
COUNTING POINTS ON IMAGES

BHARGAV BHATT

ABSTRACT. Let f : X → Y be a morphism of varieties over a finite fieldFq. The goal of this note is to prove
rationality of the generating function counting the image of the rational points ofX underf . More precisely,
we show that this function lies in theQ-subspace ofQJtK spanned by rational functions having “geometric
type.” In particular, the zeroes and poles of the associated zeta function areq-Weil numbers. These results are
well-known to the experts.

1. INTRODUCTION

Fix a prime numberp, and a finite extensionFq of the prime fieldFp. Our goal in this note is to prove
the theorem mentioned in the abstract. Hence, we make the following definition:

Definition 1.1. Let f : X → Y be a morphism of finite typeFq-schemes. We define the setsf(Fqn) =
im(X(Fqn) → Y (Fqn)) for all n ≥ 1. Organising this data into a formal power series, we define

Z(f, t) =
∑
n≥1

#f(Fqn) · tn ∈ QJtK.

We also setZ(Y, t) = Z(id, t) whereid : Y → Y is the identity morphism.

The seriesZ(Y, t) is the logarithmic derivative of the zeta function ofY . We prefer working withZ(Y, t)
(andZ(f, t)) instead of the associated zeta function because of the direct connection with point counting.
Our main theorem is thatZ(f, t) is a rational function; we use the rationality ofZ(Y, t) for a varietyY . In
fact, we prove a more precise statement locating the zeroes and poles of the associated zeta function:

Theorem 1.2. Letf : X → Y be a morphism of finite typeFq-schemes. ThenZ(f, t) is a rational function.
Moreover, there exist finite typeFq-schemesZ1, . . . , Zk overFq, rational numbersa1, . . . , ak ∈ Q, and a
rational polynomialg(t) ∈ Q[t] such that

Z(f, t) = g(t) +
k∑
i=1

aiZ(Zi, t).

The outline for the paper is as follows. We first study some elementary properties enjoyed by the functions
Z(f, t) in §2. Next, we prove Theorem 1.2 in the case thatf is finite in §3, the crucial case being that of
finite étale covers; Johan de Jong pointed out that this case can also be deduced from Grothendieck’s work
on the rationality ofL-series associated to certain non-constant`-adic sheaves. Lastly, we prove Theorem
1.2 in §4 in the general case by using the Weil conjectures on geometrically irreducible varieties to reduce
to the case studied in§3.

Remark 1.3. It is tempting to try to prove Theorem 1.2 by a sheaf theoretic approach. One way to implement
this strategy is to construct a complexF of constructiblè -adic sheaves of geometric origin onX whose
stalk atx ∈ X(Fqn) has Frobenius trace given by the size of the fibre:

Tr(Frobx | Fx) =
1

#f−1(f(x))(Fqn)
.
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We do not how to do this1. In fact, as stated, this idea is not feasible because the existence of such a sheaf
would give rationality for the zeta function associated toZ(f, t), which we know is true only up to a factor
of an exponential of a rational polynomial (see Example 2.8).

Acknowledgements.We thank Mircea Mustaţǎ for asking the question addressed in this note.

2. PRELIMINARIES ON Z-FUNCTIONS

The purpose of this section is to collect some elementary properties that the functionsZ(f, t) satisfy.
First, we record the relation betweenZ and the zeta function.

Proposition 2.1. LetY be anFq-scheme of finite type. Then we have an equality of formal power series:

t · d

dt
log(ζY/Fq

(t)) = Z(Y, t)

Proof. Recall that theζ function is defined via

ζY/Fq
(t) = exp(

∑
n≥1

#Y (Fqn)
n

· tn)

Taking logarithmic derivatives and multiplying byt gives the desired identity. �

Next, we explain the topological invariance ofZ(f, t).

Proposition 2.2. Let f : X → Y and f ′ : X ′ → Y ′ be two morphisms of finite typeFq-schemes. If
gX : X → X ′ andgY : Y → Y ′ are homeomorphisms commuting withf andf ′ in the obvious sense, then

Z(f, t) = Z(f ′, t).

Proof. The equality follows from the fact that the set ofFqn-rational points of anyFq-scheme is invariant
under homeomorphisms. �

In a slightly orthogonal direction, we point out thatZ(f, t) is invariant under dominatingf by any map
that induces surjections on rational points; we produce such maps in Proposition 4.9.

Proposition 2.3. Let f : X → Y andg : X ′ → X be two morphisms of finite typeFq-schemes. Assume
thatg(Fqn) = X(Fqn). Then

Z(f, t) = Z(f ◦ g, t).

Proof. The assumption implies thatf(Fqn) = (f ◦ g)(Fqn) for all n, whence the claim. �

Next, we explain two “constructibility” properties enjoyed byZ(f, t). The first of these allows us to cut
the target off into pieces, and is extremely useful in the sequel.

Proposition 2.4. Let f : X → Y be a morphism of finite typeFq-schemes. IfY1 andY2 are locally closed
subschemes ofY with Y = Y1 ∪ Y2 as sets, then

Z(f, t) = Z(f |f−1(Y1), t) + Z(f |f−1(Y2), t)− Z(f |f−1(Y1∩Y2), t).

