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The integro-differential diffusion equation of the multiple scattering problem in an inhnite, homogeneous,
medium, is studied without the usual small-angle approximation. An expansion in spherical harmonics is
carried out which is rapidly convergent in the case of large-angle scattering, whose coef5cients can be exactly
determined, and which leads to expressions for the various moments of the spatial and angular distributions.
The latter alone has previously been obtained by Goudsmit and Saunderson, and, in the small-angle approxi-
mation, by Snyder and Scott. Our results are shown to include these.

I. INTRODUCTION
' 'T is the purpose of this paper to describe a direct
& - method of obtaining exact results from the diffusion
equation of the multiple scattering problem, without
the usual small-angle approximation. The main limita-
tion of the method lies in the fact that we are restricted
to an in6nite and uniform medium, which precludes the
treatment of problems involving plates or foils, or of the
reQection problem at boundaries between different
media. %'e will take into account energy loss, simply by
regarding the energy of the particle as a function of its
residual range, which is permissible as long as the
straggling in energy loss is small, and we do not concern
ourselves with the question of the individual scattering
cross section at a single atom. The former condition
limits us to energies below the critical energy of shower
theory in the medium in question, which is (except in
the heaviest elements) the only region in which the
small-angle approximation may not be adequate.

The question of the angular distribution in large-
angle multiple scattering has been studied by Goudsmit
and Saunderson, ' who exploited a persistence property
of the Legendre polynomials. Their method leads in the
most direct way to Kq. (7) below, which we take the
liberty of re-deriving, but does not seem to be easily
extensible to the study of spatial distributions.

Bethe, Rose, and Smith' have considered the pene-
tration of electrons through thick plates, neglecting
energy loss, using the Fokker-Planck differential equa-
tion of the problem. The major disadvantage of the
Fokker-Planck approximation stems from the well-

known fact' that in the small-angle approximation it
leads to a Gaussian solution, hence omits the tail of the
angular distribution. Snyder and Scott4 have recently
studied the diffusion equation in its integral form, and
in the small-angle approximation, and have derived
exact solutions for this case, which show clearly the
transition from the Gaussian-like inner region of the
curve to the long single-scattering tail. We will show

' S. Goudsmit and J. L. Saunderson, Phys. Rev. 57, 24 (1940)
and 58, 36 {1940).

~ Bethe, Rose, and Smith, Proc. Am. Phil. Soc. 78, 573 (1938).' B. Rossi and K, Greisen, Rev. Mod. Phys. 13, 240 (1941).' H. Snyder and %'. T. Scott, Phys. Rev. 76, 220 (1949).

later that, in the small-angle case, our solution passes
exactly into theirs.
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where s is the arc length traversed by the particle, E
the number of atoms per unit volume, and the integra-
tion is over the solid angle. We will want to solve this
equation under the boundary conditions f(x, v, 0)
= b(x)5(v), corresponding to a single particle, incident
at the origin, and moving in the s direction. To put the
equation in a more tractable form, we expand the
solution in normalized surface harmonies in v, so that

f=Zf~ (x, s)y'~ (v)
l))a

and obtain from (1) and (2)

(2)

(~f~ /~s)+P ~fi» Qg ""

where

=Sg f),» ~ Fi *(v)[Fg„(v')—F),„(v)
Xpc J

Xo (v—v')dvdv', (3)

Q( "»=) V( *vV),»dv

is a constant vector, which is zero if
~

lI, —l ( or
~ p —m~

is greater than unity. The last integral in (3) can be
carried out most easily by expanding r in Legendre
polynomials, using the addition theorem for the
spherical harmonics, and 6nally the orthogonality and
normalization. The result is

(af(„/as)+z, f(„=—P ~f),» Q,„"», (4)

IL BASIC EQUATION

If the direction of motion of the charged particle is
given by the unit vector v, the cross section for scat-
tering, per unit solid angle, by ~, the position by x, and
the distribution function by f(x, v, s), then the dif-
fusion equation for the problem is

(Bf/Bs)+v Vf.
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where

«2= 22riV~t o(8)[1—Pi(cos8)] sin8d8,
0

so that

)I «d»=x«l(E+1)(&2)A. ,

and the Pi(cos8) here are the usual (unnormalized)
Legendre polynomials. The Fokker-Planck approxima-
tion can be obtained by expanding the Legendre poly-
nomial in powers of 6', and keeping only the first two
terms, one of which will cancel the unity in the square
bracket.

