COUNTING POINTS ON IMAGES

BHARGAV BHATT

ABSTRACT. Let f: X — Y be a morphism of varieties over a finite fidlg. The goal of this note is to prove
rationality of the generating function counting the image of the rational poin® ohder f. More precisely,
we show that this function lies in th@-subspace of[¢] spanned by rational functions having “geometric
type.” In particular, the zeroes and poles of the associated zeta functigr/ée# numbers. These results are
well-known to the experts.

1. INTRODUCTION

Fix a prime numbep, and a finite extensiol, of the prime fieldF,,. Our goal in this note is to prove
the theorem mentioned in the abstract. Hence, we make the following definition:

Definition 1.1. Let f : X — Y be a morphism of finite typ&',-schemes. We define the s¢t¥',») =
im(X (Fgn») — Y (F,»)) forall n > 1. Organising this data into a formal power series, we define

2(fit) = #f(Fqn)-t" € Q[t].

n>1
We also sef(Y,t) = Z(id, t) whereid : Y — Y is the identity morphism.

The serie (Y, t) is the logarithmic derivative of the zeta functionlof We prefer working withizZ (Y, ¢)
(andZ(f,t)) instead of the associated zeta function because of the direct connection with point counting.
Our main theorem is th&t( f,t) is a rational function; we use the rationality fY’, ¢) for a varietyY". In
fact, we prove a more precise statement locating the zeroes and poles of the associated zeta function:

Theorem 1.2.Letf : X — Y be a morphism of finite typgé,-schemes. Theh(f, ¢) is a rational function.
Moreover, there exist finite tyde,-schemes’y, . .., Z;, overF, rational numbersuy, ..., a; € Q, and a
rational polynomialg(t) € Q[t] such that

k
Z(ft) = g(t) + Z a;iZ(Z;, t).
i=1

The outline for the paper is as follows. We first study some elementary properties enjoyed by the functions
Z(f,t) in §2. Next, we prove Theorem 1.2 in the case tfias finite in §3, the crucial case being that of
finite étale covers; Johan de Jong pointed out that this case can also be deduced from Grothendieck’s work
on the rationality ofL-series associated to certain non-constaatlic sheaves. Lastly, we prove Theorem
1.2 in§4 in the general case by using the Weil conjectures on geometrically irreducible varieties to reduce
to the case studied k8.

Remark 1.3. Itis tempting to try to prove Theorem 1.2 by a sheaf theoretic approach. One way to implement
this strategy is to construct a compl&xof constructible/-adic sheaves of geometric origin d6 whose
stalk atz € X (Fy») has Frobenius trace given by the size of the fibre:

1
# (@) (Fgn)

1

Tr(Frob, | ¥5) =



We do not how to do this In fact, as stated, this idea is not feasible because the existence of such a sheaf
would give rationality for the zeta function associatedtd, ¢), which we know is true only up to a factor
of an exponential of a rational polynomial (see Example 2.8).

Acknowledgements. We thank Mircea Mustatfor asking the question addressed in this note.

2. PRELIMINARIES ON Z-FUNCTIONS

The purpose of this section is to collect some elementary properties that the furictibng satisfy.
First, we record the relation betwe&mnd the zeta function.

Proposition 2.1. LetY be anF,-scheme of finite type. Then we have an equality of formal power series:

- los(Cye, (1)) = 2(Y,1)

Proof. Recall that the& function is defined via

_ #Y (Fgn) o
Gyyr,(t) = EXP(Z ! )
n>1
Taking logarithmic derivatives and multiplying hygives the desired identity. O

Next, we explain the topological invariance off, t).

Proposition 2.2. Let f : X — Y and f’ : X’ — Y’ be two morphisms of finite tyde,-schemes. If
gx : X — X'andgy : Y — Y’ are homeomorphisms commuting wjtland f’ in the obvious sense, then

Z(f,t) = Z(f",1).

Proof. The equality follows from the fact that the setBf.-rational points of any',-scheme is invariant
under homeomorphisms. O

In a slightly orthogonal direction, we point out thatf, ¢) is invariant under dominating by any map
that induces surjections on rational points; we produce such maps in Proposition 4.9.

Proposition 2.3. Let f : X — Y andg : X’ — X be two morphisms of finite ty[&,-schemes. Assume
thatg(Fg») = X(F4»). Then

Z(f,t) = 2(f o g,t).
Proof. The assumption implies thg{(F ) = (f o g)(F,») for all n, whence the claim. O

Next, we explain two “constructibility” properties enjoyed Byf, ¢t). The first of these allows us to cut
the target off into pieces, and is extremely useful in the sequel.