Proof. This follows from intersecting the inclusion-exclusion identity

#Y (Fqn) = #Y1(Fqn) + #Y2(Fqn)−#(Y1 ∩ Y2)(Fqn)

with f(Fqn). �

The second constructibility property allows us to break the source off in a predictable manner. We do
not actually use this identity.

1Note, however, that the complexf∗Rf!Q` onX does have a stalk whose Frobenius traces are inverses of the desired ones.
2



Proposition 2.5. Let f1 : X1 → Y and f2 : X2 → Y be morphisms of finite typeFq-schemes. Let
ft : X1 tX2 → Y andf∩ : X1 ×Y X2 → Y denote the morphisms obtained from thefi by taking disjoint
unions and fibre products, respectively. Then we have an equality

Z(ft, t) = Z(f1, t) + Z(f2, t)− Z(f∩, t).

Proof. The natural diagram of finite sets

f∩(Fqn) a //

b
��

f1(Fqn)

��
f2(Fqn) // ft(Fqn)

is a pushout diagram witha andb injective. The claim follows by counting cardinalities. �

Question 2.6.The functionsZ(f, t) enjoy many “motivic” properties as discussed above. Hence, it seems
reasonable seek a motivic explanation for Theorem 1.2. In particular, can one, a priori, predict the Weil
numbers occuring in the associated zeta function?

Next, we introduce a definition to facilitate notational brevity: we single out the subspace ofQJtK spanned
by functions of type occuring in the conclusion of Theorem 1.2.

Definition 2.7. A power seriesg ∈ QJtK hasq-geometric type(or simplygeometric typeif q is fixed) if it
lies in theQ-linear subspace ofQJtK generated by the polynomial ringQ[t] and the seriesZ(W, t) asW
runs through finite typeFq-schemes.

By the rationality of the zeta function and Proposition 2.1, any power series having geometric type is a
rational function. Hence, Theorem 1.2 can be reformulated as stating thatZ(f, t) has geometric type for any
morphismf of finite typeFq-schemes. We close this section with an example.

Example 2.8. We give an explicit example of a mapf : X → Y with the property thatZ(f, t) − Z(Y, t)
is a non-trivial rational polynomialg(t). It follows then that the zeta function associated tof differs multi-
plicatively from the zeta function ofY by e

R
g(t). In particular, it is not a rational function. For the example,

let Y = Spec(Fq), and letX = A1
Fq
−A1(Fq). Then we haveZ(f, t)−Z(Y, t) = t. One can also produce

a smooth projective geometrically irreducible example by simply picking such a variety without a rational
point; this can be done with curves of high genus over small finite fields (by a Bertini argument).

3. FINITE MORPHISMS

Our goal in this section is to explain the proof of Theorem 1.2 in the special case that the mapf is finite
and surjective. The bulk of the work lies in verifying the claims whenf is finite étale; the rest is handled
by devissage. To deal with the case of finiteétale covers, we use some formal properties about classifying
stacks of finite groups over finite fields. Hence, we review the relevant facts about these objects in§3.1.
Having done that, we prove Theorem 1.2 in the case of finiteétale maps in§3.2, and deal with general finite
maps in§3.3.

3.1. Classifying stacks of finite groups over finite fields.In this section we introduce an equivalence
relation called m-equivalence (m for monodromy) on the points of the stacks in question, and study its
effect on finite field valued points. The relevant definitions are:

Definition 3.1. Let Y be a noetherian connected scheme, letG be a finite group, and letf1 : X1 → Y
andf2 : X2 → Y be twoG-torsors overY . We say thatf1 andf2 are equivalentif the monodromy
representationsπ1(X) → G associated tof1 andf2 are conjugate to one another. We say thatf1 andf2

arem-equivalentif the images of the monodromy representationsπ1(X) → G associated tof1 andf2 are
conjugate to one another.

3



The notion of equivalence introduced in Definition 3.1 coincides with isomorphisms for torsors and is
standard. On the other hand, the m-equivalence relation introduced here is a little stranger. We use this
notion to define and count certain loci in a family ofG-torsors (see Theorem 3.8). WhenX = Spec(Fq)
(which is the only relevant case for applications), there is an explicit descriptions of m-equivalence classes:

Proposition 3.2. Let X = Spec(Fq) be the spectrum of a finite field, letG be a finite group, and let
B(G)(X) denote the groupoid ofG-torsors onX.

(1) The set of equivalence classesπ0(B(G)(X)) of G-torsors is in bijective correspondence with the
set Gconj of conjugacy classes inG. The setπ1(B(G)(X), g) of automorphisms of aG-torsor
corresponding to an elementg is given by the centralizerCentG(g).

(2) Given two elementsg1, g2 ∈ G, theG-torsors corresponding to the conjugacy classes ofg1 andg2

arem-equivalent if and only if the subgroups they generate are conjugate, i.e., one has

g1 = h · g`2 · h−1

whereh ∈ G is some element, and̀is some integer coprime to the order ofg2 (and henceg1). In
particular, the m-equivalence relation respects the automorphism groups.