The boundary conditions to be satisfied by the fi are

fi (x, 0) =8,08(x) Vio(0) = [(21+I)/4ir]&5 oh(x). (4')

III. THE ANGULAR DISTMBUTION

To obtain the angular distribution alone, we integrate
(4) over all space, thus losing the last term, and find

(BFi/8 )s+riFi=0, (6)

where Fi(s) =J'fio(x, s)dx The te.rms with m/0 vanish
because of the cylindrical symmetry of the problem.
The solution to (6) is, of course,

f
F,(s) = [(2)+1)/42r]'i exp' —

i «ds i,

which satisfies the boundary conditions, so that

F(v, s)= I f(x, v, s)dx

QO

= (1/42r) P(2l+1)P&(cos21) expj —
ll ~&ds I, (7)

I.=o

where we have inserted the unnormalized polynomials,
and regard f(:i as a function of s because of the energy
dependence of the scattering cross section. This result
has been obtained by Goudsmit and Saunderson' by a
different method, and they have carried out a number
of numerical examples. They have also described the
approximation in which this distribution becomes
Gaussian.

It is clear from (7) that the convergence of this ex-
pression depends upon the magnitudes of the expressions
J'«ids. These are, in turn, related to the mean scattering
angles, as can be seen, for example, from the fact that

(cos8)A, =exp' —
ll «ids I,

or more generally,

(Pi(cosd))A =exp
lI

—
l «ds

)

Thus, in the small-angle case, we can take

Pi(cos8) = 1—«l(l+ 1)02

and, in this case, convergence will set in at around
2((292)«„) &. This makes it possible (in fact mandatory)

in the latter case, to replace the sum in (7) by an in-
tegral, which will turn out to be just the Snyder-Scott
integral, after the appropriate transformations.

~(~)=
P'v'(1 —cosg+ 2P)'

(8)

where P = f«2/4a2P2, and P and v are the momentum and
velocity, respectively, of the scattered particle. Thus

t' [1-Pi(~)d~]
~)=A =A (Ii Ji), —

"-i (1—«+2P)'

where A=(22r1VZ'e')/(p'v2), and Ii and Ji are the
integrals involving the two terms in the square bracket,
respectively. The first is elementary and yields

Ii= 1/L2P(1+ 0)]. (10)

The second can be simplified by inserting Rodrigues'
formula for the Legendre polynomial, integrating by
parts l times, and making the substitution 1—y=2X.
One obtains

t' V(1—X)'dX
J,=-,2(1+1) il

(&+p)'+'

This is recognizable as a hypergeometric function, ' and
1S

I'(1+1)F(l+2)J —ip —i—2 F(l+1, /+2 21+2 —P ').
I'(21+2)

(12)

Since p is small, in general, it is convenient to make
the hypergeometric transformation to the reciprocal
argument (WW289); the formula given there does not
apply when the first two parameters of the function
differ by an integer, as in our case, so that it is neces-
sary to take the given transformation and carry out a
limiting process to obtain a useful result. In addition,

' Whittaker and Watson, Modern Analysis (Oxford University
Press, New York, 1946), American edtion, p, 293. We will have a
number of references to this book, and in the future, will simply
insert them into the body of the tegt, as, for ~ample (WW293),
for the above.

