
NERS544: (Introduction to) Monte Carlo Methods

Assignment 6 and 7: Reflection 2-week assignment, weight = 2 Fall 2016

Revision: November 3, 2016 Alex Bielajew, 2927 Cooley, bielajew@umich.edu
Due: November 17, 2016 before class

This assignment will involve surface with mirror-reflection properties (See section 10.7 in the book), as well
as totally absorbing surfaces.

Consider a two dimensional square box centered at the origin with sides 2L in length. Also centered at the
origin is a circle of radius R. For this assignment you should show results for L = 1 and R = 0.2, although
your code should be generalizable to run for any L and R. (This may be useful when you are debugging
your code as well.)

You will consider two source types, a “volume source” that emits particles uniformly and isotropically
throughout the square. Those generated within the absorbing circle are ”absorbed on the spot”, at their
point of creation. Otherwise they are transported inside the box until they reflect from one of its sides,
or gets absorbed on the surface of the circle. (Graphical output helps a lot with debugging the code.) In
addition, if a particle is about to take a step larger than 100L, its transport is halted. (This is a great time
saver.)

Tally the total pathlength each particle history accumulates following the example output attached to this
description.

For the graphs given, the tally mesh is described by:

M = 256; % Mesh size of the distribution tally

if (surfaceSource) pathlog = logspace(log10(L-R),2,M); % L-R is the minimum

elseif (volumeSource) pathlog = logspace(-1,2,M); % Minimum can be zero

end

As well, your code must visually display the particle tracks for the first 100 histories. This will be demon-
strated in class.

Submit your code by email.

Discussion. This is “food for thought” only.

• The connection of this problem to reactor physics should be apparent. The construction of this problem
is over-simplified for this application, yet it contains features that are common, in particular the periodic
boundary conditions (infinite. At this point in your Monte Carlo development, it should be clear how
to add different absorption or scattering constants for the “fuel bundle” (the circle) and the moderator
(everything else).

• Pathlength distributions are very important for nuclear and radiological applications because the ability
for a particle to interact with the medium it is being transported in, is proportional to the number of
atoms or nuclei it encounters along its path.

• It is a mathematically interesting problem, one that is challenging to express mathematically, but
easy to describe, and the limits if its behavior, easy to figure out. Hence, it is an ideal candidate for
numerical study. For example, once could ask:

– What happens as the ratio R/L is varies. The limits are easy to express. For example, when R/L
approaches

√
2, there is no space left for particles to be transported. As R/L approaches 0 the

pathlengths become infinite. What exactly do the distributions look like, for different R/L.

1

bielajew
Typewritten Text
L09 - 01


bielajew
Typewritten Text

bielajew
Typewritten Text



– One could provide the pathlength distributions for the 0 walls struck, 1 wall struck and so on.
The 0-wall and 1-wall might be doable analytically. More than that may be prohibitive.

– How would the distributions change if the transport medium was weakly absorbing, or the walls
only partially mirrored? Leakage could be modeled!

– How about 3D and more-D behaviors?

-1 -0.5 0 0.5 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

Figure 1: Volume source, 2×2 box, absorber R = 0.2, tracks of 100 histories. A particle’s starting location is
represented with a blue asterisk, its final location by a red circle. Note the particles that started and ended
immediately in the interior of the absorber.

2

bielajew
Typewritten Text
L09 - 02

bielajew
Typewritten Text



-1 -0.5 0 0.5 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

Figure 2: Surface source, 2× 2 box, absorber R = 0.2, tracks of 100 histories. A particle’s starting location
is represented with a blue asterisk, its final location by a red circle. Note that two of the particles ended at
the edge of the box due to the pathlength restriction.

3

bielajew
Typewritten Text
L09 - 03


bielajew
Typewritten Text



0 0.5 1 1.5 2

log10(path)

0

1

2

3

4

5

6

7

8

bi
n 

ta
lly

×10 4

Figure 3: Volume source, 2× 2 box, absorber R = 0.2, 107 histories.

4

bielajew
Typewritten Text

bielajew
Typewritten Text

bielajew
Typewritten Text
L09 - 04

bielajew
Typewritten Text



0 0.5 1 1.5 2

log10(path)

3.5

4

4.5

5

lo
g1

0(
bi

n 
ta

lly
)

Figure 4: Same as before Figure 3, but with a logarithmic ordinate axis.

5

bielajew
Typewritten Text
L09 - 05

bielajew
Typewritten Text



-0.5 0 0.5 1 1.5 2

log10(path)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

bi
n 

ta
lly

Figure 5: Surface source, 2× 2 box, absorber R = 0.2, 106 histories.