Proof. The fundamental group ofX is identified withẐ using the geometric Frobenius elementx 7→ x−q.
This description allows us to identify the groupoidB(G)(X) with the groupoidMap(B(Ẑ), B(G)) of
morphismsB(Ẑ) → B(G). A model for this groupoid is provided by a category with object setGconj, and
automorphism groupsCentG(g) at an object corresponding tog; this description implies the first half of the
proposition.

An elementg ∈ G determines a homomorphism̂Z → G whose image is the cyclic subgroup generated
by g. Hence, two elementsg1 andg2 determine m-equivalent torsors precisely when the subgroups they
generate are conjugate. This last condition is easily seen to be equivalent to the condition in statement of
Proposition. Lastly, the claim about automorphism groups being respected is simply the observation that
CentG(g) depends only on conjugacy class of the subgroup generated byg. �

Warning 3.3. Proposition 3.2 describes m-equivalence classes ofG-torsors over finite fields in terms of
cyclic subgroups ofG up to conjugation. In the sequel we will often abuse notation by identifying an m-
equivalence class of aG-torsor over a finite field in terms of an element ofG representing a cyclic subgroup
in the m-equivalence class.

Remark 3.4. Fix a finite groupG. By Proposition 3.2, the m-equivalence relationH1(Spec(Fq), G) cor-
responds to “conjugacy of group generated” under the identification of the cohomology set withGconj. The
gap between m-equivalence and conjugation-equivalence depends on the flavour of finite groups involved.
For G a cyclic group, conjugating an element does nothing, while m-equivalance remembers only the or-
der of the element. On the other hand, for symmetric groups, m-equivalence and conjugation-equivalence
coincide. For applications to Theorem 1.2, it suffices to work with symmetric groups.

We close this section with two examples illustrating the utility of the formalism surroundingB(G).

Example 3.5. One can use classifying stacks of finite groups over finite fields to prove group theoretic
identities sometimes. For example, for a fixed finite groupG, the groupoidB(G)(Fq) is identified with
the groupoidMap(B(Z), B(G)) by Proposition 3.2. One model for this groupoid has object setGconj with
the set of automorphisms of the conjugacy class associated to an elementg being the centralizerCentG(g).
Counting points in the groupoid sense, we see that

#B(G)(Fq) =
∑

g∈Gconj

1
#CentG(g)

.
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On the other hand, by the Lefschetz trace formula and theQ-acyclicity ofB(G), we see that#B(G)(Fq) =
1. Hence, we obtain the well-known identity

1 =
∑

g∈Gconj

1
#CentG(g)

.

Of course, using the Lefschetz trace formula and algebraic stacks seems overkill for a simple group theory
formula, but we believe it illustrates a useful organisational principle.

Example 3.6. We explain how to prove that the Brauer group of a finite field vanishes using the formal-
ism of classifying spaces of group-stacks, i.e., with2-stacks. Letµn be the group scheme ofn-roots of
unity over a finite fieldFq with n prime top. Then the2-groupoidBB(µn)(Fq) is the simplicial abelian
group associated to the complex

(
τ≤2RΓ(Spec(Fq), µn)

)
[2] via the Dold-Kan correspondence. Hence, its

groupoid-cardinality is given by the formula

(1) #BB(µn)(Fq) =
∑

ψ∈H2(Spec(Fq),µn)

#H1(Spec(Fq), µn)
#H0(Spec(Fq), µn)

.

Using the Kummer sequence and Hilbert’s theorem 90 shows thatH0(Spec(Fq), µn) andH1(Spec(Fq), µn)
are the kernel and cokernel of then-th power mapF∗q → F∗q of the finite abelian groupF∗q . Hence, each of
summands on the right hand side of formula (1) has size1 which gives

#BB(µn)(Fq) =
∑

ψ∈H2(Spec(Fq),µn)

1.

On the other hand, the2-stackBB(µn)Fq
is Q-acyclic. Hence, by the Lefschetz trace formula, it has

cardinality1. Thus, we see that
H2(Spec(Fq), µn) = 1

which recovers the well-known fact that the Brauer group of a finite field vanishes, up top-torsion.

3.2. The étale case.We now prove Theorem 1.2 for finitéetale morphisms. The idea is to first deal with
the Galois case where we formulate and prove a more general statement than what is required. Using this
extra generality, we reduce the general case to the Galois case. To formulate the more general statement in
the Galois case, we define certain loci on the base of a family ofG-torsors as follows.

Definition 3.7. Let f : X → Y be a finiteétale cover that is aG-torsor for a finite groupG. For any element
g ∈ G, we define

Y (Fqn)g = {y ∈ Y (Fqn) | The G-torsorf−1(y) has m-equivalence classg}.

We assemble these sets into a generating function

Z(fg, t) =
∑
n≥1

#Y (Fqn)g · tn ∈ QJtK.

