
36 S. GOUDSMIT AND J. L. SAUNDERSON

to enable us to carry out the numerical integra-
tion of Eq. (28). These were twofold: The ground
state wave function of the deuteron was approxi-
mated by a sum of two Gauss functions, and
the integrals were replaced by sums over finite
intervals. The first of these approximations can
at most account for a few percent of the dis-
crepancy because the assumed wave function for
the deuteron deviates measurably from the true
wave function only for large values of r/a, and
it is just for these values of r/a that the con-
tributions to the integrals are negligible. As we
have already seen, the second approximation is

not serious because of the rapid convergence of
the integrals.

Since we have neglected polarization in this
paper, it may well be that taking it into account
will get rid of most of the discrepancy, provided
an interaction energy of type (2) is adequate
for the process we are considering. Although a
calculation taking polarization into account
would be exceedingly dificult, its undertaking
at the present time seems warranted.

We wish to thank Mr. Jerome Rothstein
of Columbia University for aiding in the nu-
merical work.
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The series developed in a previous paper representing the distribution for the multiple
scattering of electrons has been evaluated numerically for a large number of cases; the results
are given in Table I. An approximate expression is found for the value of sin 8 averaged over
the distribution per unit solid angle, f(8). This expression, which agrees within a few percent
with the exact computation, is

m(sin 8)A„1.76A (5.60 —-'; log Z+-'; log A) &, (18)

in which m is the energy in units mc and A = 24.8X10 "Z Nt. For the scattering intensity per
unit solid angle at 0', that is f(0), an approximate relation is

4vrf(0)/~'~0. 43/A (5.60—
3 log Z+ z log A). (19)

The accurate calculations show also that f(8)/w' is almost independent of the energy. A series
formula is derived for the projected scattering distribution as observed in a cloud chamber.
The averages of m sin a, n being the projected angle, are given in Table VI. These averages
are smaller than the values computed by Williams and show a variation with energy. It is
believed that the largest inaccuracy remaining in the results given is due to uncertainties in
the single scattering law.

1. INTRODUCTION

'N a previous paper' we have treated the statis-
- - tical problem of multiple electron scattering
by thin foils. The principal purpose of the
present article is to bring the results of that
paper into a form which can be more easily com-
pared with experimental data.

We consider an electron of total energy w (in
* Now at the Dow Chemical Company.' S. Goudsmit and J. L. Saunderson, Phys. Rev. 5'7, 24

(1940).

units mc') which has traveled a path length t

through scattering material of atomic number Z
containing N atoms per cc. The normalized
probability that the electron will be deflected
into the angle between 0 and 8+d8 is given by
the following series in Legendre polynomials

2~f(S) sin SdS

=-'; P (2l+1)GiPi( schmo) sin ed'. (1)

The coefficients G& depend only upon two param-
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eters, p, and P,

Go=exp I
—2@i(l+1)

X [log P
—(-,'+-',-+ 1/1) j}. (2)

The parameter p, is proportional to the path
length,

p= ~/P~$ = «{Zs2w/ggr2(w~ —l) }2~$

=24.8X10 26Z'Xtw'/(w' —1)'
=0.151(az'/M) w'/(w' —1)' (3)

In the last expression which is the most con-
venient one to use, 0 is the superficial density
of the foil in grams per cm' and M the atomic
mass. The path length should, however, not be
taken equal to the thickness of the foil but as a
first approximation, may be taken as the thick-
ness divided by the average of cos 8, that is, Gi.
If this correction amounts to more than a few
percent, the present theory is no longer suff-
icientl accurate.

The other parameter P depends upon the
deviation of the true single scattering proba-
bility from the Rutherford law as a result of
screening by orbital electrons. For a Thomas-
Fermi atom, using the Born approximation, we
find'

as many as forty-eight terms in the series were
used. In order to have a series which converges
sufficiently rapidly, p, must be large enough that
G& becomes negligibly small when l«&. When
this condition is not fulfilled the scattering is
very nearly single. In such a case the exponent
of Eq. (2) is no longer suSciently accurate for
the high terms in the series.

The table also gives the Rutherford single
scattering, y/sin' (8/2) for 8=45'. With the
exception of possibly eight cases, single scattering
has evidently not yet been approached at that
angle. It must be remarked, however, that the
frequent change of sign of the I'& for the larger
angles makes the results of the series computa-
tion less accurate than for the smaller angles.

