Due: Thursday Oct. 20, 2016 before class

Submit your answers to 1.(a) on paper and 1.(b) as a Matlab script M-file via email.

1. 10,000 particles start out in an infinite, unbounded medium with initial position vector $\vec{x}_{0}=0$ and initial direction vector $\vec{u}_{0}=\hat{z}$. The interaction probability is:
$p\left(s_{i}\right) \mathrm{d} s_{i}=\Sigma_{0} \exp \left(-\Sigma_{0} s_{i}\right) \mathrm{d} s_{i}$
where s_{i} is a measure of the pathlength of the particle along its current direction of motion starting from its current position to the i 'th interaction point. Σ_{0} is a constant in this case. Having interacted, the particle scatters isotropically and can scatter again, repeatedly, according to the same scattering law. This repeated scattering and transport results in a probability distribution function of the form
$F(\vec{x}, \vec{u}, s) \mathrm{d} \vec{x} \mathrm{~d} \vec{u} \mathrm{~d} s$
which you will develop stochastically through a Monte Carlo program. The variable s is a measure of total pathlength traveled, i.e. $s=\sum_{i}^{N(s)} s_{i}$. Note that the number of interactions $N(s)$ is a probabilistic quantity.
(a) Consider the following moments:

- $\langle x\rangle \pm \sigma_{\langle x\rangle}$ (i.e. average $\left.x\right)$
- $\langle y\rangle \pm \sigma_{\langle y\rangle}$ (i.e. average y)
- $\langle z\rangle \pm \sigma_{\langle z\rangle}$ (i.e. average z)
- $\langle x \vec{u} \cdot \hat{x}\rangle \pm \sigma_{\langle x \vec{u} \cdot \hat{x}\rangle}$ (i.e. average correlation of x with the x-axis direction cosine)
- $\langle y \vec{u} \cdot \hat{y}\rangle \pm \sigma_{\langle y \vec{u} \cdot \hat{y}\rangle}$ (i.e. average correlation of y with the y-axis direction cosine)
- $\langle z \vec{u} \cdot \hat{z}\rangle \pm \sigma_{\langle z \vec{u} \cdot \hat{z}\rangle}$ (i.e. average correlation of z with the z-axis direction cosine)
- $\langle x y\rangle \pm \sigma_{\langle x y\rangle}$ (i.e. average correlation of x and y)
- $\langle x z\rangle \pm \sigma_{\langle x z\rangle}$ (i.e. average correlation of x and z)
- $\langle y z\rangle \pm \sigma_{\langle y z\rangle}$ (i.e. average correlation of y and z)
- $\left\langle x^{2}\right\rangle \pm \sigma_{\left\langle x^{2}\right\rangle}$ (i.e. average x^{2})
- $\left\langle y^{2}\right\rangle \pm \sigma_{\left\langle y^{2}\right\rangle}$ (i.e. average y^{2})
- $\left\langle z^{2}\right\rangle \pm \sigma_{\left\langle z^{2}\right\rangle}$ (i.e. average z^{2})

Which moments would you expect to be zero? Why?
Which moments would you expect to be equal to each other? Why?
(b) For $\Sigma_{0}=1$ and $\lambda \equiv \Sigma_{0} s=0.001,0.002,0.0050 .01,0.02,0.05,0.1,0.2,0.5,1,2,5,10,20,50$, $100,200,500,1000$, tally the above moments, their estimated errors, alongside their theoretical predictions.
Plot the results divided by λ^{n} as a function of $\log (\lambda) . n$ is some power of n such that the correct small and large pathlength asymptotic forms (according to Equations (9.32)-(9.45)) divided by this λ^{n}, is a constant. (e.g. $\left\langle z^{2}\right\rangle / \lambda^{2}$ would be expected to go to the constant 1 for small λ and $\left\langle z^{2}\right\rangle / \lambda$ would be expected to go to the constant $2 / 3$ for large λ.) If you expect the moment to be zero (on average), set $n=0$. Verify that both the $\lambda \longrightarrow 0$ and the $\lambda \longrightarrow \infty$ limits discussed in this chapter are reached.