Note thatZ(fe, t) = Z(f, t) wheree ∈ G is the identity element. Moreover, one can easily see that∑
Z(fg, t) = Z(Y, t)

where the sum takes place over all m-equivalence classes. In particular, the sum on the left has geometric
type. The content of Theorem 1.2 for finite Galois covers is the statement thatZ(fe, t) has geometric type.
We will show more generally thateachof the summands of the sum on the left has geometric type.

Theorem 3.8. Let G be a finite group, andg ∈ G be an element. For anFq-schemeY and aG-torsor
f : X → Y , the formal power seriesZ(fg, t) has geometric type.
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Proof. We will show the rationality ofZ(fg, t) by induction on the orderd of g (as noted in Proposition
3.2, the order of an element depends only on its m-equivalence class). To start the induction, letg = e be
the identity element. In this case, the setsY (Fqn)e are precisely the setsf(Fqn). Sincef is G-equivariant,
there is a natural surjectionX(Fqn)/G → f(Fqn). This map is also injective sincef is aG-cover. Hence,
we find that

#Y (Fqn)e = #f(Fqn) = #(X(Fqn)/G).
Sincef is étale, theG-action onX(Fqn) has no fixed points, which shows that

#Y (Fqn)e = #f(Fqn) = #(X(Fqn)/G) =
#X(Fqn)

#G
.

Thus, we obtain

Z(fe, t) =
1

#G
· Z(X, t)

showing thatZ(fe, t) has geometric type.
Proceeding inductively, fix an elementg ∈ G of orderd, and assume thatZ(fh, t) is known to have

geometric type for allm-equivalence classes represented by elementsh ∈ G with smaller order. Let
ig : B(Z/d) → B(G) be the1-morphism of algebraic stacks (overZ) defined byg. This morphism is
representable by algebraic spaces becaused is the order ofg. The G-torsorf can be viewed as a map
φ : Y → B(G). Taking fibre products, we obtain a cartesian diagram

Fib(φ, ig) := B(Z/d)×B(G) Y //

��

B(Z/d)

ig
��

Y
φ // B(G).

Sinceig was representable, the stackFib(φ, ig) is actually an algebraic space. The definition of fibre prod-
ucts allows us to identify the setFib(φ, ig)(Fqn) with the discrete category of3-tuples(a, b, c) where

• a ∈ B(Z/d)(Fqn) is a rational point ofB(Z/d).
• b ∈ Y (Fqn) is a rational point ofY .
• c : ig(a) ∼→ φ(b) is an isomorphism between the images ofa andb in B(G)(Fqn).

In particular, there is a natural composite map

π : Fib(φ, ig)(Fqn) → π0(B(Z/d)(Fqn)) = H1(Spec(Fqn),Z/d) → H1(Spec(Fqn),Z/d)/ ∼

where “∼” denotes the m-equivalence relation onH1(Spec(Fqn),Z/d). The groupH1(Spec(Fqn),Z/d)
can be identified withZ/d with the element1 in the latter corresponding to the non-trivial degreed extension
of Fqn . Under this identification, the set of m-equivalence classes ofH1(Spec(Fqn),Z/d) is identified with
the set of subgroups ofZ/d which, in turn, can be viewed as the set of divisorsi of d (with i corresponding
to the unique subgroup of orderi). Hence, we can use the preceding map to write

#Fib(φ, ig)(Fqn) =
∑
i|d

#π−1(i).

A little bit of thought reveals now thatπ−1(i) can be identified with the set(
Y (Fqn)

g
d
i
× CentG(g

d
i )

)
/CentZ/d(

d

i
).

The centralizerCentZ/d(di ) is Z/d asZ/d is abelian. Hence, after reindexing withj = d
i , we find

#Fib(φ, ig)(Fqn) =
∑
j|d

#Y (Fqn)gj ·
#CentG(gj)

d
.
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Since the preceding equality holds for alln, we obtain an equality of formal power series

Z(Fib(φ, ig), t) =
∑
j|d

#CentG(gj)
d

· Z(fgj , t).

By induction, we may assume thatZ(fgj , t) has geometric type forj | d with j 6= 1. Stratifying the algebraic
spaceFib(φ, ig) by finite typeFq-schemes and using Proposition 2.4 shows thatZ(Fib(φ, ig), t) also has

gemetric type. As the coefficient#CentG(g)
d of Z(fg, t) occuring on the right hand side of formula above is

non-zero, it follows thatZ(fg, t) has geometric type. �

Question 3.9.Can Theorem 3.8 be refined to count equivalence classes rather than m-equivalence classes?
We do not know if the corresponding generating function has geometric type, or is even rational.

We now show how to prove Theorem 1.2 in the case of finiteétale morphisms by reducing to the Galois
case and using Proposition 3.8.

Corollary 3.10. Letf : X → Y be a finiteétale cover. Then the formal power seriesZ(f, t) has geometric
type.