3. THE AVERAGE SIN 0

A quantity which is most easily computed and
observed is the value of sin 8 averaged over the
scattering distribution per unit solid angle. This
is defined as

(sin 8)A„——~r f(8) sin 8d8 )I f(8)d8 (6).
0 0

Substituting for f(8) the series of Eq. (5), we see
at once that all terms in the numerator except

$ = 150(w' —1)i/Zl.

For heavy elements the Born approximation may
not be sufficient and for light elements the
Thomas-Fermi atom may give inaccurate results.
This causes some uncertainty in the numerical
factor. Fortunately this has little influence upon
the final results, but may well explain eventual
small discrepancies between theory and experi-
mental data.

log ) =4
p =0.0025

0.0050
0.010
0.015

log $ =5
p =0.0015

0.0025
0.0050
0.010

TABLE I.* Values of 4mf(8).

Amp R.f
0 0 6o

107
44.1
18.7
11.5

120.9 72.6 26.3
45.7 38.6 24.3
19.1 17.9 14.8
11.8 11.4 10.2

8.3 2.7
12.5 5.8
11.0 7.4
8.5 6.6

1.1 0.1 0.12
2.7 0.5 0.23
4.7 1.3 0.46
4.9 1.9 0.70

122 122.4
66.0 65.8
29.2 29.2
13.1 13.3

81.2 27.9
53.1 28.9
26.6 20.3
12.7 11.3

7.1 1.9 0.6 0.1 0.07
11.8 4.2 1.5 0.2 0.12
13.1 7.5 3.9 0.7 0.23
9 4 7 1 5 1 1 8 0 46

Ri:TH,
12 18 24 30 45 45

2. THE SCATTERING

PETER

UNIT SOLID ANGLE

The scattering per unit solid angle in the
direction 8 is f(8), for which we have

4m f(8) = P (2l+1)GiPi(cos 8). (5)

Table I shows the results of computations of
47rf(8) for twenty-one cases, for some of which

log )=6
p =0.0005

0.0015
0.0025
0.0050
0.010

307 303.2 118.8 13.6 1.5 0.6
85.6 85.3 65.3 30.6 9.8 2.7
47.6 47.5 41.1 26.8 13.7 5.8
21.8 21.9 20.5 16.9 12.3 8.0
10.2 10.3 10.0 9.2 7.9 6.5

log )=7
z =0.0005 226 224.3 113.9 19.0 2.2 0.5

0.0015 66.0 66.1 54.2 30.4 12.3 4.0
0.0025 37.3 37.7 34.7 24.9 14.2 7.0
0.0050 17.4 17.8 17.0 14.5 1].3 8.3

log )=8
p =0.0005 179 179.2 104.8 24.1 2.8 0.5

0.0015 53.6 54.3 46.3 28.9 13.6 5.1
0.0025 30.7 31.3 28.6 21.8 14.0 9.6
0.0050 14.5 15.0 14.4 13.0 10.2 7.7

0.3 0.02
0.9 0.07
22 0 3 012
4.7 1.0 0.23
5.0 2.2 0.46

0.3 0.02
1.2 0.1 0.07
3.0 0.4 0.12
5.2 1.3 0.23

0.2 0.02
1.1 0.1 0.07
3.7 0.5 0.12
5.3 1.6 0.23

' For a Wentzel potential the numerical factor is 160.
Compare Eqs. (I 36) and (I 35). We shall denote equations
in the first paper (reference 1) by a Roman I,

*The normalizing factor is given by Eq. (8).
t The values in this column were obtained from the approximate

Eq, (15),
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TABLE II.* Average values of sin 0.