Proposition 2.4. Let f : X — Y be a morphism of finite type,-schemes. [¥; andY; are locally closed
subschemes a&f withY = Y; U Y5 as sets, then

2(f,t) = Z(flf-1v1)> 1) + 2(f |1 (va)5 1) — 2(fl -1 (vinya)» £)-
Proof. This follows from intersecting the inclusion-exclusion identity
HY (Fgn) = #1(Fyn) + #Y2(Fgn) — #(Y1 N Y2) (Fyr)
with f(Fgn). O

The second constructibility property allows us to break the sourgeinfa predictable manner. We do
not actually use this identity.

INote, however, that the complgX R f1Q. on X does have a stalk whose Frobenius traces are inverses of the desired ones.
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Proposition 2.5. Let f; : X; — Y and f2 : Xo — Y be morphisms of finite typE,-schemes. Let
fu: X1uUXs —Yandf,: X1 xy Xo — Y denote the morphisms obtained from fady taking disjoint
unions and fibre products, respectively. Then we have an equality

Z'(fuvt) = Z(fla t) + Z’(f?)t) - Z’(fﬂvt)
Proof. The natural diagram of finite sets

fﬂ(Fqn) — fl(Fq”)

P
f2(Fq") - fu(Fq")
is a pushout diagram witta andb injective. The claim follows by counting cardinalities. O

Question 2.6. The functionsZ( f, t) enjoy many “motivic” properties as discussed above. Hence, it seems
reasonable seek a motivic explanation for Theorem 1.2. In particular, can one, a priori, predict the Weil
numbers occuring in the associated zeta function?

Next, we introduce a definition to facilitate notational brevity: we single out the subsp&¥je p§panned
by functions of type occuring in the conclusion of Theorem 1.2.

Definition 2.7. A power serieg; € Q[t] hasg-geometric typdor simply geometric typéf ¢ is fixed) if it
lies in theQ-linear subspace dR[¢] generated by the polynomial rif@[¢] and the serie& (W, t) asW
runs through finite typ&,-schemes.

By the rationality of the zeta function and Proposition 2.1, any power series having geometric type is a
rational function. Hence, Theorem 1.2 can be reformulated as stating(tfia has geometric type for any
morphismf of finite typeF,-schemes. We close this section with an example.

Example 2.8. We give an explicit example of a mgp: X — Y with the property tha(f,¢) — Z(Y, )

is a non-trivial rational polynomigj(t). It follows then that the zeta function associated tdiffers multi-
plicatively from the zeta function df by e/ 9(), In particular, it is not a rational function. For the example,
letY” = Spec(F,), and letX = A, — A'(F,). Then we havé\(f,t) — Z(Y,t) = t. One can also produce

a smooth projective geometrically irreducible example by simply picking such a variety without a rational
point; this can be done with curves of high genus over small finite fields (by a Bertini argument).

3. FANITE MORPHISMS

Our goal in this section is to explain the proof of Theorem 1.2 in the special case that theiatagte
and surjective. The bulk of the work lies in verifying the claims wifeis finite étale; the rest is handled
by devissage. To deal with the case of firétale covers, we use some formal properties about classifying
stacks of finite groups over finite fields. Hence, we review the relevant facts about these obj&cls in
Having done that, we prove Theorem 1.2 in the case of fatdée maps 3.2, and deal with general finite
maps ing3.3.

3.1. Classifying stacks of finite groups over finite fields.In this section we introduce an equivalence
relation called m-equivalence (m for monodromy) on the points of the stacks in question, and study its
effect on finite field valued points. The relevant definitions are:

Definition 3.1. Let Y be a noetherian connected schemeddbe a finite group, and lef; : X; — Y
and f» : Xo — Y be twoG-torsors overY. We say thatf; and f, are equivalentif the monodromy
representations; (X) — G associated tg; and f, are conjugate to one another. We say tfhaand fo
arem-equivalentf the images of the monodromy representatian§X) — G associated tg; and f, are
conjugate to one another.
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The notion of equivalence introduced in Definition 3.1 coincides with isomorphisms for torsors and is
standard. On the other hand, the m-equivalence relation introduced here is a little stranger. We use this
notion to define and count certain loci in a family Gftorsors (see Theorem 3.8). Whéh = Spec(F,)

(which is the only relevant case for applications), there is an explicit descriptions of m-equivalence classes:

Proposition 3.2. Let X = Spec(F,) be the spectrum of a finite field, |&t be a finite group, and let
B(G)(X) denote the groupoid d@f-torsors onX.

(1) The set of equivalence classag B(G)(X)) of G-torsors is in bijective correspondence with the
setGonj Of conjugacy classes itv. The setr(B(G)(X), g) of automorphisms of &'-torsor
corresponding to an elemegtis given by the centralizelent(g).