Proof. By Proposition 2.4, we may assume thatf is surjective and thatY is connected. Letd denote the
degree off , and letΣd denote the symmetric group ond elements. The mapf can be viewed as a twisted
form of the of maptdi=1Y → Y , and thus defines anΣd-torsor overY . More explicitly, theΣd-torsor
φ : X ′ → Y corresponding tof is the map taking the Galois closure off in the fibres (see Construction
3.11). For any mapy : Spec(Fqn) → Y , the pullback ofXy of X along y has aFqn-rational point
if and only if conjugacy class inΣd determined byXy can be represented by a partition ofd containing
1 as one of its entries. Since conjugacy classes inΣd coincide with m-equivalence classes, we see that
Xy → Spec(Fqn) has a section if and only if the m-equivalence class ofX ′

y → Spec(Fqn) is represented
by a partition which contains1 as one of its entries. Thus, we obtain an identity

Z(f, t) =
∑

p∈(Σd)conj,

p fixes a point.

Z(φp, t)

where the sum takes place over all conjugacy classesp in the symmetric group corresponding to a partition
containing a1. By Theorem 3.8, the right side has geometric type, and thus so does the left side. �

We explain a construction used in the proof of Corollary 3.10: the Galois closure of a finiteétale cover.

Construction 3.11. Let f : X → Y be a finiteétale degreed cover. We will explain an inductive construc-
tion of the Galois closure off2. We define inductively a sequence ofY -schemesX(1), X(2), . . . , X(d),
actions ofΣj on X(j) → Y , and maps∆i

j : X(i) → X(i) ×Y X indexed by1 ≤ j ≤ i as follows: set
X(1) = X with ∆1

1 the diagonal map and the uniqueΣ1-action, and define

X(i) = X(i− 1)×Y X − ti−1
j=1∆

i−1
j (X(i− 1)).

The schemeX(i) can be viewed as the subscheme ofi-fold fibre product ofX over Y defined by the
complement of all the diagonals. With this intrepretation, the action ofΣi onX(i) → Y is clear, while the
maps∆i

j are projection maps onto thej-th co-ordinate. Sincef is étale, all the maps∆i
j occuring above are

alsoétale. Hence, we compute easily thatX(j) → Y is a finiteétale cover of degreed·(d−1)·· · ··(d−j+1).
In particular,X(d) → Y is a finiteétale cover of degreed! admitting an action ofΣd. All these constructions
are compatible with base changes onY , and an easy calculation then shows thatX(d) → Y is actually an
Σd-torsor for the naturalΣd action onX(d). We callX(d) → Y the Galois closure ofX → Y .

2One could simply defineX(d) → Y as the space overY parametrisingd-distinct points in the fibres off , but we prefer the
inductive approach due to its computational utility.
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Remark 3.12. We briefly indicate how one can use Theorem 3.8 to prove a version of the Chebotarev
density theorem for function fields. LetL/K be a finite Galois extension with groupG of function fields in
one variable over the finite fieldFq, and letf : CL → CK be the corresponding map of smooth projective
curves overFq. We letUK ⊂ CK be the complement of the discriminant off , and letUL = f−1(UK); the
resulting mapf : UL → UK is finite étale with groupG. For a closed pointx of UK , we letArtL/K(x) be
the Artin symbol ofx in the groupG. If y is a closed point ofUL abovex, thenArtL/L(x) may be viewed
as the conjugacy class inG associated to a geometric Frobenius element generatingGal(κ(y)/κ(x)). The
Chebotarev density theorem predicts that

lim
n→∞

#{x ∈ UK(Fqn) | ArtL/K(x) = {e}}
#UK(Fqn)

=
1

#G
.

Geometrically, the condition thatArtL/K(x) = {e} translates to the condition thatf−1(x) is a trivial G-
torsor. Hence, the limit occuring above may be rewritten as

lim
n→∞

#{x ∈ UK(Fqn) | ArtL/K(x) = {e}}
#UK(Fqn)

= lim
n→∞

#{x ∈ UK(Fqn) | f−1(x)(Fqn) 6= ∅}
#UK(Fqn)

= lim
n→∞

#f(Fqn)
#UK(Fqn)

= lim
n→∞

#UL(Fqn)
#UK(Fqn)

· 1
#G

where the last equality used first step of Theorem 3.8 (the base case of induction). The geometric content of
Chebotarev is therefore the statement that the generating functions associated toUL andUK grow similarly.
This follows from standard theorems inétale cohomology: the Lefschetz trace formula and the Weil bounds
reduce us to showing that generating functions associated to the Galois representationsH2

c (UK×Fq Fq,Q`)
andH2

c (UL×Fq Fq,Q`) grow similarly. Poincare duality identifies both these representations withQ`(−1),
and the claim follows.

3.3. The general finite case.We use the results of§3.2 to handle arbitrary finite morphisms in the present
section. First, we deal with the flat ones.

Proposition 3.13. Let f : X → Y be a finite flat morphism of finite typeFq-schemes. Then the formal
power seriesZ(f, t) has geometric type.

Proof. We prove the claim by induction ondim(Y ). By Proposition 2.2, we may assume thatY is reduced.
Let U ⊂ Y denote the largest normal open subscheme ofY , and letZ be its complement. SinceY is
reduced, the open subschemeU is dense inY , anddim(Z) < dim(Y ). By Proposition 2.4 and induction
on dimension, it suffices to show thatZ(f |f−1(U), t) is rational, i.e., we may assume thatY is normal.

