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Introduction

As applied to radiation transport applications in radiotherapy and dosimetry, the Monte
Carlo method provides a numerical solution to the Boltzmann transport equation that em-
ploys directly the fundamental microscopic physical laws of electron-atom and photon-atom
interactions. The fluences of individual particle tracks are faithfully reproduced within our
knowledge of the physical laws—the scattering and absorption cross sections. Macroscopic
features of the radiation fields, for example the average track-length per incident photon in a
given volume of space, is computed as an average over many individual particle simulations.
If the true average T exists and the distribution in x has a true finite variance, o2, the Central
Limit Theorem (Lindeberg 1922; Feller 1967) guarantees that the Monte Carlo estimator for
7, that we shall call (z), can be made arbitrarily close to T by increasing the number, N,
of particle histories simulated. Moreover, the Central Limit Theorem predicts that the dis-



tribution of (z) is Gaussian characterized by a variance a?x> that may be estimated simply
in the simulation. The Central Limit Theorem also predicts that in the limit N — oo,
a<21> — 0. This limiting result is also proven by the Strong Law of Large Numbers (Feller
1967).

These are very powerful and compelling facts, which have been partly responsible for the
geometric increase in the use of the Monte Carlo method in radiotherapy and dosimetry
applications (Nahum 1989), a trend that has continued since Nahum'’s review article. If one
knows the governing physical laws to sufficient accuracy and has access to sufficient com-
puting resources, then the answer to any well-posed physical question may be computed.
Fortunately, the physical laws required for most applications in radiotherapy and dosimetry
are well known. They are the results of Quantum Electrodynamics (QED) (Bjorken and
Drell 1964; Bjorken and Drell 1965; Sakurai 1967), one of the most successful theories of
Theoretical Physics. Additionally, the computer resources required for most of our appli-
cations are modest and may be executed to sufficient accuracy on run-of-the-mill desktop
computers and workstations. At the time when this article is being written, this confluence
of theory and computational ability is putting the Monte Carlo method into the standard
toolbox of the research medical physicist.

There are, of course, significant technical obstacles to be overcome. However, these obstacles
are surmountable. The point of this article is to demonstrate the power and utility of the
Monte Carlo method without the necessary detail that would be considered in a much more
lengthy article. Fortunately, there are some excellent detailed reviews on this topic (Rogers
and Bielajew 1990; Mackie 1990; Andreo 1991). The reader should bear in mind that
an application with tens of thousands of volume elements and many different materials to
describe a simulation geometry is only slightly more complicated than a simple two-medium
interface problem. More organization and computer coding is required, but the technical
ability to solve the simpler problem empowers one with the ability to solve the more complex
problem.

A brief history of Monte Carlo

Usually, the first reference to the Monte Carlo method is that of Comte de Buffon (1777)
who proposed a Monte Carlo-like method to evaluate the probability of tossing a needle onto
a ruled sheet. This reference goes back to 1777, well before the contemplation of automatic
calculating machines. Buffon calculated that a needle of length L tossed randomly on a
plane ruled with parallel lines of distance d apart where d > L would have a probability

2L

= 1
p=— (1)
A computer simulation of 50 needles (where d/L = 2) on a finite grid of 5 lines is shown in

Figure 1.
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Figure 1: A computer simulation of the Buffon needle problem.

Much later, Laplace (1886) suggested that this procedure could be employed to determine the
value of 7, albeit slowly. Several other historical uses of Monte Carlo predating computers
are cited by Kalos and Whitlock (1986). The modern Monte Carlo age was ushered in by
von Neumann and Ulam during the initial development of thermonuclear weapons'. Ulam
and von Neumann coined the phrase “Monte Carlo” and were pioneers in the development
of the Monte Carlo technique and its realizations on digital computers?.

!The two books by Richard Rhodes, The making of the Atomic Bomb and Dark Sun are excellent historical
sources for this period.

2Despite their chequered history, thermonuclear weapons have never been deployed in conflict. So Monte
Carlo calculations have not been employed in a destructive way. In contrast, Monte Carlo calculations are
employed for beneficial purposes, such as in the prediction of dose in cancer treatments (Bielajew 1994) and
should be credited with saving lives.