(2) Given two elementg,, g € G, theG-torsors corresponding to the conjugacy classeg;cind g-
are m-equivalent if and only if the subgroups they generate are conjugate, i.e., one has

whereh € G is some element, andis some integer coprime to the order @f (and hencey;). In
particular, the m-equivalence relation respects the automorphism groups.

Proof. The fundamental group of is identified withZ using the geometric Frobenius element> x~9.
This description allows us to identify the groupal®{G)(X) with the groupoidMap(B(i),B(G)) of
morphismsB(Z) — B(G). A model for this groupoid is provided by a category with objectsgt,;, and
automorphism groupSent(g) at an object corresponding o this description implies the first half of the
proposition.

An elementy € G determines a homomorphisfh—> G whose image is the cyclic subgroup generated
by g. Hence, two elementg, and g, determine m-equivalent torsors precisely when the subgroups they
generate are conjugate. This last condition is easily seen to be equivalent to the condition in statement of
Proposition. Lastly, the claim about automorphism groups being respected is simply the observation that
Cent(g) depends only on conjugacy class of the subgroup generated by O

Warning 3.3. Proposition 3.2 describes m-equivalence classes-tdrsors over finite fields in terms of
cyclic subgroups of7 up to conjugation. In the sequel we will often abuse notation by identifying an m-
equivalence class of@-torsor over a finite field in terms of an element®fepresenting a cyclic subgroup

in the m-equivalence class.

Remark 3.4. Fix a finite groupG. By Proposition 3.2, the m-equivalence relatiil (Spec(F,), G) cor-
responds to “conjugacy of group generated” under the identification of the conomology sét.withThe

gap between m-equivalence and conjugation-equivalence depends on the flavour of finite groups involved.
For G a cyclic group, conjugating an element does nothing, while m-equivalance remembers only the or-
der of the element. On the other hand, for symmetric groups, m-equivalence and conjugation-equivalence
coincide. For applications to Theorem 1.2, it suffices to work with symmetric groups.

We close this section with two examples illustrating the utility of the formalism surroun@{g).

Example 3.5. One can use classifying stacks of finite groups over finite fields to prove group theoretic
identities sometimes. For example, for a fixed finite grétipthe groupoidB(G)(F,) is identified with

the groupoidMap(B(Z), B(G)) by Proposition 3.2. One model for this groupoid has objectsgt; with

the set of automorphisms of the conjugacy class associated to an elebreng the centralizeCentg(g).
Counting points in the groupoid sense, we see that

LBG)F)= S

el #Centc(g)
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On the other hand, by the Lefschetz trace formula an@faeyclicity of B(G), we see thagt B(G)(F,) =
1. Hence, we obtain the well-known identity

1
=3
Wil #Centg(g)
Of course, using the Lefschetz trace formula and algebraic stacks seems overkill for a simple group theory
formula, but we believe it illustrates a useful organisational principle.

Example 3.6. We explain how to prove that the Brauer group of a finite field vanishes using the formal-
ism of classifying spaces of group-stacks, i.e., véitetacks. Letu, be the group scheme afroots of

unity over a finite fieldF', with » prime top. Then the2-groupoid BB(u1,,)(F ) is the simplicial abelian
group associated to the compléx<;RI'(Spec(Fy), 1)) [2] via the Dold-Kan correspondence. Hence, its
groupoid-cardinality is given by the formula

#HI(SPGC(Fq)a fin)
#HO(Spec(Fy), tin)

(1) #BB (1) (Fy) = >

e H?(Spec(Fq),pn)

Using the Kummer sequence and Hilbert’s theorem 90 showsth@pec(F,), 1, ) andH! (Spec(Fy), 1)
are the kernel and cokernel of theth power mag'; — F; of the finite abelian groujp’;. Hence, each of
summands on the right hand side of formula (1) has Eizfich gives

#BB(n)(Fq) = > L.
YEH?(Spec(Fq),pn)
On the other hand, th&stackBB(un)F—q is Q-acyclic. Hence, by the Lefschetz trace formula, it has
cardinality1. Thus, we see that
H2(Spec(Fy), i) = 1
which recovers the well-known fact that the Brauer group of a finite field vanishes pufotsion.
3.2. The étale case.We now prove Theorem 1.2 for fini&tale morphisms. The idea is to first deal with
the Galois case where we formulate and prove a more general statement than what is required. Using this

extra generality, we reduce the general case to the Galois case. To formulate the more general statement in
the Galois case, we define certain loci on the base of a family-tafrsors as follows.