The mapf can then be factored asX
g→ X ′ h→ Y with g purely inseparable, andh generically separable.

SinceX → X ′ is a universal homeomorphism, we see thatX(Fqn) = X ′(Fqn) by Proposition 2.2. Thus,
after replacingX with X ′ andf with h, we may assume that the mapf being considered is generically
separable. In this case, there is an open subschemeU ⊂ Y with complementZ such thatf |f−1(U) is
finite étale, anddim(Z) < dim(Y ). The desired claim now follows by induction using Proposition 2.4 and
Corollary 3.10. �

We can now handle arbitrary finite maps by devissage.

Theorem 3.14. Let f : X → Y be a finite morphism of finite typeFq-schemes. Then the formal power
seriesZ(f, t) has geometric type.

Proof. We proceed by induction ondim(Y ). As in the first half of the proof of Proposition 3.13, we reduce
to the case thatY is normal. By generic flatness, there exists an open subschemeU ⊂ Y with complementZ
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such thatf |f−1(U) is finite flat, anddim(Z) < dim(Y ). The claim now follows by induction on dimension
using Propositions 2.4 and 3.13. �

4. THE MAIN THEOREM

Our goal in the present section is to prove Theorem 1.2. We do so by first examining the case of geomet-
rically irreducible varieties in§4.1, extending the preceding to families in§4.2, and then proving the main
theorem in§4.3.

4.1. Finding points on geometrically irreducible varieties. We show that geometrically irreducible vari-
eties over finite fields always have points after a sufficiently large field extension that depends only on the
topology of the variety. This result is well-known, but we include a proof for completeness.

Proposition 4.1. Let X be a geometrically irreducibleFq-scheme of finite type of dimensiond, and fix an
auxilliary prime` different fromp. Then there exists a positive integern0 depending only on the compactly
supported̀ -adic Betti numbers ofX such that for alln ≥ n0, the setX(Fqn) is non-empty.

Proof. We fix an embeddingι : Q` ↪→ C that allows us to talk about archimedean absolute values of`-adic
numbers. By the Lefschetz trace formula, we have

X(Fqn) =
∑
i≥0

(−1)iTr(Frobn | H i
c(XFq

,Q`)).

Artin-Grothendieck theory tells us the following:

• The groupsH i
c(XFq

,Q`) vanish fori > 2d.

• There is a natural isomorphism of representationsH2d
c (XFq

,Q`) ' Q`(−d).

These facts allow us to rewrite the trace formula as

X(Fqn) = qnd +
2d−1∑
i=0

ai

with ai being the signed trace of Frobenius onH i
c(XFq

,Q`). Hence,X(Fqn) = ∅ if and only if

qnd = −
2d−1∑
i=0

ai.

Deligne’s results give the inequality

|ai| ≤ bi(X) · q
ni
2

wherebi(X) = dim H i
c(XFq

,Q`) is thei-th compactly supported Betti number ofX. Hence, ifX(Fqn) =
∅, then

qnd = −
2d−1∑
i=0

ai ≤ |
2d−1∑
i=0

ai| ≤
2d−1∑
i=0

|ai| ≤
2d−1∑
i=0

bi(X) · q
ni
2

As the left hand side grows much faster than the right side as a function ofn, the preceding inequality exists
only for finitely many values forn once the Betti numbersbi(X) have been fixed. Picking ann0 bigger than
any integer occuring in this finite set therefore does the job. �

Remark 4.2. The proof of Proposition 4.1 given above only uses the knowledge of the asymptotic number
of points on ad-dimensional geometrically irreducible variety over a finite field (and a crude estimate for the
error term). Hence, it can be deduced from the Lang-Weil estimates which are considerably more elementary
than the full Weil conjectures used above.
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Remark 4.3. The integern0 provided by Proposition 4.1 can be chosen to be independent of the auxilliary
prime `. In fact, one can show that there are only finitely many possibilities for the compactly supported
`-adic Betti numbers ofX as the primè varies as follows: ifX is smooth and proper, then the Weil
conjectures show that its Betti numbers are independent of` and the claim follows. IfX is proper but
not necessarily smooth, we can find a proper hypercovering ofX by smooth projective varieties thanks to
de Jong’s theorems. Such a hypercover allows us to bound the`-adic Betti numbers ofX in terms of the
Betti numbers of a finite number of auxilliary smooth projective varieties. As Betti numbers are always
non-negative, the claim follows. In general, fixing a closed immersion ofX into a proper varietyX allows
us to bound the Betti numbers ofX in terms of those ofX andX −X, whence the claim follows.

Remark 4.4. The bounds provided by Proposition 4.1 can be made quite explicit in specific examples.
For example, ifC is a smooth projective curve of genusg over Fq, then we havea0 = 1, a2 = q, and
|a1| ≤ 2g

√
q (in the notation of Proposition 4.1). Thus, we find thatC(Fq) 6= ∅ as long as2g ≤ √

q.