6

bielajew
Typewritten Text

bielajew
Typewritten Text
L09 - 06

bielajew
Typewritten Text



-0.5 0 0.5 1 1.5 2

log10(path)

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

lo
g1

0(
bi

n 
ta

lly
)

Figure 6: Same as before Figure 5, but with a logarithmic ordinate axis.

7

bielajew
Typewritten Text
L09 - 07

bielajew
Typewritten Text





j ~\.ll) 

\ \_(__, ~ ~''--.Jl."'-t..~ 

~~ 

\ .,_ \ &~ \\-\_u..\ -

\~ ~-'->._~ \-..su-""'- ~~--~ ~ ~ ~~ 
~'.. ~"""~..-~ .. \ .. ~~ ~~ 



. ~.\~ \ ____,._ 

\ :::.., 

-·~ 
----------

•• 

-

--L s: --.~~ ~ 
. -z.to L ~ 
~~&.. -~""E-\~~·~ 

------ -

-

C~V\"Jt.~ _ol ~=~-SL~~~ ~~~ (\\ .~ 

-

\ 

- -----------

~~~\-­

~ ~'~· 
~~. ~~ 
\ V\c._ ---



~ ---

6,-\ 

-l 

. ( \>k 

\cr~~~ f\~,~ 

~ ~~ I \"(.. ~ 
\ 

\ 

\._~t:.~-\\ 

~'-- ''> ~~~ \~ ~ ~,_,__ _.._tt ,·~ 
~' '\) ""::> ~ 



26 CHAPTER 3. RANDOM NUMBER GENERATION

We will not endeavor to explain the theory behind random number generation, merely give
some guidelines for good use. The operative phrase to be used when considering RNG’s
is “use extreme caution”. DO USE an RNG that is known to work well and is widely
tested. DO NOT FIDDLE with RNG’s unless you understand thoroughly the underlying
mathematics and have the ability to test the new RNG thoroughly. DO NOT TRUST
RNG’s that come bundled with standard mathematical packages. For example, DEC’s RAN
RNG (a system utility) and IBM’s RANDU (part of the SSP mathematical package) are known
to give strong triplet correlations. This would affect, for example, the “random” seeding of
an isotropic distribution of point sources in a 3-dimensional object. A picture of an artefact
generated by these RNG’s is given in Figure 3.1. This is known as the “spectral” property
of LCRNG’s.

The gathering of random numbers into planes is a well-known artefact of RNG’s. Marsaglia’s
classic paper [Mar68] entitled “Random numbers fall mainly in the planes”, describes how
random numbers gather into (n − 1)-dimensional hyperplanes in n-space. Good RNG’s ei-
ther maximise the number of planes that are constructed to give the illusion of randomness
or practically eliminate this artefact entirely. One must be aware of this behaviour in case
anomalies do occur. In some cases, despite the shortcoming of RNG’s, no anomalies are de-
tected. An example of this is the same data that produced the obvious artefact in Figure 3.1
but displayed with a 10◦ rotation about the z-axis does not exhibit the artefact. This is
shown in Figure 3.2.

3.1 Linear congruential random number generators

Most computer architectures support 32-bit 2’s-complement integer arithmetic1. The follow-
ing equation describes a linear congruential random number generator (LCRNG) suitable
for machines that employ 2’s-complement integer arithmetic:

Xn+1 = mod(aXn + c, 232) . (3.1)

This LCRNG generates a 32-bit string of random bits Xn+1 from another representation one
step earlier in the cycle, Xn. Upon multiplication or addition, the high-order bits (greater
than position 32) are simply lost leaving the low-order bits scrambled in a pseudo-random

1In 32-bit 2’s-complement integer arithmetic
00000000000000000000000000000000 = 0
00000000000000000000000000000001 = 1
00000000000000000000000000000010 = 2 · · ·
01111111111111111111111111111111 = 231 − 1 = 2147483647
10000000000000000000000000000000 = −231 = −2147483648
10000000000000000000000000000001 = −231 + 1 = −2147483647
10000000000000000000000000000010 = −231 + 2 = −2147483646 · · ·
11111111111111111111111111111111 = −1.

bielajew
Typewritten Text
L09 - 12



28 CHAPTER 3. RANDOM NUMBER GENERATION

Marsaglia planes − View 2

XY

Z

z

0

1

x
0

1 y
0

1

Figure 3.2: The identical data in Figure 3.1 but rotated by 10◦ about the z-axis.

bielajew
Typewritten Text
L09 - 13

bielajew
Typewritten Text



3.1. LINEAR CONGRUENTIAL RANDOM NUMBER GENERATORS 27

Marsaglia planes − View 1

XY

Z

z

0

1

x
0

1 y
0

1

Figure 3.1: The gathering of random numbers into two-dimensional planes when a three-
dimensional cube is seeded.

bielajew
Typewritten Text
L09 - 14

bielajew
Typewritten Text



Chapter 6

Oddities: Random number and
precision problems

Now that we understand about random number generators, sampling and error estimation,
it is time for a brief respite to consider some of the oddities one might encounter during
Monte Carlo calculations. These oddities are related to artefacts associated with random
number generation and machine precision.

6.1 Random number artefacts

