36 S.

to enable us to carry out the numerical integra-
tion of Eq. (28). These were twofold : The ground
state wave function of the deuteron was approxi-
mated by a sum of two Gauss functions, and
the integrals were replaced by sums over finite
intervals. The first of these approximations can
at most account for a few percent of the dis-
crepancy because the assumed wave function for
the deuteron deviates measurably from the true
wave function only for large values of 7/a, and
it is just for these values of 7/a that the con-
tributions to the integrals are negligible. As we
have already seen, the second approximation is
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not serious because of the rapid convergence of
the integrals.

Since we have neglected polarization in this
paper, it may well be that taking it into account
will get rid of most of the discrepancy, provided
an interaction energy of type (2) is adequate
for the process we are considering. Although a
calculation taking polarization into account
would be exceedingly difficult, its undertaking
at the present time seems warranted.

We wish to thank Mr. Jerome Rothstein
of Columbia University for aiding in the nu-
merical work.
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The series developed in a previous paper representing the distribution for the multiple
scattering of electrons has been evaluated numerically for a large number of cases; the results
are given in Table I. An approximate expression is found for the value of sin @ averaged over
the distribution per unit solid angle, f(6). This expression, which agrees within a few percent
with the exact computation, is

w(sin O)a~1.7641(5.60—% log Z+ % log A)4, (18)

in which w is the energy in units mc? and 4 =24.8X10-%Z2N¢. For the scattering intensity per
unit solid angle at 0° that is f(0), an approximate relation is

47f(0)/w?~0.43/A(5.60—% log Z+% log 4). (19)

The accurate calculations show also that f(6) /%? is almost independent of the energy. A series
formula is derived for the projected scattering distribution as observed in a cloud chamber.
The averages of w sin «, « being the projected angle, are given in Table VI. These averages
are smaller than the values computed by Williams and show a variation with energy. It is
believed that the largest inaccuracy remaining in the results given is due to uncertainties in
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the single scattering law.

1. INTRODUCTION

N a previous paper! we have treated the statis-
tical problem of multiple electron scattering
by thin foils. The principal purpose of the
present article is to bring the results of that
paper into a form which can be more easily com-
pared with experimental data.
We consider an electron of total energy w (in
" * Now at the Dow Chemical Company.

1S. Goudsmit and J. L. Saunderson, Phys. Rev. 57, 24
(1940).

units mc?) which has traveled a path length ¢
through scattering material of atomic number Z
containing N atoms per cc. The normalized
probability that the electron will be deflected
into the angle between 6 and 8+4d#6 is given by
the following series in Legendre polynomials

27 f(6) sin 646
=313 (214-1)G.P(cos ) sin 6d9. (1)

The coefficients G; depend only upon two param-
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eters, u and £,

—2ul(l+1)
X[log £~ (3+1+- -

Gi=exp {
/D7 (2)

The parameter p is proportional to the path
length,

p=mk!Nt=r{Ze*w/mc*(w?—1)}2N¢
=24.8X10-Z:Ntw?/(w?—1)2
=0.151(c 22/ M)w?/(w?—1)2.  (3)

In the last expression which is the most con-
venient one to use, ¢ is the superficial density
of the foil in grams per cm? and M the atomic
mass. The path length should, however, not be
taken equal to the thickness of the foil but as a
first approximation, may be taken as the thick-
ness divided by the average of cos 6, that is, G;.
If this correction amounts to more than a few
percent, the present theory is no longer suffi-
ciently accurate.

The other parameter ¢ depends upon the
deviation of the true single scattering proba-
bility from the Rutherford law as a result of
screening by orbital electrons. For a Thomas-

Fermi atom, using the Born approximation, we
find?

E=150(w?—1)i/2}. 4)

For heavy elements the Born approximation may
not be sufficient and for light elements the
Thomas-Fermi atom may give inaccurate results.
This causes some uncertainty in the numerical
factor. Fortunately this has little influence upon
the final results, but may well explain eventual
small discrepancies between theory and experi-
mental data.