4.2. Bounding homotopy types in a family. To extend the results of§4.1 to families with geometrically
irreducible fibres, we need to ensure that only finitely homotopy types can occur as the fibres of such a
family. We show a truncated version that is sufficient for applications. Note that the required boundedness
also follows from the Lang-Weil estimates for points on varieties in an algebraic family, but we prefer giving
a self-contained and slightly more general argument.

Proposition 4.5. Let f : X → S be a proper morphism of noetherian schemes. Fix a prime number`
invertible onS (assumed to exist), and an auxilliary positive integerk (the “level”). Then there exists a flag
of closed subschemes∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sm ⊂ Sm+1 = S in S such that for any two geometric points
a, b lying in Si − Si−1, thek-truncated pro-̀ homotopy types ofXa andXb are canonically isomorphic.

Proof. The idea is to prove the general case by using alterations and hypercoverings to reduce to the case of
proper smooth morphisms, which follows from work of Artin and Mazur.

In more detail, since the statement to be proven is invariant under passage to finite covers ofS, we
may assume thatS is integral. By noetherian induction, it suffices to show that there exists a single open
subschemeU ⊂ S such that thek-truncated pro-̀ homotopy type is constant in the geometric fibres of
XU → U . Let η denote the generic point ofU . After replacingS by a finite cover, we may use de Jong’s
theorems to construct ak-truncated proper hypercoverX·,η → Xη with eachXi,η smooth and proper overη.
By spreading out, we can find an open subschemeU ⊂ S and ak-truncated proper hypercoverX·,U → Xη

with eachXi,U → U smooth and proper. By the Artin-Mazur theorem (see [AM69, Corollary 12.13]), the
pro-̀ homotopy types of the geometric fibres ofXi,U → U are canonically isomorphic3. The canonicity
implies that face and degeneracy maps ofX.,U also induce the same maps at the level of pro-` homotopy
types of the geometric fibres. It follows then that thek-truncated pro-̀ homotopy types of the geometric
fibres ofXU → U are also canonically identified. �

Using Proposition 4.5, we bound the Betti numbers occuring in the family of algebraic varieties.

Corollary 4.6. Let f : X → S be a proper morphism of noetherian schemes. Fix a prime number`
invertible onS (assumed to exist). Then there exists a flag of closed subschemes∅ = S0 ⊂ S1 ⊂ · · · ⊂
Sm ⊂ Sm+1 = S in S such that for any two geometric pointsa, b lying in Si − Si−1, the complexes
RΓ(Xa,Z`) andRΓ(Xb,Z`) are quasi-isomorphic.

Proof. The idea is to use the Artin-Grothendieck vanishing theorems inétale cohomology to recoverRΓ(X,Z`)
from thek-truncated pro-̀homotopy type of an algebraic varietyX for an appropriate choice ofk, and then
use Proposition 4.5.

3Artin and Mazur only state their theorem over discrete valuation rings, but one can reduce to that case easily. The canonicity
is not explicitly spelled out in the statement, but follows from the proof of the proper and smooth base change theorems inétale
cohomology.
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In more detail, fix an integern. By stratifyingS and working with the strata, we may assume that all fibres
of f have dimension the same dimensiond. Now lets be a geometric point ofS. Then Artin-Grothendieck
vanishing tells us thatRΓ(Xs,Z/`n) ∈ D[0,2d](Z/`n). Hence, we have an equivalence

(2) τ≥−2d

(
RΓ(Xs,Z/`n)[2d]

)
' RΓ(Xs,Z/`n)[2d].

On the other hand, for any integerk, we have an identification

(3) DK
(
τ≥−k

(
RΓ(Xs,Z/`n)[k]

))
' Map(X̂s,K(Z/`n, k)) ' Map(τ≤kX̂s,K(Z/`n, k)).

HereDK(·) denotes the Dold-Kan functor from non-positively graded cohomological chain complexes to
simplicial abelian groups,K(Z/`n, k) denotes the Eilenberg-Maclane space of degreek on the abelian
groupZ/`n, the spacêXs is the pro-̀ homotopy type ofXs, the objectMap(·, ·) denotes the mapping space
in the profinite homotopy category, andτ denotes the Postnikov truncation functor (on either complexes or
spaces, with opposite conventions).

The upshot of formula (3) is that theZ/`n-cohomology ofXs, up to degreek, can be recovered from its
k-truncated homotopy typeτ≤kX̂s. Using formula (2), we see that the entireZ/`n-cohomology ofXs can
be recovered from the2d-truncated homotopy typeτ≤2dX̂s whered = dim(Xs). The desired claim now
follows from Proposition 4.5 by taking an inverse limit overn. �

Remark 4.7. Proposition 4.5 remains valid fork = ∞, i.e., one can finitely partitionS in terms of theentire
homotopy types of the fibres off . This follows more-or-less formally from Corollary 4.6, the fact that the
quasi-isomorphisms in question are induced by actual specialisation maps of homotopy types, the fact that a
non-abelian version of Corollary 4.6 is also true, and the Hurewicz theorem in topology. We omit the details
here as we don’t need them.

We can now show the promised extension of Proposition 4.1 to families.