IV. EVALUATION OF THE Kg FOR A PARTICULAR
CASE

If we now use the simplified potential V= (Ze/r)e "I',
the exponential factor schematizing the effect of screen-
ing, and calculate the scattering cross section by the
Born approximation, we find, for a singly charged
particle

Z'e4
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v v+1

Gi.=1n(1//2P) —2C+Q m-'+P m
—'

the formula given has a number of incorrect signs, and upper limit, we find
must be modified accordingly. After the transformation
one has (17)

1 i—i P' (t+ v+1)!
2Ji= —+Q [lnP —

i/ (v+ 1)
P =o v!(v+1)!(t—v —1)!

tt (—v+ 2)+ i/(t v) +—i/'(t+ v+ 2) j™r(P),

where P(s) = (d/ds) lnI'(s) and

for v« t. We also replace (/+ v+1)! in (15) by t"+'t! and
similarly in the denominator, which approximation is
valid for v'« t, obtaining

Ki = ', At' Q-[(/2P) "/v!(v+1)!]Gi,
v=0

(v+ 1)!V!

- (—P)" (t+ v+1)!(v t)!—
M(P)=(-)'2 (13') =/AP-~[@, (2/P~7+-,'/P1 j,

(18)

Since p is small in all physical cases, 3fl can be neglected,
for all /. This is not true of the first sum in (13), since
the coefficient of P" is of the order of /2 "+', which may be
large.

One can now use the recursion formula for the
!/-functions to write the expression in the square
bracket as

v v+1
—Gi„———!n(1/P)+P m

—'+P m-'
1 1

l—v—1 l +v+1
m' — m'.

1 1

Pi(cos8) =Jo(/8) (19)

(WW 367) where Jo is the Bessel function of zero order,
the latter by writing i!i=(y'+x')& with p and x the
projections of 8 on two mutually perpendicular planes
through the polar axis, and integrating with respect to
x. Thus (WW 357, 377)

where ICi(z) is the modified Bessel function of the
second kind (WW374). We must now approximate the
Legendre polynomials in (7) for small angles, and then
project them on a plane, in order to make our result
comparable with that of Snyder and Scott. The former
is achieved by

Jo[/(y'+x')~jdx=2/ ' cos/q,Here it is to be understood that sums in which the
upper limit is less than unity are to be omitted. Thus,
from (9), (10), (13), and (14), neglecting Mi(P) and if we take into account the fact that
replacing 1/(1+P) by 1—P, we have

(20)

P (/+ v+1)!
Ki = —,'A —1++ Gi. . (15)

=o v!(v+1)!(t—v —1)!

All this applies only for /&0; for 1=0, I~:l =—0, from its
definition. For moderate values of /, it is sufFicient to use

J„(s)ds= 1,

for all n. Thus, 6nally, the distribution in p becomes
(if we neglect energy loss),

1 l

Ki= ,'At(t+1) l-n—+1—2 Q m ' . (15')

ac

F(q) =— I cos/y exp( —Kis)d/ (21)

P m '=in(A+-,')+C+0(A '), (16)

where C is Euler's constant, and is equal to 0.5772.
Using this fact in the sums in (15) that involve t in the

V. TRANSITION TO SMALL ANGLES

To carry out the transition to the case in which only
small-angle scattering is important, we need only
notice, as mentioned in Section III, that in this case the
major contributions to the sum in (7) come from large
values of /. Accordingly, we replace the sum in (7) by
an integral, and consider the expressions (14) and (15)
in the limit of large l.

In (14) we use the fact that the sum of the partial
harmonic series is given by

with Ki given by (18). This is just the result given by
Snyder and Scott, since our p is equal to their 4q0'.

VI. SPATIAL DISTRIBUTIONS

A. Longitudinal Distribution

In order to find the spatial distribution of the scat-
tered particle, we would like to solve Eq. (4) for f„
However, because the differential equations for the
various fi are coupled equations, this turns out to be
impracticable, and one must resort to a somewhat less
satisfying procedure involving the evaluation of the
moments of the spatial distributions (and correlation
functions with the angles). This is, in principle, com-
pletely equivalent to the evaluation of the function,
though somewhat less useful. YVe illustrate the pro-
cedure on the longitudinal distribution.
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First we integrate (4) with respect to x and y, and
define

g(„(s, s)=) t f)„(x, s)doody.