2. THE SCATTERING PER UNIT SoLID ANGLE

The scattering per unit solid angle in the
direction 6 is f(6), for which we have

4rf(0) =Y (214+1)GPy(cos 6). (5)

Table I shows the results of computations of
4rf(6) for twenty-one cases, for some of which

2For a Wentzel potential the numerical factor is 160.
Compare Egs. (I 36) and (I 35). We shall denote equatlons
in the first paper (reference 1) by a Roman I.

as many as forty-eight terms in the series were
used. In order to have a series which converges
sufficiently rapidly, 4 must be large enough that
G, becomes negligibly small when [<<¢{. When
this condition is not fulfilled the scattering is
very nearly single. In such a case the exponent
of Eq. (2) is no longer sufficiently accurate for
the high terms in the series.

The table also gives the Rutherford single
scattering, u/sin® (8/2) for 6=45°. With the
exception of possibly eight cases, single scattering
has evidently not yet been approached at that
angle. It must be remarked, however, that the
frequent change of sign of the P, for the larger
angles makes the results of the series computa-
tion less accurate than for the smaller angles.

3. THE AVERAGE SIN 0

A quantity which is most easily computed and
observed is the value of sin 6 averaged over the
scattering distribution per unit solid angle. This
is defined as

(sin O)Av=frf(0) sin GdB/frf(G)dO. (6)

Substituting for f(8) the series of Eq. (5), we see
at once that all terms in the numerator except

TABLE 1.¥ Values of 4=f(6).

APPR.T RutH
0° 0 6° 12°  18° 24° 30° 45° 45°
log £ =4
©=0.0025 107 1209 72,6 263 83 2.7 11 0.1 0.12
0.0050 44.1 457 38.6 243 12.5 5.8 2.7 0.5 0.23
0.010 18.7 19.1 179 14.8 11.0 74 4.7 1.3 0.46
0.015 1.5 11.8 114 102 85 6.6 49 1.9 0.70
log £ =5
»=0.0015 122 122.4 81.2 279 7.1 19 0.6 0.1 0.0
0.0025 66.0 658 53.1 289 11.8 4.2 1.5 0.2 0.12
0.0050 29.2 29.2 26.6 203 13.1 7.5 3.9 07 0.23
0.010 13.1 133 127 11.3 9.4 71 5.1 1.8 0.46
log ¢=6
»©=0.0005 307 303.2 1188 13.6 1.5 0.6 0.3 0.02
0.0015 85.6 853 653 30.6 9.8 2.7 09 0.07
0.0025 47.6 47.5 41.1 26.8 13.7 58 2.2 03 0.12
0.0050 21.8 219 20.5 169 123 8.0 4.7 1.0 0.23
0.010 10.2 103 100 9.2 79 6.5 50 2.2 0.46
log ¢ =
»=0.0005 226 224.3 1139 19.0 2.2 0.5 03 0.02
0.0015 66.0 66.1 54.2 30.4 123 4.0 1.2 0.1 0.07
0.0025 37.3 37.7 34.7 249 142 7.0 3.0 04 0.12
0.0050 174 17.8 17.0 14.5 11.3 83 52 13 0.23
log £=8
»=0.0005 179 179.2 104.8 24.1 2.8 0.5 0.2 0.02
0.0015 53.6 54.3 463 289 13.6 51 1.1 01 0.07
0.0025 30.7 31.3 28.6 21.8 140 9.6 3.7 0.5 0.12
0.0050 14.5 15.0 14.4 13.0 10.2 7.7 53 1.6 0.23

* The normahzmg factor is given by Eq. (8). .
1 The values in this column were obtained from the approximate
Eq. (15).
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TaBLE I1.¥ Average values of sin 0.

LOG §=4 5 6 7 8
#=0.00050 0.0667 0.0768 0.0853
(0.0656) (0.0764) (0.0859)
0.00075 0.0702  0.0835 0.0960  0.1063
(0.0679) (0.0832) (0.0960) (0.1073)
0.0010 0.059 0.0826 0.0995 0.113 0.124
(0.059) (0.0816) (0.0981) (0.113) (0.127)
0.0015 0.078 0.106 0.125 0.141 0.154
(0.079) (0.104) (0.124) (0.142) (0.157)
0.0025 0.111  0.143 0.166 0.184 0.202
(0.111) (0.142) (0.166) (0.188) (0.208)
0.0050 0.174 0.212 0.242 0.266 0.288
(0.173) (0.213) (0.246) (0.276) (0.303)
0.010 0.262  0.307 0.342 0.374 0.402
0.266) (0.319) (0.364) (0.404) (0.440)
0.015 0.327
(0.340)