LOG 8 =4

an integral. Abbreviating

y'=2pLlog g —s], (9)

p =0.00050

0.00075

0.0010

0.0015

0.0025

0.0050

0.010

0.015

0.059 0.0826 0.0995 0.113
(0.059) (0.0816) (0.0981) (0.113)

0.078 0.106
(0.079) (0.104)

0.111 0.143
(0.111) (0.142)

0.174 0.212
(0.173) (0.213)

0.262 0.307
(0.266) (0.319)

0.327
(0.340)

0.125
(0.124)

0.166
(0.166)

0.242
(0.246)

0.342
(0.364)

0.141
(0.142)

0.184
(0.188)

0.266
(0.276)

0.374
(0.404)

0.124
(0.127)

0.154
(0'.157)

0.202
(0.208)

0.288
(0.303)

0.402
(0.440)

0.0667 0.0768 0.0853
(0.0656) (0.0764) (0.0859)

0.0702 0.0835 0.0960 0.1063
(0.0679) (0.0832) (0.0960) (0.1073)

namely,
y=sin 8/2,

4s.f(8) e-"'&*/y'.

we find that, approximately,

p
00

(sin 8)A„~1
~

e r"'dl = (4y /s)'. (10)
0

Similarly, for 8=0 we find from Eq. (5)

47rf(0) P (2l+1)e &"&'+" 1/y' (11)

It is also possible to show that with the same
degree of approximation the distribution may be
represented by a Gaussian expression in

This can be verified, for example, by expanding
Eq. (12) in a series of Legendre polynomials.

Although these expressions are only approxi-
mate, they help in finding more accurate ex-
pressions for (sin 8)A, and 4sf(0) which is done

by adjusting s and the numerical factor in front
until the results agree best with the direct
numerical calculations. In this manner we found

that a good fit is obtained when

+ The values given in parenthesis were found using the approximate
Eq. (14).

the first vanish and that the denominator can be
obtained from the development of cosec 0 in a
series of Legendre polynomials. Thus

Ir1 3 5 1 1q'-
!(sin 8)~„——2/s. P (2l+1)G,

~

even I, 246 l )
= 1/2(0. 786+0.983Gs+0.995G4+Gs+ ). (7)

and

—s=~a log p+0 60 (13)

The coefficients in Eq. (7) approach a common
value very rapidly. The values of (sin 8)&, com-
puted in this way are entered in Table II.

The scattering per unit solid angle, f(8), is not
normalized to unity. The normalizing factor for
the entries of Table I is given by

4s I f(8)d8=4s-/(sin 8)A„.
0

These values can be computed with the help of
Table II.

4. APPROXIMATE FORMULAS

If it were permissible to replace the partial
harmonic series in the exponent of G& by some
constant average value, s, it would not be
difficult to obtain an approximate value for the
sum' of Eq. (7), for instance, by replacing it by

'Formulas for such sums are given by L. S. Kassel,
J Chem. Phys, 1, 576 (1933).

(sin 8)A„{3.08pl log &+-,' log y+0.60] I
*', (14)

4~f(0) -o 43/I L~og k+s log ~+0 603.

The results of these approximate expressions are
also given in Tables I and II for comparison
with the direct computations.

5. ENERGY DEPENDENCE

It has been pointed out by Williams4 that by
considering f(8) as a function of w8, the distribu-

tion function is of the Gaussian type whose

shape is independent of the energy and depends

only upon the thickness and the material of the
scatterer. This method greatly facilitates the
interpretation of experimental data. We shall see

that the present formulas allow the same simplifi-

cation to a sufficient degree of approximation.

4 E.. J. Williams, Proc. Roy, Soc. A109, 531 (1939).
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We now characterize the scatterer by two new

parameters A and g, defined as follows
We can treat the approximate formula for

f(0) in the same manner, obtaining

A =p(w' —1)'/w'=24. 8&&10 "Z'Xt

and'
=0.1510Z'/M (16)

g = $/(w' —1)**= 150/Zl. (17)

(w sin 8)» 1.76A'(log g+-,' log A+0.60) i

= 1.76A l(5.60+2 log A —-3 log Z)'. (18)

Equation (18) is an approximate expression.
Table III shows the values of (w sin 0)» com-

puted from interpolations between the exact
values of (sin 0)» for a few examples. It shows

indeed a, negligible dependence upon energy over
a wide range of values, and demonstrates the
sufficient accuracy of the approximate formula.
This table can also be used for interpolations;
it will be noticed that the entries are approxi-
mately proportional to A".

5 The numerical coefficient is again based on the Thomas-
Fermi atom but can of course be adjusted if required.

' In most cases sin 8 can be replaced by 8, giving m(8)Ay.
If expressed in Mev degrees, the numerical coefficient
must be replaced by 50. When Hp8 is recorded in gauss cm
degrees, as is usual in cloud-chamber work, the coefficient
Is 1.70 X 10'.