Definition 3.7. Let f : X — Y be afiniteétale cover that is &-torsor for a finite groug~. For any element
g € G, we define

Y (Fyn)y = {y € Y(F4n) | The G-torsorf ' (y) has m-equivalence clag$.
We assemble these sets into a generating function
Lfgrt) = ) #Y (Fn)g - " € Q[1].
n>1

Note thatZ(f.,t) = Z(f,t) wheree € G is the identity element. Moreover, one can easily see that

> Z(fgt) = 2V, 1)

where the sum takes place over all m-equivalence classes. In particular, the sum on the left has geometric
type. The content of Theorem 1.2 for finite Galois covers is the statemerit tfiat) has geometric type.
We will show more generally thaachof the summands of the sum on the left has geometric type.

Theorem 3.8. Let G be a finite group, ang € G be an element. For ai',-schemeY” and aG-torsor
f: X — Y, the formal power serie3( f,, t) has geometric type.
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Proof. We will show the rationality ofZ(f,,t) by induction on the orded of g (as noted in Proposition
3.2, the order of an element depends only on its m-equivalence class). To start the inductica,ddte
the identity element. In this case, the sEt&» ). are precisely the sef§F,-). Sincef is G-equivariant,
there is a natural surjectiali (Fy»)/G — f(F4»). This map is also injective sincéis aG-cover. Hence,
we find that

#Y (Fgn)e = #f (Fqn) = #(X(Fqn)/G).

Sincef is étale, the&-action onX (F,») has no fixed points, which shows that

#Y (Fgr)e = #f(Fgr) = #(X (Fgn)/G) = #X;G)

Thus, we obtain
1
2fet) = g 2X0)
showing thatZ( f., t) has geometric type.

Proceeding inductively, fix an elemegte G of orderd, and assume th&t(f,t) is known to have
geometric type for allm-equivalence classes represented by elements G with smaller order. Let
¢ : B(Z/d) — B(G) be thel-morphism of algebraic stacks (ové) defined byg. This morphism is
representable by algebraic spaces becalisethe order ofg. The G-torsor f can be viewed as a map
¢ Y — B(G). Taking fibre products, we obtain a cartesian diagram

Fib(¢,iy) := B(Z/d) % p) Y —> B(Z/d)

P

Y B(G).

Sincei, was representable, the sta€i (¢, i) is actually an algebraic space. The definition of fibre prod-
ucts allows us to identify the s€ib(¢, i,)(F4») with the discrete category 8ftuples(a, b, ¢) where

e a € B(Z/d)(Fy) is arational point oB(Z/d).
e b e Y(F,) is arational point oft".
e c:ig(a) = ¢(b) is an isomorphism between the images@indb in B(G)(Fyn).
In particular, there is a natural composite map
7 ¢ Fib(¢, ig) (Fyr) — mo(B(Z/d)(Fyn)) = H'(Spec(Fyn), Z/d) — H'(Spec(F ), Z/d)/ ~

where ‘~” denotes the m-equivalence relation &t (Spec(F»),Z/d). The groupH(Spec(Fyn),Z/d)
can be identified witlZ /d with the element in the latter corresponding to the non-trivial deg#ieextension
of F,». Under this identification, the set of m-equivalence classés'¢Spec(F» ), Z/d) is identified with
the set of subgroups @&/d which, in turn, can be viewed as the set of divisoa$ d (with i corresponding
to the unique subgroup of ord&t Hence, we can use the preceding map to write

#Fib(¢,iy)( = !

i|d

A little bit of thought reveals now that=!(i) can be identified with the set

(Y(Fqn)gd x Centc(g )) /Centz/d(d)

The centralizeCentz/d(g) isZ/d asZ/d is abelian. Hence, after reindexing with= %l, we find

#Fib(¢,i)( Z #Y (Fon).,i #CQHC;G(QJ).
jld
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Since the preceding equality holds for allwe obtain an equality of formal power series

o #Centg(g’)
2(Fib(6, i), 1) = D T S 2y 1)
Jjld
By induction, we may assume thatf,; , t) has geometric type fgi| d with j # 1. Stratifying the algebraic
spacekFib (¢, i4) by finite typeF,-schemes and using Proposition 2.4 shows R&tib(¢, i,), t) also has

gemetric type. As the coeﬁicielﬁce‘gi‘?(g) of Z(f4,t) occuring on the right hand side of formula above is
non-zero, it follows tha( f,,¢) has geometric type. O

Question 3.9. Can Theorem 3.8 be refined to count equivalence classes rather than m-equivalence classes?
We do not know if the corresponding generating function has geometric type, or is even rational.

We now show how to prove Theorem 1.2 in the case of figitde morphisms by reducing to the Galois
case and using Proposition 3.8.

Corollary 3.10. Let f : X — Y be a finiteétale cover. Then the formal power serigs, t) has geometric
type.