E * ’{he) values given in parenthesis were found using the approximate
£q. (14).

the first vanish and that the denominator can be
obtained from the development of cosec 6 in a
series of Legendre polynomials. Thus

1:3.5- - J—1\?
(sin O =2/7 3 (21+1)G,( ~—~—)
cven ! 2:4-6---]

—1/2(0.78640.983G3+0.995G+Got- - ). (7)

The coefficients in Eq. (7) approach a common
value very rapidly. The values of (sin ), com-
puted in this way are entered in Table II.

The scattering per unit solid angle, f(8), is not
normalized to unity. The normalizing factor for
the entries of Table I is given by

47rfwf(0)d0=41r/(sin ). (8)

These values can be computed with the help of
Table II.

4. APPROXIMATE FORMULAS

If it were permissible to replace the partial
harmonic series in the exponent of G; by some
constant average value, s, it would not be
difficult to obtain an approximate value for the
sum?® of Eq. (7), for instance, by replacing it by

3Formulas for such sums are given by L. S. Kassel,
J. Chem. Phys, 1, 576 (1933).
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an integral. Abbreviating
v*=2u[log £—s], )

we find that, approximately,

{sin B)A,,~1/f e "dl=(4v?/7):. (10)
0
Similarly, for =0 we find from Eq. (5)
4rf(0)~3 (2I+1)e D ~1 /42 (11)

It is also possible to show that with the same
degree of approximation the distribution may be
represented by a Gaussian expression in

y=sin 6/2,
namely,

A f(6) ~e v v /% (12)

This can be verified, for example, by expanding
Eq. (12) in a series of Legendre polynomials.

Although these expressions are only approxi-
mate, they help in finding more accurate ex-
pressions for {sin 6)s and 4xf(0) which is done
by adjusting s and the numerical factor in front
until the results agree best with the direct
numerical calculations. In this manner we found
that a good fit is obtained when

—s=1%log p+0.60 (13)

and
(sin O)a~ {3.08u[log &+ log u+0.60]}, (14)
47 £(0)~0.43/ullog £+% log p+0.60]. (15)

The results of these approximate expressions are
also given in Tables I and II for comparison
with the direct computations.

5. ENERGY DEPENDENCE

It has been pointed out by Williams* that by
considering f(6) as a function of w9, the distribu-
tion function is of the Gaussian type whose
shape is independent of the energy and depends
only upon the thickness and the material of the
scatterer. This method greatly facilitates the
interpretation of experimental data. We shall see
that the present formulas allow the same simplifi-
cation to a sufficient degree of approximation.

4 E. J. Williams, Proc. Roy. Soc. A169, 531 (1939).
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We now characterize the scatterer by two new
parameters 4 and 7, defined as follows

=p(w?—1)2/w?=24.8X 102622 Nt
=0.151622/M (16)
n=t/(wt—1)}=150/2" (17)

and®

Substituting these parameters in the approxi-
mate Eq. (14) for (sin ), taking w=>1, we find
that the right-hand side of the following approxi-
mate expression is indeed independent of the
energy.® Thus

(w sin 8),~1.764%(log 743 log A+0.60)*

=1.764%(5.60+% log A —% log Z)*. (18)

Equation (18) is an approximate expression.
Table II1 shows the values of (w sin 6)» com-
puted from interpolations between the exact
values of (sin #)a for a few examples. It shows
indeed a.negligible dependence upon energy over
a wide range of values, and demonstrates the
sufficient accuracy of the approximate formula.
This table can also be used for interpolations;
it will be noticed that the entries are approxi-
mately proportional to 4%

8 The numerical coefficient is again based on the Thomas-
Fermi atom but can of course be adjusted if required.

6 In most cases sin 8 can be replaced by 6, giving w(8)av.
If expressed in Mev degrees, the numerlcal coefficient
must be replaced by 50. When Hp# is recorded in gauss cm

degrees, as is usual in cloud-chamber work, the coefficient
is 1.70 X 105,
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We can treat the approximate formula for
f(0) in the same manner, obtaining

