Revision: September 22, 2016
Alex Bielajew, 2927 Cooley, bielajew@umich.edu
Due: Thursday Oct. 06, 2016 before class

The following problems are to be solved on computer. You must use the template Matlab script M-file provided via a link on the class website. Submit your codes to me (bundled in a single M-file). how to do this will be clear from the template. The code will be demonstrated in class.

Q3.0, $\mathbf{0 \%}$ This is solved for you. Use option " 0 ".
Use the probability distribution:
$p(x)=2 x \quad ; \quad 0 \leq x \leq 1$
As a function of the number of histories, N_{h}, over the range $1 \leq N_{\mathrm{h}} \leq 10,000$, plot sampled $\langle x\rangle,\left\langle x^{2}\right\rangle$, s_{x}^{2}, and $s_{\bar{x}}^{2}$, as well as the theoretical values.
Q3.1, $\mathbf{2 5 \%}$ Write a code to sample the Cauchy probability distribution:

$$
p(x)=\frac{1}{\pi} \frac{1}{1+x^{2}} \quad ; \quad-\infty<x<\infty
$$

As a function of the number of histories, N_{h}, over the range $1 \leq N_{\mathrm{h}} \leq 10,000$, plot sampled $\langle x\rangle,\left\langle x^{2}\right\rangle$, s_{x}^{2}, and $s_{\bar{x}}^{2}$, as well as the theoretical values. Discuss convergence and the existence of moments.

Q3.2, $\mathbf{2 5 \%}$ Write a code to sample the small angle form of the Rutherfordian probability distribution:
$p(x)=\frac{2 x}{\left(x^{2}+1\right)^{2}} \quad ; \quad 0 \leq x<\infty$,
As a function of the number of histories, N_{h}, over the range $1 \leq N_{\mathrm{h}} \leq 10,000$, plot sampled $\langle x\rangle,\left\langle x^{2}\right\rangle$, s_{x}^{2}, and $s_{\bar{x}}^{2}$, as well as the theoretical values. Discuss convergence and the existence of moments.

Q3.3, $\mathbf{2 5 \%}$ Write a code to sample the probability distribution:
$p(x)=\frac{4 x}{\left(x^{2}+1\right)^{3}} \quad ; \quad 0 \leq x<\infty$,
As a function of the number of histories, N_{h}, over the range $1 \leq N_{\mathrm{h}} \leq 10,000$, plot sampled $\langle x\rangle,\left\langle x^{2}\right\rangle$, s_{x}^{2}, and $s_{\bar{x}}^{2}$, as well as the theoretical values. Discuss convergence and the existence of moments.

Q3.4, $\mathbf{2 5 \%}$ Write a code to sample the probability distribution:

$$
p(x)=e^{-x} \quad ; \quad 0 \leq x<\infty
$$

As a function of the number of histories, N_{h}, over the range $1 \leq N_{\mathrm{h}} \leq 10,000$, plot sampled $\langle x\rangle,\left\langle x^{2}\right\rangle$, s_{x}^{2}, and $s_{\bar{x}}^{2}$, as well as the theoretical values. Discuss convergence and the existence of moments.