Consider the determination of the value of π one obtains by throwing random “darts” at a
circle inscribed within a square. This is depicted in Figure 6.1. The ratio of the number of
darts within the circle to the total number of darts within the square should be π/4.

For a small number of iterations, the result converges as expected. This is shown in Figure 6.2
where the ratio 4Nin/(Nπ) is plotted up to 104 cycles along with the 1-σ error bars predicted
by the “binary statistics” method. The estimated mean goes over and under the theoretical
prediction, takes an excursion in the overprediction direction and eventually begins to settle
down.

However, some difficulties are evident for large cycles as shown in Figures 6.3. and 6.4

There are some classic signals indicated in Figure 6.3 that the random number generator
is cycling. The first piece of evidence is that the result exhibits a periodic structure. The
random number generator employed in this study is a multiplicative congruential random
number generator (MCRNG) with a sequence length of 230 = 1, 073, 741, 824. Since two ran-
dom numbers are employed, the periodic structure occurs over a period of 229 = 536, 870, 912.
Another curious anomaly is that the result is close to unity (actually to within a few parts

63

bielajew
Typewritten Text
L09 - 15

bielajew
Typewritten Text



64 CHAPTER 6. ODDITIES: RANDOM NUMBER AND PRECISION PROBLEMS

Determination of π
 by throwing darts at an inscribed circle

Figure 6.1: Random darts are thrown at a square with an inscribed circle. The ratio of the
number of darts within the circle to the total number of darts within the square should be
π/4.

bielajew
Typewritten Text
L09 - 16

bielajew
Typewritten Text



6.1. RANDOM NUMBER ARTEFACTS 65

0 2000 4000 6000 8000 10000
number of cycles

0.98

0.99

1.00

1.01

1.02

M
on

te
 C

ar
lo

/th
eo

ry

Monte Carlo determination of π

Figure 6.2: Random darts are thrown at a square with an inscribed circle. The Monte Carlo
prediction divided by the theoretical prediction with the associated 1± σ prediction.

bielajew
Typewritten Text
L09 - 17

bielajew
Typewritten Text



66 CHAPTER 6. ODDITIES: RANDOM NUMBER AND PRECISION PROBLEMS

107 108 109

number of cycles

0.99980

0.99990

1.00000

1.00010

1.00020

M
on

t C
ar

lo
/th

eo
ry

Determination of π
trouble for large N

Figure 6.3: Random darts are thrown at a square with an inscribed circle. Large cycle
behaviour of the Monte Carlo π experiment. The vertical lines are drawn where the random
number generator begins a new cycle.

bielajew
Typewritten Text

bielajew
Typewritten Text

bielajew
Typewritten Text
L09 - 18

bielajew
Typewritten Text

bielajew
Typewritten Text



6.1. RANDOM NUMBER ARTEFACTS 67

108 109

number of cycles

0.99998

0.99999

1.00000

1.00001

1.00002

M
on

t C
ar

lo
/th

eo
ry

Determination of π
trouble for large N

Figure 6.4: A zoom-in on the large cycle behaviour of previous figure.

bielajew
Typewritten Text
L09 - 19



68 CHAPTER 6. ODDITIES: RANDOM NUMBER AND PRECISION PROBLEMS

in 107) at the point where the cycle restarts1. As a result, the calculated value appears to
be well below the 1σ bounds predicted by the Central Limit theorem in the range shown.
These are all strong signals that the random number has been “looped”. It is never wise
to use more than a fraction, say 1/10th of the sequence. Note that the latter half of the
sequence anti-correlates with the first half. This could lead to spurious results if a sequence
is exhausted.

It is also false to conclude: “Despite the periodic structure, the result converges to the correct
answer.” Wrong! We just happened to be lucky in this case! The result converged to about
1+ 5× 10−7 after one complete cycle, nearly the correct answer but not the correct answer.
The “error term” after one cycle just happens to be very small for this application. If we ran
this application for about 12×109 cycles, we would note a “false convergence” to 1+5×10−7

whereas the 1σ bounds would be smaller and converging on unity.

An example of “false convergence” is given in Figure 6.5 which is the same example except
that a large number of random numbers were thrown away after each sample of π, as if
to simulate many random numbers being employed in a different aspect of a calculation.
Although the example is somewhat extreme, it depicts clearly an anomalous result that will
never converge to the correct answer.