47f(0)/w?~0.43/A4[5.60+%log A —}log Z]. (19)
Table IV shows the same quantity as inter-
polated from the exact values of 4xf(0). The
exact values show that the function 4xf(0)/w? is
still slightly dependent upon the energy, al-
though the variation is only 7 percent, over the
range of energies given, for the thinnest foil
calculated. As the foil becomes thicker, the
energy dependence is reduced. It can be verified
that within the same degree of approximation
the whole distribution function f(6)/w? taken as
a function of w# is independent of the energy.
A Gaussian curve of the form

4nf(0) /w?= Ce iCw0* (20)

with C=4xf(0) /w? (21)

gives a fair approximation.

The data given in Table IV show an interesting
dependence of 4xf(0) upon Z for constant ZZNt.
For the thinnest foil the value of f(0) for Z=90is
about 25 percent greater than for Z=6. This
variation is somewhat reduced for the thicker
foils. For foils used to approximate single scatter-
ing conditions at moderate angles, the variation
of the scattering distribution at §=0 would be
even larger for a similar range of Z. This indi-

TaBLE 111. Values of w (sin 0)a. For w(0)a in Mev degrees multiply these numbers by 28.4, for Hp(B)ay in
gauss cm degrees multiply by 0.97 X 105,

APPR.
Eq. (18) w=35 7 10 15 20 30 40 50 60
A=0.20, Z2Nt=0.81 X102
log n=3.5 Z~90 1.43 1.44 1.44 1.44 1.44 1.44
=4.0 ~24 1.53 1.53 1.53 1.53 1.53 1.54
=4.4 ~ 6 1.62 1.60 1.60 1.60 1.60 1.60
A=0.40, Z*Nt=1.61X10%
log n=3.5 Z~90 2.09 2.09 2.1 2.12 212 2.12
=40 ~24 2.26 2.19 2.22 2.24 2.26 2.26
=44 ~ 6 2.37 2.27 2.32 2.33 2.34 2.34
A4=0.80, Z:Nt=3.22 X 10
log n=3.5 Z~90 3.16 3.05 3.08 3.10 3.14 3.16
4.0 ~24 3.34 3.18 3.25 3.28 3.30 3.32
44 ~ 6 3.49 3.28 3.36 3.40 3.42 3.44
A =1.60, Z2Nt=06.45X10* :
log n=3.5 Z~90 4.63 4.43 4.52 4.55 4.60 4.58 4.58
4.0 ~24 4.90 4.65 4.74 4.78 4.84 4.81 4.81
4.4 ~ 6 5.10 4.78 4.90 4.96 5.00 4.89 4.88
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TaBLE IV. Values of 4nf(0)/w2.
APPR.
EQ. (19) w=5 7 10 15 20 30 40 50 60
A=0.20
log 9=3.5 Z~90 0.654 0.605 0.622 0.634 0.644 0.650
40 ~24 0.566 0.527 0.541 0.554 0.560 0.560
44 ~ 6 0.513 0.478 0.494 0.504 0.509 0.510
A=0.40
log n=3.5 Z~90 0.295 0.287 0.290 0.294 0.295 0.295
40 ~24 0.260 0.251 0.257 0.258 0.260 0.260
44 ~ 6 0.237 0.230 0.234 0.236 0.237 0.238
A=0.80
log n=3.5 Z~9C 0.135 0.134 0.134 0.135 0.134 0.134
40 ~24 0.120 0.120 0.120 0.121 0.120 0.119
44 ~ 6 0.110 0.111 0.112 0.111 0.110 0.110
- A=1.60
log n=3.5 Z~90 0.062 0.063 0.063 0.062 0.062 0.062 0.061
4.0 ~24 0.057 0.057 0.056 0.056 0.056 0.056 0.056
44 ~ 6 0.051 0.053 0.053 0.052

cates that, for foils of constant Z2Nt, the scatter-
ing is actually more multiple for the foils of
small Z.