Proof. By Proposition 2.4, we may assume thfais surjective and that” is connected. Led denote the
degree off, and letX; denote the symmetric group @helements. The majp can be viewed as a twisted
form of the of mapud_ ;Y — Y, and thus defines an,-torsor overY. More explicitly, theX;-torsor

¢ : X' — Y corresponding tg is the map taking the Galois closure ffin the fibres (see Construction
3.11). For any mapy : Spec(F4») — Y, the pullback ofX, of X alongy has aF.-rational point

if and only if conjugacy class ix; determined byX, can be represented by a partitiondtontaining

1 as one of its entries. Since conjugacy classes jrcoincide with m-equivalence classes, we see that
X, — Spec(Fy») has a section if and only if the m-equivalence clas&((f— Spec(F,») is represented
by a partition which contain as one of its entries. Thus, we obtain an identity

2(ft)= > Z(¢pt)

pE (Zd)conj,
p fixes a point.

where the sum takes place over all conjugacy clagseshe symmetric group corresponding to a partition
containing al. By Theorem 3.8, the right side has geometric type, and thus so does the left side. [

We explain a construction used in the proof of Corollary 3.10: the Galois closure of a&fiaiéecover.

Construction 3.11. Let f : X — Y be afiniteétale degred cover. We will explain an inductive construc-
tion of the Galois closure of?. We define inductively a sequence BfschemesX (1), X(2), ..., X(d),
actions of¥); on X (j) — Y, and mapsﬁ;ﬁ : X (1) — X (i) xy X indexed byl < j < i as follows: set
X (1) = X with Al the diagonal map and the unigtig-action, and define

X(i)=X(i—1) xy X —UZJATH(X (i - 1)).

The schemeX (i) can be viewed as the subschemei-66ld fibre product of X over Y defined by the
complement of all the diagonals. With this intrepretation, the actiog;afn X (i) — Y is clear, while the
mapsA;'- are projection maps onto theth co-ordinate. Sincé is étale, all the mapA§ occuring above are
alsoétale. Hence, we compute easily thatj) — Y is afiniteétale cover of degreé (d—1)-- - --(d—j+1).
In particular, X (d) — Y is a finiteétale cover of degre# admitting an action oE;. All these constructions
are compatible with base changes¥nand an easy calculation then shows thgtl) — Y is actually an
Y.4-torsor for the naturaL; action onX (d). We call X (d) — Y the Galois closure ok — Y.

20ne could simply definé& (d) — Y as the space ovéf parametrisingl-distinct points in the fibres of, but we prefer the
inductive approach due to its computational utility.
-



Remark 3.12. We briefly indicate how one can use Theorem 3.8 to prove a version of the Chebotarev
density theorem for function fields. L&t/ K be a finite Galois extension with grodpof function fields in
one variable over the finite fiel®,, and letf : C;, — Ck be the corresponding map of smooth projective
curves ovelF,. We letUx C Ck be the complement of the discriminant gfand letU;, = Y (Ug); the
resulting mapf : Uy, — Uk is finite étale with group’y. For a closed point of Uk, we letArt;  x(z) be
the Artin symbol ofz in the groupG. If y is a closed point of/;, abovez, thenArt;, 7 (z) may be viewed
as the conjugacy class @ associated to a geometric Frobenius element gener@tig:(y)/x(x)). The
Chebotarev density theorem predicts that

L #{r e Un(By) [Artye(a) = {e}) 1

n=co #Uk (Fn) #G
Geometrically, the condition thatrt,, x (z) = {e} translates to the condition th#t ! () is a trivial G-
torsor. Hence, the limit occuring above may be rewritten as

#{r € Ux(Fgn) | Arty g (2) = {e}} . #Hz e Ur(Fg) | [~ (2)(Fgr) # 0}

= 1
e #Uk (Fpr) nebo #Uk (Fgn)
: #f(Fq")
1 e q 7
o0 #Ug (Fgn)

n—o #Uk (Fgn) #G
where the last equality used first step of Theorem 3.8 (the base case of induction). The geometric content of
Chebotarev is therefore the statement that the generating functions assoclateshtl/ - grow similarly.
This follows from standard theoremsétale cohomology: the Lefschetz trace formula and the Weil bounds
reduce us to showing that generating functions associated to the Galois represehtatioRs« F, F,, Q)
andHZ(Up, xg, F,4, Q) grow similarly. Poincare duality identifies both these representationsQyith 1),
and the claim follows.

3.3. The general finite case.We use the results ¢8.2 to handle arbitrary finite morphisms in the present
section. First, we deal with the flat ones.

Proposition 3.13. Let f : X — Y be a finite flat morphism of finite tyde,-schemes. Then the formal
power serie,(f,t) has geometric type.

Proof. We prove the claim by induction afim(Y"). By Proposition 2.2, we may assume thais reduced.
Let U C Y denote the largest normal open subschem& oand letZ be its complement. Sinc¥ is
reduced, the open subschenigs dense inY’, anddim(Z) < dim(Y'). By Proposition 2.4 and induction
on dimension, it suffices to show that f| -1y, t) is rational, i.e., we may assume thatis normal.