Substituting these parameters in the approxi-
mate Eq. (14) for (sin 8)» taking w2))1, we find

that the right-hand side of the following approxi-
mate expression is indeed independent of the
energy. ' Thus

47rf(0)/w' 0 43/.A L5.60+-,' log A —-,'log Zj. (19)

Table IV shows the same quantity as inter-

polated from the exact values of 47rf(0) Th.e
exact values show that the function 4~f(0)/w' is

still slightly dependent upon the energy, al-

though the variation is only 7 percent, over the
range of energies given, for the thinnest foil

calculated. As the foil becomes thicker, the

energy dependence is reduced. It can be verified

that within the same degree of approximati'on

the whole distribution function f(0)/w' taken as
a function of mo is independent of the energy.
A Gaussian curve of the form

with

4m f(g)/w' = Ce-i e'""*

C = 4n f(0) /w'

(20)

(21)

gives a fair approximation.
The data given in Table IV show an interesting

dependence of 47rf(0) upon Z for constant Z'Jyt.

For the thinnest foil the value of f(0) for Z =90 is

about 25 percent greater than for Z=6. This
variation is somewhat reduced for the thicker
foils. For foils used to approximate single scatter-
ing conditions at moderate angles, the variation
of the scattering distribution at 0=0 would be
even larger for a similar range of Z. This indi-

TABLE III. Values of m (sin 0)Ay, For w(9)A„in Mee degrees multiply these numbers by Z8.4, for Ifp(8)Ay in
gauss cm degrees multiPly by 0.97X10'.

AppR.
Eg. (18) w =5 10 20 30 40 50 60

A =0.20,
log q

Z2Nt = 0.81X1024
=3.5 Z~90
=40 24
=44 ~ 6

1.43
1.53
1.62

1.44
1.53
1.60

1.44
1.53
1.60

1.44
1.53
1.60

1.44
1.53
1.60

1.44
1.54
1.60

A =0.40, Z Nt=1.61X1024
log g=3.5 Z 90

=4.0 ~24
=44 ~ 6

A =0.80, Z2Nt =3.22X10'4
log g =3.5 Z~90

4.0 ~24
44 ~6

2.09
2.26
2.37

3.16
3.34
3.49

2.09
2.19
2.27

2.11
2.22
2.32

3.05
3.18
3.28

2.12
2.24
2.33

3.08
3.25
3.36

2.12
2.26
2.34

3 ~ 10
3.28
3.40

2.12
2.26
2.34

3.14
3.30
3.42

3.16
3.32
3.44

A =1.60, Z'Nt=6. 45X10"
log g =3.5 Z~90

4.0 ~24
4.4 ~ 6

4.63
4.90
5.10

4.43
4.65
4.78

4.52 4.55 4.60
4.74 4.78 4.84
4.90 4.96 5.00

4.58
4.81
4.89

4.58
4.81
4.88
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TABLE IV. VaLues of 4~f(0)/m'.

A =0.20
log g=3.5 Z 90

40 ~24
4.4 ~ 6

AP1 R.
Ea (»)

0.654
0.566
0.513

0.605
0.527
0.478

0.622
0.541
0.494

10

0.634
0.554
0.504

0.644
0.560
0,509

20

0.650
0.560
0.510

30 40 50 60

A =0.40
log g =3.5 Z 90 0,295

4.0 24 0.260
4.4 6 0.237

0.287
0.251
0.230

0.290
0.257
0.234

0.294
0.258
0.236

0.295
0.260
0.237

0.295
0.260
0.238

A =0.80
log ~ =3.5 Z~9(!

40 24
44 ~6

A =1.60
log g=3.5 Z 90

4.0 ~24
4.4 ~ 6

0.135
0.120
0.110

0.062
0.057
0.051

0.134
0.120
0.111

0.134
0.120
0.112

0.063
0.057
0.053

0.135
0.121
O. 1 1 1

0.063
0.056
0.053

0.134
0.120
0.110

0.062
0.056
0.052

0.134
0.119
0.110

0.062
0.056

0.062
0.056

0.061
0.056

cates that, for foils of constant Z'Nt, the scatter-
ing is actually more multiple for the foils of
small Z.