6. SCATTERING IN MIXTURES OR COMPOUNDS

From the derivation of the expressions for
coefficients G; as given in the first paper we find
for a mixture of two elements ¢ and b that

Gi=Gi(a)G(D). (22)

Considering the exponent of G, in Eq. (2) we
write

pllog £—s,]=pe[log £a—s:]+us[log &, —s:]. (23)

Thus for a compound containing two elements
we introduce

M= ot pb, (24)
so that
10g £= (,U'a IOg £a+l-¢b IOg Eb)/(#u"{'ﬂb)' (25)
Similarly for A and » we obtain
A=A4,+4, (26)
and
log n=(A.log na+Aslog )/ (Aa+4s). (27)

7. PROJECTED SINGLE SCATTERING

Most cloud-chamber observations do not yield
the scattering angle 6 but its projection on the
plane of the cloud chamber. It is possible to
transform Eq. (1) so as to give directly the

projected distribution. We shall, however, derive
the projected scattering in a somewhat different
way which is closely related to Williams' treat-
ment of the problem and emphasizes the ad-
vantages of the present method.

We denote the projected angle for a single
scattering by ¢ and after multiple scattering
by a. In our previous paper’ we indicated that
after » collisions we have

Gu=(cos madw=exp [—»(1—(cos mohw)]. (28)
We must therefore first obtain the Fourier
coefficients for the single scattering law in order
to calculate the coefficients G, for the multiple
scattering distribution. The latter will be ob-
tained in the forms®

mf(a) =Y. Gn cos ma. (29)
Normalization to unity requires that
Go=1%. (30)

We take the Wentzel law for single scattering?
and denote the angle with the normal to the
plane of the cloud chamber by y. The scattering

7 Compare Eq. (I 13) and the footnote 4 on page 25.

8 If only the quadratic term in ¢ is taken in the exponent
of G and if the Fourier series is replaced by an integral
the results for f(e) will be a Gaussian curve. This treatment
is identical with the classical derivation of the Gaussian
distribution by Laplace and Poisson. It is slightly simpler
here because the number of collisions is not fixed but has a
Poisson distribution with an average value ».

9 Compare Eqgs. (I 16) and (I 22).
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law becomes

1(0) sin 6d6d o= k*ydyd o/ (y>+ye?)*

= k? sin ydydo/(1+2y,*—sin ¢ cos ¢)%.  (31)
This transformation was obtained by using
cos f=sin ¥ cos ¢;
(32)

sin 0d0d ¢ =sin Ydyde.
In the foil the vertical scattering is not limited

and we must integrate Eq. (31) over ¢ from 0 to
7 which gives

/2
2k2d¢f sin ydy/(14 2yt —sin ¢ cos ¢)*
0

2k [ 1
 (14y0)Lsin? ¢/

(m—¢') cos ¢’

| o
sin3 ¢’

with ¢’ defined by

cos ¢’ =cos ¢/ (14 2y0?). (34)

A sufficient approximation, normalized to unity
is given by

W(¢)do~2yde/¢" ~2y,°de/(¢*+4ye*)}.  (35)

8. TuE AVERAGE VALUE or Cos m¢

We use the approximate scattering law and
write

(1 —cos me)a

= 4y02[
0

+ <rwmm@wmw+@mﬂ.@®

%1

%

(1 —cos me)de/(¢*+4yo*)}

The small angle ¢; is so chosen that in the first
integral we may use 3(m¢)? for (1 —cos m¢) and
that in the second integral we may neglect 4y,
in the denominator. In this approximation the
final result does not contain the arbitrary angle
¢1.1 The second integral is extended to infinity,

10 Williams’ method consists essentially in making a
special choice for ¢, and omitting the second integral. The
first integral alone gives a Gaussian curve for the multiple
scattering distribution. Williams finally makes a correction
to this distribution for scattering beyond ¢:.

which does not influence the result.! The in-

tegrations give

{(1—cos mey=2y0>m?{ —1+log 2¢1— 2y,?}
+2y¢*m?*{§ — Ci(me1) }
~2y¢*m*[ —log yo+3—

—logm]. (37)

Here C stands for Euler’s constant, 0.58. For Ci,
the cosine integral, we took the first terms in
the expansion.’? Using Egs. (I 23) and (I 35) we
can write

log £= —log yo—3, (38)
which finally gives
{1 —cos me)n
=2y¢*'m?*[log ¢+1—C—log m]. (39)

It is obvious that the last terms in the brackets
are equivalent to the partial harmonic series
which was obtained for the case of Legendre
polynomials.