The mapf can then be factored ag % X’ "y with g purely inseparable, anfdgenerically separable.
SinceX — X' is a universal homeomorphism, we see th&F,.) = X'(F,») by Proposition 2.2. Thus,
after replacingX with X’ and f with h, we may assume that the mgpbeing considered is generically
separable. In this case, there is an open subscliénee Y with complementZ such thatf| ;-1 is
finite étale, andlim(Z) < dim(Y"). The desired claim now follows by induction using Proposition 2.4 and
Corollary 3.10. O

We can now handle arbitrary finite maps by devissage.

Theorem 3.14.Let f : X — Y be a finite morphism of finite tyd,-schemes. Then the formal power
seriesZ(f, t) has geometric type.

Proof. We proceed by induction atim(Y"). As in the first half of the proof of Proposition 3.13, we reduce
to the case that is normal. By generic flatness, there exists an open subschiem#&” with complement?
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such thatf| ;—1(yy is finite flat, anddim(Z) < dim(Y"). The claim now follows by induction on dimension
using Propositions 2.4 and 3.13. O

4. THE MAIN THEOREM

Our goal in the present section is to prove Theorem 1.2. We do so by first examining the case of geomet-
rically irreducible varieties ir§4.1, extending the preceding to familiess4.2, and then proving the main
theorem ing4.3.

4.1. Finding points on geometrically irreducible varieties. We show that geometrically irreducible vari-
eties over finite fields always have points after a sufficiently large field extension that depends only on the
topology of the variety. This result is well-known, but we include a proof for completeness.

Proposition 4.1. Let X be a geometrically irreducibl® ,-scheme of finite type of dimensidnand fix an
auxilliary prime/ different fromp. Then there exists a positive integey depending only on the compactly
supported/-adic Betti numbers oK such that for alln > ng, the setX (F,») is non-empty.

Proof. We fix an embedding: Q, — C that allows us to talk about archimedean absolute valuésadfc
numbers. By the Lefschetz trace formula, we have

X(Fyn) = Y (<1) Tr(Frob” | HA(Xg;. Qo))
>0
Artin-Grothendieck theory tells us the following:
e The groupsi; (Xs, Q) vanish fori > 2d.
e There is a natural isomorphism of representatiHrﬁé(XF—q, Q) ~ Qu(—d).
These facts allow us to rewrite the trace formula as

2d—1
X(Fqn) = qnd + Z a;
1=0

with a; being the signed trace of FrobeniusHﬁ](XF—q, Q). Hence X (F ) = 0 if and only if

2d—1
¢ =— Z a;.
=0
Deligne’s results give the inequality
jas| < bi(X) - q%
whereb;(X) = dim Hg(XF—q7 Q) is thei-th compactly supported Betti number &t Hence, ifX (F») =

@, then
2d—1 2d—1 2d—1 2d—1

q”d:—Zaig\Zai\S Z |ai| < sz(X)q%
=0 i=0 i=0 =0

As the left hand side grows much faster than the right side as a functiortioé preceding inequality exists
only for finitely many values fon once the Betti numbeis(X ) have been fixed. Picking an bigger than
any integer occuring in this finite set therefore does the job. d

Remark 4.2. The proof of Proposition 4.1 given above only uses the knowledge of the asymptotic number
of points on al-dimensional geometrically irreducible variety over a finite field (and a crude estimate for the
error term). Hence, it can be deduced from the Lang-Weil estimates which are considerably more elementary
than the full Weil conjectures used above.



Remark 4.3. The integemg provided by Proposition 4.1 can be chosen to be independent of the auxilliary
prime £. In fact, one can show that there are only finitely many possibilities for the compactly supported
(-adic Betti numbers ofX as the primef varies as follows: ifX is smooth and proper, then the Weil
conjectures show that its Betti numbers are independefitanfd the claim follows. IfX is proper but

not necessarily smooth, we can find a proper hypercovering bfy smooth projective varieties thanks to

de Jong’s theorems. Such a hypercover allows us to bounétdde Betti numbers o in terms of the

Betti numbers of a finite number of auxilliary smooth projective varieties. As Betti numbers are always
non-negative, the claim follows. In general, fixing a closed immersiaK afto a proper varietyX allows

us to bound the Betti numbers &f in terms of those o andX — X, whence the claim follows.

Remark 4.4. The bounds provided by Proposition 4.1 can be made quite explicit in specific examples.
For example, ifC' is a smooth projective curve of gengover F,, then we haveyy = 1, az = ¢, and
la1| < 2g,/q (in the notation of Proposition 4.1). Thus, we find tigt,) # 0 as long agg < ,/q.