Proposition 4.8. Letf : X → Y be a proper surjective morphism of finite typeFq-schemes with geometri-
cally irreducible fibres. ThenZ(f, t)− Z(Y, t) is a polynomial with integer coefficients.

Proof. By Corollary 4.6, the Betti numbers of the fibres off are bounded as we vary the base point. By
Proposition 4.1, there exists an integern0 depending on the finite list of Betti numbers occuring in the fibres
of f such that for alln ≥ n0 and any rational points ∈ S(Fqn), the fibreXs has anFqn-rational point. It
follows thatZ(S, t)− Z(f, t) is an integral polynomial of degree at mostn0. �

4.3. The proof of Theorem 1.2. In this section, we complete the proof of Theorem 1.2. In order to do so,
we first explain how one can always reduce to the case of normal schemes.

Proposition 4.9. Let X be a noetherian excellent scheme. Then there exists a normal schemeX ′ and a
finite surjective morphismπ : X ′ → X such thatX ′(k) → X(k) is surjective for any fieldk.

Proof. We may assumeX is reduced. Let∅ = Xn ⊂ Xn−1 ⊂ · · · ⊂ X1 ⊂ X0 = X be the flag of
reduced closed subschemes defined inductively by the following recipe:X0 = X andXi is the non-normal
locus ofXi−1 given its reduced structure. We note thatn is finite by the noetherianness ofX. We setYi
to be the normalisation inXi of the open normal subschemeUi = Xi − Xi−1 ↪→ Xi. The induced map
πi : Yi → Xi is surjective and, by excellence, finite as well. Moreover, by construction, the map on rational
pointsYi(k) → Xi(k) restricts to a surjective map onUi(k) for any fieldk. SettingX ′ = tiYi andπ = tπi
we obtain a finite surjective mapπ : X ′ → X which, at the level ofk-rational points for a fieldk, induces a
surjective map ontoUi(k) for all i. SinceX = ∪iUi, the claim follows. �

We now finish the proof.
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Proof of Theorem 1.2.Let f : X → Y be a morphism of finite typeFq-schemes. Assume first thatf is
proper. In this case, we will prove the theorem by induction on the dimension ofY . The case of dimension
0 that follows already includes all the essential steps of the argument.

Let’s assume thatdim(Y ) = 0. By Propositions 4.9 and 2.3, we may assume thatX is normal. Let

X
f ′→ Y ′ g→ Y

be the Stein factorisation off . The schemeY ′ being reduced is the spectrum of a product of finite fields
by finiteness ofg. By the normality ofX, the definition of the Stein factorisation, and the perfectness of
finite fields, we see that all fibres off ′ are geometrically irreducible. By Proposition 4.8, we conclude that
f ′(Fqn) = Y ′(Fqn) for all n sufficiently large. Hence,Z(f, t) − Z(g, t) is an integral polynomial. By
Theorem 3.14, we know thatZ(g, t) has geometric type, whence the claim follows.

For an arbitrary proper morphismf , we reduce as above to the case thatX is normal. By induction and
Propositions 2.2 and 2.4, we may shrinkY to assume thatY is normal and connected. Let

X
f ′→ Y ′ g→ Y

be the Stein factorisation off . The schemeY ′ is normal, and the mapf ′ satisfiesf ′∗OX ' OY ′ .
For each generic pointη′ ∈ Y ′, the fibreXη′ is easily seen to be normal and geometrically connected.

Passing to the separable closure of the generic points preserves both normality and geometric connectedness
of the fibres off ′, while passing to inseparable extensions does not change the topology. Hence, each
generic fibre off ′ is geometrically irreducible. By [Gro66, Theorem 9.7.7], there exists a dense open
U ′ ⊂ Y ′ such that the fibres off ′ over points ofU ′ are geometrically irreducible. ShrinkingU ′ a little if
necessary and using thatg is finite surjective, we may assume thatU ′ = g−1(U) whereU ⊂ Y is an open
dense subscheme. By induction on dimension and Proposition 2.4, we may replaceY with U andY ′ with U ′

to assume that all fibres off ′ are geometrically irreducible. Proposition 4.8 then givesf ′(Fqn) = Y ′(Fqn)
for all n sufficiently large. We then conclude as in the case of dimension0 above.

Now we move beyond the proper case. Iff is separated but not proper, we can still reduce to the case
thatX is normal as above. Using Nagata compactification and excellence to find a normal compactification
of f , and Stein factorising the resulting map toS allows us to find a commutative diagram

X
j //

f ′

��@
@@

@@
@@

@

f

��0
00

00
00

00
00

00
00

X

f ′

��
S′

g

��
S

with X normal,j an open dense immersion, and the vertical maps on the right being the Stein factorisation
of the proper mapg ◦ f ′. By the argument from the proper case above, we see thatf ′ has geometrically
irreducible generic fibres. By density and [Gro66, Theorem 9.7.7] as above, the same is true forf ′ over a
dense open inS′. Now we can repeat the argument given above in the proper case.

In general, we first reduce to the case thatS is affine (by Proposition 2.4), and then to the case thatX is
affine (by coveringX by open affines and using Proposition 2.3), and then use use the separated case.

�
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