6. SCATTERING IN MIXTURES OR COMPOUNDS

From the derivation of the expressions for
coeFFicients G~ as given in the first paper we find
for a mixture of two elements a and b that

projected distribution. We shall, however, derive
the projected scattering in a somewhat different
way which is closely related to Williams' treat-
ment of the problem and emphasizes the ad-
vantages of the present method.

We denote the projected angle for a single
scattering by @ and after multiple scattering
by 0.. In our previous paper' we indicated that
after v collisions we have

Gi ——Gi(a) GI, (b) . (22)
G =(cos mn)A, =exp L

—v(1 —(cos mg)A, )]. (28)
Considering the exponent of G~ in Eq. (2) we
write

pDog $ —s~] = ir, Dog $, si]+p—s Dog $s s~] (23—).
Thus for a compound containing two elements
we introduce

We must therefore first obtain the Fourier
coefficients for the single scattering law in order
to calculate the coefficients 6 for the multiple
scattering distribution. The latter will be ob-
tained in the form'

so that
P =P~+Pb, (24) s f(n) =P G„cos mn (29)

& + l & )~( + ) (2&)
Normalization to unity requires that

Similarly for A and p we obtain Gp ——-', . (30)

and
A =A.+Ab We take the Wentzel law for single scattering'

and denote the angle with the normal to the

(g ] g l )/(g g ) ( 7)
plane of the cloud chamber by p. The scattering

7. PRDJEcTED SINGLE ScATTERING

Most cloud-chamber observations do not yield
the scattering angle 0 but its projection on the
plane of the cloud chamber. It is possible to
transform Eq. (1) so as to give directly the

' Compare Eq. (I 13) and the footnote 4 on page 25.' If only the quadratic term in @ is taken in the exponent
of G and if the Fourier series is replaced by an integral
the results for f (al will be a Gaussian curve. This treatment
is identical with the classical derivation of the Gaussian
distribution by Laplace and Poisson. It is slightly simpler
here because the number of collisions is not fixed but has a
Poisson distribution with an average value v.' Compare Eqs. (I 16) and (I 22).
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which does not influence the result. " The in-

tegrations give
law becomes

This transformation was obtained by using
2yp'm'[ —log yp+-,' —C—log m]. (37)

cos H = sin P cos Q;

sin HdHdpp= sin PdPdP
(32) Here C stands for Euler's constant, 0.58. For Ci,

the cosine integral, we took the first terms in
the expa. nsion. "Using Eqs. (I 23) and (I 35) we

can write
In the foil the vertical scattering is not limited
and we must integrate Eq. (31) over tk from 0 to
x which gives (38)log k=-log yp-p

I(H) sin Hd Hdpp= k'ydyd pp/(y '+'-y p') '

k, . fdpdp/(1+2, .
p @), (31) (1—cos my)p, = 2yp'm'{ —1+log 2y —2yo'}

+2yp'm' {p
—Ci(my)) I

~12

2k'dg t sin PdP/(1+2yp'-' —sin P cos Q)'-'

J0

2k'd@ '1
(vr P')—cos @'

,+(1+ypP)' sin' @' sinP g'

with p' defined by

cos 4&' =cos @/(1+2yp').

(33)

(34)

which finally gives

(1—cos mp)A,

=2yp'm'[log $+1—C—log m]. (39)

It is obvious that the last terms in the brackets
are equivalent to the partial harmonic series
which was obtained for the case of Legendre
polynomials.

9. PROJECTED MULTIPLE SCATTERING
A sufficient approximation, normalized to unity
is given by For the Fourier coefficients for the projected

multiple scattering distribution, using vy02 =p, we
W(p)d p-2y o'dp/@"-2y, 'd@/(p'+4yo') ~ (35).

8. THE AvERAGE VALUE QF Cos m$ G„,=exp I
—2@m'[log &+1—C—log m]}. (40)

(1—cos m@)A.
(sin n)A, —— f(n) sin adot f(n)d~

0 0

=4ypP ) (1—cos mP)dP/(P'+4yp') &

0 = (4/n. ) [-,' —Q Gp„/(4n' —1)]. (41)
1

(1 cos my)dy/(yQ+ 4 P) (36) This result is obtained by substituting for f(n)

TABLE V. Values of (sin n)q„.