4.2. Bounding homotopy types in a family. To extend the results ¢f.1 to families with geometrically
irreducible fibres, we need to ensure that only finitely homotopy types can occur as the fibres of such a
family. We show a truncated version that is sufficient for applications. Note that the required boundedness
also follows from the Lang-Weil estimates for points on varieties in an algebraic family, but we prefer giving

a self-contained and slightly more general argument.

Proposition 4.5. Let f : X — S be a proper morphism of noetherian schemes. Fix a prime numhber
invertible onS (assumed to exist), and an auxilliary positive integéthe “level”). Then there exists a flag
of closed subschem@és= Sy C S; C -+ C S; C S = S in S such that for any two geometric points
a,blyinginS; — S;_1, thek-truncated pro¢ homotopy types oX, and X, are canonically isomorphic.

Proof. The idea is to prove the general case by using alterations and hypercoverings to reduce to the case of
proper smooth morphisms, which follows from work of Artin and Mazur.

In more detail, since the statement to be proven is invariant under passage to finite covenseof
may assume thaf is integral. By noetherian induction, it suffices to show that there exists a single open
subschemé/ C S such that thek-truncated pra- homotopy type is constant in the geometric fibres of
Xy — U. Letn denote the generic point &f. After replacingS by a finite cover, we may use de Jong’s
theorems to constructiatruncated proper hypercovar. ,, — X, with eachX; , smooth and proper ovet
By spreading out, we can find an open subschémme S and ak-truncated proper hypercovef. ;; — X,
with eachX; ;y — U smooth and proper. By the Artin-Mazur theorem (see [AM69, Corollary 12.13]), the
pro-f homotopy types of the geometric fibres &f ;; — U are canonically isomorphic The canonicity
implies that face and degeneracy mapsXog; also induce the same maps at the level of premotopy
types of the geometric fibres. It follows then that théruncated pro homotopy types of the geometric
fibres of X;; — U are also canonically identified. O

Using Proposition 4.5, we bound the Betti numbers occuring in the family of algebraic varieties.

Corollary 4.6. Let f : X — S be a proper morphism of noetherian schemes. Fix a prime number
invertible onS (assumed to exist). Then there exists a flag of closed subschieme® c S, C -+ C

Sm C Sma1 = S in S such that for any two geometric poiniss lying in S; — S;_1, the complexes
RI'(X,, Z¢) andRT' (X3, Zy) are quasi-isomorphic.

Proof. The idea is to use the Artin-Grothendieck vanishing theorerataile conomology to recov®T' (X, Zy)
from thek-truncated pra-homotopy type of an algebraic variely for an appropriate choice éf and then
use Proposition 4.5.

SArtin and Mazur only state their theorem over discrete valuation rings, but one can reduce to that case easily. The canonicity
is not explicitly spelled out in the statement, but follows from the proof of the proper and smooth base change theetaieas in
cohomology.
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In more detail, fix an integer. By stratifying.S and working with the strata, we may assume that all fibres
of f have dimension the same dimensibrNow lets be a geometric point o§. Then Artin-Grothendieck
vanishing tells us thakl'(X,, Z/¢") € DI%2d(Z /™). Hence, we have an equivalence

(2) T>—-2d (RF(XS, Z/fn)[Qd]) =~ RF(XS, Z/En)[Qd]
On the other hand, for any integerwe have an identification
(3) DK (Tz_k(RF(XS, Z/e")[k;])) ~ Map(X,, K(Z /0", k)) ~ Map(r<x X5, K(Z/ 0", k)).

HereDK(-) denotes the Dold-Kan functor from non-positively graded cohomological chain complexes to
simplicial abelian groupsk (Z/¢", k) denotes the Eilenberg-Maclane space of degrem the abelian
groupZ/(", the spaceﬁ is the pro¢ homotopy type ofX g, the objectMap(-, -) denotes the mapping space
in the profinite homotopy category, amddenotes the Postnikov truncation functor (on either complexes or
spaces, with opposite conventions).

The upshot of formula (3) is that tHi&/ ¢"*-cohomology ofX, up to degreé, can be recovered from its
k-truncated homotopy typegk)/(\s. Using formula (2), we see that the entifi¢/"-cohomology ofX can

be recovered from th2d-truncated homotopy typegzd)/(\s whered = dim(X). The desired claim now
follows from Proposition 4.5 by taking an inverse limit over 0

Remark 4.7. Proposition 4.5 remains valid fér= oo, i.e., one can finitely partitio§ in terms of theentire
homotopy types of the fibres ¢t This follows more-or-less formally from Corollary 4.6, the fact that the
guasi-isomorphisms in question are induced by actual specialisation maps of homotopy types, the fact that a
non-abelian version of Corollary 4.6 is also true, and the Hurewicz theorem in topology. We omit the details
here as we don't need them.