The object of this lesson is to warn against using random number generators beyond a
fraction of their sequence length.

The signals that you have cycled the random number generator are:

• The tally exhibits a period structure.
• The tally converges in a way that is contrary to Central Limit predictions, assuming
that the second moment of the tally exists.

• The presence of false convergence, which may be very difficult to detect.

1This is due to 2D space being nearly uniformly filled by this MCRNG.

bielajew
Typewritten Text
L09 - 20

bielajew
Typewritten Text



6.1. RANDOM NUMBER ARTEFACTS 69

100 1000
Number of Histories

0.98

0.99

1.00

1.01

1.02

1.03

1.04

M
on

te
 C

ar
lo

/T
he

or
y

Example of false convergence

Figure 6.5: An example of false convergence.

bielajew
Typewritten Text
L09 - 21

bielajew
Typewritten Text



70 CHAPTER 6. ODDITIES: RANDOM NUMBER AND PRECISION PROBLEMS

6.2 Accumulation errors

Consider the summation:

s =
N∑

i=1

(1/N) . (6.1)

Of course, mathematically the result is s ≡ 1. Numerically, however, it is a different story.
The result of s vs. N is give in Figure 6.6.

103 104 105 106 107 108

N (number of iterations)
0.20

0.40

0.60

0.80

1.00

s 
(s

um
, s

ho
ul

d 
be

 1
)

single: s = Σi (1/N)
single: s = Σi ξi(1/N) (ξi is a random number 0<ξ<2 )
double: s = Σi (1/N)

Figure 6.6: An example of constant and random accumulation errors in single-precision
arithmetic.

We note that an accumumulation error is seen starting from about 106 iterations when the

bielajew
Typewritten Text
L09 - 22

bielajew
Typewritten Text

bielajew
Typewritten Text



6.2. ACCUMULATION ERRORS 71

accumulation is done using single precision Fortran, a 32-bit representation of floating-point
numbers. The shape of this curve is the result of constant accumulated round-off error, can
be positive or negative, but eventually underestimates due to truncation error. The precise
shape of the artefact is probably machine dependent. The reason for the underestimate at
large value of N is because 1 + 10−8 ≡ 1 in single precision arithmetic.
Another expression of the similar thing is:

s =
N∑

i=1

(2r/N) . (6.2)

where r is a random number uniformly distributed on [0, 1]. Since 〈r〉 = 1/2, s ≡ 1 mathe-
matically as well. However, a numerical evaulation exhibits some accumulation error starting
from about 107 iterations. This is also seen in Figure 6.6. The shape of this curve is the result
of random accumulation error and is probably common to all single-precision architectures. A
double precision accumulation is shown as well. For double precision, 1+10−8 = 1.00000001
and no accumulation error is evident. Double precision errors would start at about 1015 to
1016 iterations, a realm where no application has dared to go (yet).

The obvious solution to this problem is: Use double precision! However, there are good
reasons for using single precison numbers. On some architectures, single precision arithmetic
is faster than double precision. (There are counter examples to this as well!) Double precision
numbers also take more computer storage. Fetching and storing them can take longer than
for single precision numbers. A good rule is to develop your application in double precision.
Then, if fast exacution or computer storage become critical to your application, consider
single precision for some, if not all of your calculation. However, you must be aware of the
shortcomings (pun intended!) of single precision variables and use them with caution.

bielajew
Typewritten Text
L09 - 23

bielajew
Typewritten Text



3 4 5 6 7 8 9

log10(N)

0

0.2

0.4

0.6

0.8

1

1.2

P N n
=

1
[1

;2
9
]=
N

Single precision: Unit sums

0 = 1=N
0 = 29=N

bielajew
Typewritten Text
L09 - 24

bielajew
Typewritten Text



0 2 4 6 8 10

log10(N)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

P N n
=

1
[1

;2
9
]=
N

Single precision: Unit sums

0 = 1=N
0 = 29=N

bielajew
Typewritten Text
L09-25

bielajew
Typewritten Text



6 7 8 9 10 11 12

log10(N)

0.9995

0.9996

0.9997

0.9998

0.9999

1

1.0001

1.0002

1.0003

1.0004

1.0005

P N n
=

1
[1

;2
9
]=
N

Double precision: Unit sums

0 = 1=N
0 = 29=N

bielajew
Typewritten Text
L09 - 26

bielajew
Typewritten Text



6 7 8 9 10 11 12

log10(N)

0.99995

0.99996

0.99997

0.99998

0.99999

1

1.00001

1.00002

1.00003

1.00004

1.00005

P N n
=

1
[1

;2
9
]=
N

Double precision: Unit sums

0 = 1=N
0 = 29=N

bielajew
Typewritten Text
L09 - 27

bielajew
Typewritten Text

bielajew
Typewritten Text