We use the approximate scattering law and It is easy to determine again the average value

write of sin n, now given by

The small angle @~ is so chosen that in the first
integral we may use —', (m@)' for (1 —cos mp) and
that in the second integral we may neglect 4y0'

in the denominator. In this approximation the
final result does not contain the arbitrary angle

@&.' The second integral is extended to infinity,

LOG 5 =-4

p, =0.00050
0.0015
0.0025
0.0050
0.010

"0.015

6 7 8

0.076 0.084 0.092
0.101 0.121 0.136 0.150 0.163
0.134 0.158 0.176 0.195 0.210
0,199 0.228 0.254 0.274 0.294
0.283 0.320 0.350 0.377 0.399
0.344

'0 Williams' method consists essentially in making a
special choice for &I and omitting the second integral. The
first integral alone gives a Gaussian curve for the multiple
scattering distribution. Williams finally makes a correction
to this distribution for scattering beyond @I~

» For larger angles Eq. (35} is no longer a very good
approximation, but replacing it by a better formula made
no difference in the results for Eq. (36)."See for instance Jahnke-Emde, Funktionentafeln.
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TABLE VI. Values of m' (sin e)A„. For fo(o')A„ in Mev degrees multiply these numbers by 28.4', for IIp(n)A„in gauss cm
degrees multiPly by O.07 X10'.

WILLIAMS R1 =5 10 15 20 30 40 50

2 =0.20, Z'Nt =0.81X10'4
log g=3.5 Z 90

=4 0 ~24
=44 6

1.69
1 ~ 75
1.80

1.51
1.57
1.64

1.53
1.60
1.67

1.56
1.64
1.71

1.58
1.66
1.73

1.60
1.68
1.74

2 =0.40,
log g

Z2Nt =1.61X10'4
=3.5 Z~90
=40 24
=44 ~ 6

2.46
2.54
2.62

2.16
2.27
2.33

2.23
2.35
2.41

2.28
2.40
2.48

2.31
2.43
2.52

2.34
2.45
2.54

3 =0.80, Z'Nt =3.22 X10'4
log g=3.5 Z 90

=4 0 ~24
=44 ~ 6

ii =1.60, Z'¹=6.45X10'4
log q =3.5 Z~90

=40 24
=44 ~ 6

3.55
3.66
3.77

5.18
5.34
5.50

3.12
3.26
3.38

3.24
3.40
3.53

4.60
4.78
4.89

3.31
3.40
3.60

4.74
4.93
5.07

3.39
3.56
3.68

4.86
5.07
5.23

3.42
3.58
3.71

4.93
5, 14
5.30

4.97
5.18
5.35

4.98
5.20
5.38

the Fourier series of Eq. (29). Many other
averages can be obtained in the same way.
Eq. (41) converges rapidly, and numerical results
are given in Tables V and VI for (sin 0.)A„and
m(sin n)A„. The latter can be compared with
Williams' formula which in our notation' is

((x)Av = 1 .762 "[2.5 1 —0.052 log Z

+0.078 log A]. (42)

Williams' results are also given in Table VI.
It is interesting to note that w(sin n)A, has a
larger variation with energy than w(sin 8)A„.

10. CQNcLUsIQN

The results derived in the present paper can
still be refined in various ways. A small correction
may arise from replacing the Thomas-Fermi
field by the Hartree field. Consecutive impacts
are not quite independent" as was assumed in

'3 This is Eq. (37) of Williams' paper."J.A. Wheeler, Phys. Rev. 5'7, 352 (1940).

the present treatment, with the result that the
scattering may be decreased somewhat. Pre-
liminary computations show that the relativistic
terms in the Mott formula increase the average
angle for lead by several percent, but the slow
convergence of the relativistic correction terms
makes this result uncertain. In cloud-chamber
observations the vertical angle is limited by the
depth of the illuminated layer, so that only a
part of the projected scattering distribution is
measured. A reliable correction for this cut off
is rather complicated but fortunately w(sin n)A„

does not difter much from m(sin 8)A„.

All such corrections are not very useful at
present because the experimental data are not
sufficiently accurate. Moreover, the statistical
complications of the multiple scattering problem
make it rather unsuitable for testing the single
scattering law, which is after all the ultimate
purpose of the experiments.
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