We can also calculate correlation functions of 2: with
various functions of 8, by considering H&& for l/0. For
example,

(s cosa)A (4ir/3) &Hi) (s)
Then

( a ') ag),„
~

—+« I g)-+P (Q)-"")*=0
&as ) i~ as

(22)
= k, (s) [1+2ko(o)][ki(o)]-'&.

I"
(28)

We can also find (z')A„, for example, by calculating the
B)2.

In order to obtain numerical results for a particular
case, one must express the various a~ as functions of
energy [according to (15) or (15'), if one wishes to use
the cross section (8)], and combine these results with
the range-energy curves in the medium in question, to
f(nd the k((s), where the integral involved can be done
numerically if need be. The ki(s) then appear in all the
physically interesting expressions.

The boundary conditions for the g~ are

g, (», 0) = [(21y1)/4~]1a,a(s).

From these, and from the fact that Q, is zero unless

p=m, we conclude that g~ =0 for m/0. We will

simply use the notation gi(z, s) for gio(s, s). Now we use
the well-known expression' for Q„namely,

la) i, x (l+—1)a)+I, i
(Q)o"')*= +

(4P 1)&—[4(l+1)'—1]&
( ) B.Transverse Distribution

~l~l —1, ) +&1+1~i+1,))

in which we give the coeScients a name. Thus,

(a ) a
+« Ig)+ I «g)—i+(i&+ig&+i]=0.

(as ) as

For /=0, the first term in the square brackets of course
does not appear. Now define

In order to calculate the moments of the transverse
distribution, we follow the same pattern as in the pre-
ceding section; namely, to integrate (4) with respect

(24) now to (say) y and s, write in the value of (Q( "")„then
multiply by x", integrate, and solve the resulting dif-
ferential equations for the moments. The latter turn
out to be, for the x direction,

H)„=)t gi(s, s)s"ds,

so that, if we multiply (24) by s", and integrate, one
integration by parts yields

(~
+ (1 ~Hla n[&)H) io—1+(—rl+, (H(+1, n —I]=o (25)

&as

( a ) n (o—i) (+1 (o—1)

~

—+)() ~h(„(")(s)=—A~'h), „,+A„+ihi+i „+,
(as J 2

(n —1) l+1 (n—1)—A 'hi i, ~+i—A „+ih)~i, ~+i), (29)

where we have defined

(i+no)(i+no —1) &

A l=

which is a set of diGerential equations for the H~„, which
can be solved in ascending order in n. For example, if
we call

4/2 1

hi ("'(s)= I x"f)„(x,s)dx. (30)

i" «ds
1
=k~(s)(

)
since the k& will appear frequently,

The boundary conditions are hi ("'(0)=0 for n/0, and

h „(')(s) = [(21+1)/4or]&a oki(s). (30')

H„= [(2l+1)/4or]1k)(s)

(21+1)" ~* do.

) k)(s) ~~i [lki i(~)+(l+1)k)+,(~)],
E 4or ) ~o ki(o)

ki(s) l(l+1) -& (" do
jg (&) — h (1)—

4 or(2l+1) "o ki((r)

where we have inserted the explicit values of the n~.
This process can be continued.

It follows from (26) that the mean value of s is given
by (4)r)~Ho), so that, since ~o=0, and ko(s) =1,

x [ki i(~)—ki„l((r)]. (31)

By going to n= 2, one also finds, for example,

(oe
p

(r

(x'+y')Av= —
i do'ki(o') dr[1 —ko(r)]/ki(r)

(27) 3 "o ~o
(32)

(s),„= ki(o)do.
Jo

(26) These equations yield, for example hi„("(s)=0 for
t8 + 11 and

6H. Bethe, Handbuch der Ehysik (1933), Vol. 24/1, p. 551.
(Aehaeg gabe EugelfzwkHomee. )

which can easily be shown to reduce to the correct
result when the scattering is small.


