce the O map M — N. It suffices to show
that in this case g and gp are both 0. However, this is clear since both M and Mp are generated by M.

]

3. ESSENTIAL SURJECTIVITY
We first recall the general definition of a fibre product of categories.

Definition 3.1. Given a diagram
A

|

B——C

of categories, we define the fibre product A X e B to be the category of tripes (a, b, f) where a € A, b € B, and f is
an isomorphism in € between the images of a and b; morphisms are defined in the obvious way.

Remark 3.2. In the situation considered above, the fibre product A X B inherits properties as well as structures
present on A, B, and C that are preserved by the functors. For example, if all three categories are abelian ®-categories
with the functors being exact and ®-preserving, then the fibre product A x ¢ B also inherits the structure of an abelian
®-category; this will be the case in the example we consider.

We place ourselves back in the situation of Theorem 0.2, i.e., we fix a ring A, an element f € A, and an f-adic
neighbourhood ¢ : A — B. Since both B and Ay are flat A-algebras, the fibre product Mod(Ay) X noa(s,) Mod(B)
is an abelian category with a natural ®-structure. Moreover, base changing defines the functor

F : Mod(A) — Mod(A) Xea(s,) Mod(B)

which is easily checked to preserve the ®-structure. We will show that J is an equivalence; the full faithfulness was
established in Lemma 2.4. First, we show that F has nice cocontinuity properties.

Lemma 3.3. The functor F is exact and commutes with arbitrary colimits.

Proof. The exactness follows from the A-flatness of A; and B, while the cocontinuity is a general fact about tensor
products. (]

Next, we verify that objects in the category of glueing data admit a nice presentation in terms of actual A-modules.
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Lemma 3.4. Given an object (My, Ma, 1)) € Mod(Af) X noa(s,)Mod(B), there exists a A-module P, an f>-torsion
A-module Q, and a right exact sequence

F(P) — (M1, Ma,v) - F(Q) =0
in the category Mod(Ay) Xod(B,;) Mod(B).
Proof. Let (M, My, 1) be as above. For an x € My, let n, be the minimal positive integer such that the image of
[ xin M; ®4 ; By ~ My ®p By lifts to an element y,. in M>. The choice of such a lift 3, defines a morphism
F(A) — (My, My, 1) via f™ 2 on the first factor, and y, on the second factor. Thus, after fixing a lift y,, of f™=x for
each x € M, we obtain a morphism

Daerr, F(A) 5 (My, Ma, ).

The first component of this map is surjective because f is a unit in M;. Thus, the cokernel is of the form (0, @, 0) for
some Q € Mod(B). Moreover, since Q ®p By = 0, we have Q € Mod(B)[f*°]. By Lemma 1.5, it follows that

(0,Q,0) ~ F(Q) where second term is defined by viewing @ as an A-module in the obvious way. Thus, we obtain an
exact sequence

T
Drer, F(A) = (My, M2, ) — F(Q) — 0.
Since the functor & commutes with colimits (see Lemma 3.3), we can absorb the coproduct on the left to rewrite the

above sequence as
F(P) — (M1, M2,¢) = F(Q) — 0
with P € Mod(A), and Q € Mod(A)[f°°] as desired. O

We need the following abstract fact about abelian categories to finish the proof.

Lemma 3.5. Let F : A — B be an exact fully faithful functor between abelian categories A and B, and let A’ C A
be a full abelian subcategory of A. Assume that F induces an isomorphism Ext} (a1, as) — Ext3 (F(ay), F(ag))
when a1 € A’ and ay € A (where the Ext groups being considered are the Yoneda ones). Further, assume that for
every object b € B, there exist objects a € A, and o' € A’ C A, and a right exact sequence

F(a) = b— F(d') — 0.

Then F' is an equivalence.

Proof. Tt suffices to show that F' is essentially surjective. Given by € B, choose ag € A and aj € A’ and an exact
sequence
0 — by — F(ag) = by — F(ay) — 0
where by € B is the kernel of F'(ag) — bg. Applying the same procedure to by, we can find a; € A, a} € A’, and an
exact sequence
F(a1) — by — F(a}) — 0.
Since the map by — F'(ag) — bo is 0, the same is true for the map F'(a1) — by — F(ag) — by. Thus, we obtain a
sequence
F(a}) =b1/F(a1) — F(ag)/im(F(a1)) — by — F(ag) — 0.
The object F'(ap)/im(F(aq)) is isomorphic to an object of the form F'(as) for some as € A as the functor F is fully
faithful and exact. Thus, we may rewrite the above sequence as

F(a}) — F(a2) — by — F(ay) — 0.

The same reasoning as above shows that F'(as)/im(F(a})) is isomorphic to an object of the form F'(a3) for some
as € A. Thus, we obtain a short exact sequence

0 — F(az) = by — F(ap) — 0

which realises by as an extension of F(ag) by F(as). Since aj € A’, we know that all such extensions lie in the
essential image of F' by assumption. Thus, so does by, as desired. ]

We now observe that the proof is complete.

Proof of Theorem 0.2. Theorem 0.2 follows formally from Lemma 3.5, Lemma 3.4, Lemma 2.4, and Lemma 1.6. O