9. PROJECTED MULTIPLE SCATTERING

For the Fourier coefficients for the projected
multiple scattering distribution, using vy =pu, we

find
Gn=exp { —2um?*[log ¢+1—C—log m]}. (40)

It is easy to determine again the average value
of sin @, now given by

(sin = fo (@) sin ada / fo " () de

=@4/m[3— X Gu/(n*—1)]. (41)
1
This result is obtained by substituting for f(«)

TaBLE V. Values of (sin aa.

L0G § =4 5 6 7 8
1#=0.00050 0.076  0.084 0.092
0.0015 0.101 0.121 0.136 0.150 0.163
0.0025 0.134  0.158  0.176  0.195 0.210
0.0050 0.199  0.228 0.254 0.274 0.294
0.010 0.283  0.320 0.350 0.377 0.399
“0.015 0.344

11 For larger angles Eq. (35) is no longer a very good
approximation, but replacing it by a better formula made
no difference in the results for Eq. (36).

2 See for instance Jahnke-Emde, Funktionentafeln.
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TaBLE VI. Values of w (sin adn. For w{a)a in Mev degrees multiply these numbers by 28.4, for Hp(a)a in gauss cm
degrees multiply by 0.97 X 105,

WILLIAMS w=35 7 10 15 20 30 40 50 60
A4=0.20, Z:Nt=0.81X10%*
log =3.5 Z~90 1.69 1.51 1.53 1.56 1.58 1.60
=4.0 ~24 1.75 1.57 1.60 1.64 1.66 1.68
=44 ~ 6 1.80 1.64 1.67 1.711 1.73 1.74
A=0.40, Z2Nt=1.61 X 10
log n=3.5 Z~90 2.46 2.16 2.23 2.28 2.31 2.34
=4.0 ~24 2.54 2.27 2.35 2.40 2.43 2.45
=4.4 ~ 6 2.62 2.33 241 2.48 2.52 2.54
A=0.80, Z:Nt=3.22 X102
log n=3.5 Z~90 3.55 3.12 3.24 3.31 3.39 3.42
=4.0 ~24 3.66 3.26 3.40 3.40 3.56 3.58
=44 ~ 6 3.77 3.38 3.53 3.60 3.68 3.7
A=1.60, ZtNt=6.45 X 10
log n=3.5 Z~90 5.18 4.60 4,74 4.86 4,93 4.97 4.98
=4.0 ~24 5.34 4.78 4,93 5.07 5.14 5.18 5.20
=4.4 ~ 6 5.50 4.89 5.07 5.23 5.30 5.35 5.38

the Fourier series of Eq. (29). Many other
averages can be obtained in the same way.
Eq. (41) converges rapidly, and numerical results
are given in Tables V and VI for {sin a)y and
w(sin a)p. The latter can be compared with
Williams’ formula which in our notation® is

(an=1.764}[2.51—0.052 log Z

+0.078 log A]. (42)

Williams’ results are also given in Table VI.
It is interesting to note that w(sin a)y has a
larger variation with energy than w(sin ).

10. CoNcLUSION

The results derived in the present paper can
still be refined in various ways. A small correction
may arise from replacing the Thomas-Fermi
field by the Hartree field. Consecutive impacts
are not quite independent as was assumed in

13 This is Eq. (37) of Williams’ paper.
1 J. A. Wheeler, Phys. Rev. 57, 352 (1940).

the present treatment, with the result that the
scattering may be decreased somewhat. Pre-
liminary computations show that the relativistic
terms in the Mott formula increase the average
angle for lead by several percent, but the slow
convergence of the relativistic correction terms
makes this result uncertain. In cloud-chamber
observations the vertical angle is limited by the
depth of the illuminated layer, so that only a
part of the projected scattering distribution is
measured. A reliable correction for this cut off
is rather complicated but fortunately w(sin a)a,
does not differ much from w(sin ).

All such corrections are not very useful at
present because the experimental data are not
sufficiently accurate. Moreover, the statistical
complications of the multiple scattering problem
make it rather unsuitable for testing the single
scattering law, which is after all the ultimate
purpose of the experiments.

This investigation was made in connection
with work supported by the Horace H. Rackham
Fund.