Photon interaction processes

The photon interaction processes that should be modeled by a Monte Carlo code designed
for applications in radiotherapy and dosimetry are:

e Pair production in the nuclear and atomic fields (Davies, Bethe, and Maximon 1954;
Motz, Olsen, and Koch 1969; Tsai 1974)

e Compton scattering from atomic electrons (incoherent scattering) (Klein and Nishina
1929; Compton and Allison 1935)

e Photoelectric absorption and photoelectron production (Sauter 1931)

e Rayleigh scattering from atomic and molecular fields (coherent scattering) (Rayleigh
1871)

These processes are reviewed in systematic detail by Evans (1955) and in somewhat more
approachable manner by others (Johns and Cunningham 1983; Attix 1986; Shultis and Faw
1996). Tables of photon cross sections are tabulated by Hubbell and @verbg (1979).

We now consider the relative importance of the various processes involved for materials
common to radiotherapy applications. For water and bone, the relative strengths of the
photon interactions versus energy are shown in Figure 2, along with the mean free path,
the average distance a photon travels before interacting via one of the interaction processes
just discussed. For these materials we note three distinct regions of single interaction dom-
inance: photoelectric below 20 keV, pair above 30 MeV and Compton in between. The
Rayleigh interaction is about an order of magnitude smaller. Note that the material compo-
sition of water and bone is quite different. Water is a molecule with molecular composition
H,0O and density of 1.00 g/cm?®. The bone composition employed in the creation of Fig-
ure 2 was (H:0.034|C:0.155|N:0.042|0:0.435|Na:0.001|Mg:0.002|P:0.103]S:0.003000|Ca:0.225)
by weight fractions with a density of 1.92 g/cm?3. Figure 2(a) shows a subtle narrowing of
bone’s Compton dominant region, with somewhat more photoelectric and pair contributions
from bone’s higher-Z components. When the mean free path is presented in units of g/cm?,
we see that the mean free path in bone is almost the same between 100 keV and 10 MeV
and higher outside of this range. These differences may be modeled quite easily with Monte
Carlo methods.

We also note from Figure 2(b) that the interaction distances of photons in the energy range
10 keV < E, < 40 MeV is O(cm) for common low-Z materials. This means that if one
considers the transport of 4’s alone, it is feasible, with modest computational resources, to
simulate many millions of particle histories. This is because the v’s will interact only a few
times in macroscopic objects, such as a radiation measuring device, a tank of water, or a
human being being treated with radiotherapy?.

3Monte Carlo based treatment planning requires of the order of 108-10° photon histories.
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Figure 2: (a) Components of the photon cross section in water and bone, (b) Mean free
path of photons in water and bone. [Data extracted from the EGS4 code system (Nelson,
Hirayama, and Rogers 1985).]



Electron interaction processes

The electron and positron interaction processes that should be modeled by a Monte Carlo
code designed for applications in radiotherapy and dosimetry are:

e Mpller scattering of electrons from atomic electrons (Mgller 1932),

e Bhabha scattering of positrons from atomic electrons (Bhabha 1935),

e Bremsstrahlung photon creation in the nuclear and atomic fields (Koch and Motz 1959;
Tsai 1974),

e Positron annihilation with atomic electrons (Heitler 1954),

e Elastic scattering of electrons and positrons from nuclei (Mayol and Salvat 1997),

e Excitation of atoms and molecules by electrons and positrons.

Figure 3 presents the electron mean free paths for the elastic, ionization, excitation and
bremsstrahlung interactions in oxygen. We note that the distance to an interaction in the
relativistic region (greater than, say, 1 MeV) is in the 107°-10=% g/cm?. The range of a 10
MeV electron in oxygen is 5.6 g/cm?. This means, for example, that a relativistic electron
must undergo 10°-10° interactions before slowing down. A typical electron is completely
slowed down in a typical simulation geometry. This means that each one of the 105-10°
interactions would have to be simulated for each electron history! This form of calculation
is called analog simulation and requires Teraflop computational resources for most practical
problems.