We can now show the promised extension of Proposition 4.1 to families.

Proposition 4.8. Let f : X — Y be a proper surjective morphism of finite tyBg-schemes with geometri-
cally irreducible fibres. The(f,t) — Z(Y, t) is a polynomial with integer coefficients.

Proof. By Corollary 4.6, the Betti numbers of the fibres plare bounded as we vary the base point. By
Proposition 4.1, there exists an integgrdepending on the finite list of Betti numbers occuring in the fibres
of f such that for all. > ng and any rational point¢ € S(F,»), the fibreX, has anF ;.-rational point. It
follows thatZ(S,t) — Z(f,t) is an integral polynomial of degree at mast O

4.3. The proof of Theorem 1.2. In this section, we complete the proof of Theorem 1.2. In order to do so,
we first explain how one can always reduce to the case of normal schemes.

Proposition 4.9. Let X be a noetherian excellent scheme. Then there exists a normal sctieara a
finite surjective morphism : X’ — X such thatX’(k) — X (k) is surjective for any field.

Proof. We may assum« is reduced. Lef) = X, € X,,_1 C --- C X; C Xo = X be the flag of
reduced closed subschemes defined inductively by the following re&ipe: X andX; is the non-normal
locus of X; 1 given its reduced structure. We note thais finite by the noetherianness af. We setY;

to be the normalisation iX; of the open normal subscherbg = X; — X; 1 — X;. The induced map

m; » Y; — X; is surjective and, by excellence, finite as well. Moreover, by construction, the map on rational
pointsY; (k) — X;(k) restricts to a surjective map @n (k) for any fieldk. SettingX’ = L;Y; andr = U,

we obtain a finite surjective map: X’ — X which, at the level of:-rational points for a field;, induces a
surjective map ont®/; (k) for all i. SinceX = U,U;, the claim follows. O

We now finish the proof.
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Proof of Theorem 1.2Let f : X — Y be a morphism of finite typ#,-schemes. Assume first thtis
proper. In this case, we will prove the theorem by induction on the dimensidn @he case of dimension
0 that follows already includes all the essential steps of the argument.

Let's assume thatim(Y') = 0. By Propositions 4.9 and 2.3, we may assume fhas normal. Let

xLy 2y
be the Stein factorisation gf. The schemé&™ being reduced is the spectrum of a product of finite fields
by finiteness ofy. By the normality ofX, the definition of the Stein factorisation, and the perfectness of
finite fields, we see that all fibres ¢f are geometrically irreducible. By Proposition 4.8, we conclude that
['(Fgn) = Y'(Fyn) for all n sufficiently large. HenceZ(f,t) — Z(g,t) is an integral polynomial. By
Theorem 3.14, we know th&t(g, t) has geometric type, whence the claim follows.

For an arbitrary proper morphisify we reduce as above to the case thais normal. By induction and
Propositions 2.2 and 2.4, we may shririko assume that” is normal and connected. Let

xLy 2y
be the Stein factorisation gf. The schem@&”’ is normal, and the maj satisfiesf.Ox ~ Oy-.

For each generic poinf € Y’, the fibreX,, is easily seen to be normal and geometrically connected.
Passing to the separable closure of the generic points preserves both normality and geometric connectedness
of the fibres of f’, while passing to inseparable extensions does not change the topology. Hence, each
generic fibre off’ is geometrically irreducible. By [Gro66, Theorem 9.7.7], there exists a dense open
U’ C Y’ such that the fibres of’ over points ofU’ are geometrically irreducible. Shrinkifg’ a little if
necessary and using thats finite surjective, we may assume ttiat = g—!(U) wherelU C Y is an open
dense subscheme. By induction on dimension and Proposition 2.4, we may fépléttel” andY”’ with U’
to assume that all fibres gf are geometrically irreducible. Proposition 4.8 then giy&& ,») = Y'(Fyn)
for all n sufficiently large. We then conclude as in the case of dimer(sairove.

Now we move beyond the proper case.fIfs separated but not proper, we can still reduce to the case
that X is normal as above. Using Nagata compactification and excellence to find a normal compactification
of f, and Stein factorising the resulting map%allows us to find a commutative diagram

x—1-x
ol
\\w'
AN
lg
S

with X normal,j an open dense immersion, and the vertical maps on the right being the Stein factorisation
of the proper mag o f’. By the argument from the proper case above, we seefthas geometrically
irreducible generic fibres. By density and [Gro66, Theorem 9.7.7] as above, the same is ifuevier a
dense open i¥’. Now we can repeat the argument given above in the proper case.
In general, we first reduce to the case thas affine (by Proposition 2.4), and then to the case thas
affine (by coveringX by open affines and using Proposition 2.3), and then use use the separated case.
]
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