Fortunately, there is a practical solution to this problem, first pioneered by Berger (Berger
1963). Berger called his technique Condensed History Electron Transport. 1t is based on the
realization that while electrons undergo many interactions, relatively few of these interactions
cause a great deal of energy loss or directional change. The effect of most of these interaction
is small, involving little energy loss or small angular deflections. Therefore, one can combine
the effect of these small-effect interactions into single virtual large-effect interactions. These
large-effect interactions can be predicted theoretically through cumulative-event theories.
For energy losses, there is the continuous slowing down (CSD) method with the energy loss
being characterized by the stopping power (Bethe 1930; Bethe 1932; Bloch 1933) or by
distributions that are a function of the length of the electron path (Landau 1944; Vavilov
1957). The effect of cumulative elastic scattering events are predicted by several “small-
angle” theories (Bothe 1921b; Bothe 1921a; Wentzel 1922; Eyges 1948; Moliere 1947; Moliere
1948; Bethe 1953) although these are now losing favor to the “any-angle” theory of Goudsmit
and Saunderson (1940a, 1940b). All of these theories require single-event elastic scattering
models. The Goudsmit—Saunderson approach is favored because it can be employed to use
any cross section. In particular, elastic cross section calculations using partial-wave analysis
are becoming quite sophisticated (Salvat and Mayol 1993a; Salvat and Mayol 1993b; Mayol
and Salvat 1997) and are being adopted in advanced Monte Carlo algorithms. Fortunately,
the elastic scattering that produces the angular deflections produces no energy loss and is
not strongly dependent on energy. Additionally, the energy-loss process produces very little

6
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Figure 3: Electron elastic, ionization, excitation and bremsstrahlung cross sections in Oxy-
gen. [Data derived from the Lawrence Livermore Evaluated Electron Data Library (Perkins,
Cullen, and Seltzer 1991).]

angular deflection. Therefore, these two process nearly decouple, making the theoretical
development somewhat simplified and the construction of algorithms somewhat easier. (High
accuracy approaches have to consider this coupling and treat it carefully (Kawrakow and
Bielajew 1998b; Kawrakow and Bielajew 1998a).

Recently, the Condensed History Method (CHM) has been put on a stronger theoretical
footing by Larsen (Larsen 1992), who showed that CHM converges to the exact solution of
the Boltzmann transport equation in the limit the electron pathlengths are made small. This
is actually a warning that the CHM is an approzimation and its use can lead to calculational
artefacts when applied outside of its range of validity (Bielajew, Rogers, and Nahum 1985;
Bielajew and Rogers 1989; Seltzer 1991). This has led to the development of high-accuracy
CHM'’s (Bielajew and Rogers 1987; Seltzer 1991; Ferndndez-Varea, Mayol, Bard, and Salvat
1993; Kawrakow and Bielajew 1998a). Research in this area remains quite active.



The benefits of adopting the CHM is evident in the “partial” mean free paths depicted in
Figure 4.

In this figure the mean free path to a bremsstrahlung interaction and a Mgller interaction
(0-creation event) are shown for secondary particle thresholds of 1, 10 and 100 keV. The
analog Monte Carlo method is employed for interactions that produce secondary particles
above the thresholds. The CSD or other energy-loss methods are employed for the sub-
threshold events. We note that higher thresholds produce longer mean free paths and more
efficient calculation. This is traded for a loss of information on particle fluences below the
thresholds. These thresholds become important parameters that a Monte Carlo practitioner
must select depending on the application. Selection of these thresholds (and other parameters
like electron pathlength) becomes one of the “skills” of the Monte Carlo user. Further
information on these parameters is best obtain from the extensive literature describing the
various general-purpose Monte Carlo codes available, such as EGS4 (Nelson, Hirayama, and
Rogers 1985; Bielajew, Hirayama, Nelson, and Rogers 1994), ETRAN (Seltzer 1989; Seltzer
1991), ITS (Halbleib and Mehlhorn 1984; Halbleib 1989; Halbleib, Kensek, Mehlhorn, Valdez,
Seltzer, and Berger 1992), MCNP (Briesmeister 1986; Briesmeister 1993; Briesmeister 1997),
and PENELOPE (Bard, Sempau, Fernandez-Varea, and Salvat 1995; Salvat, Fernandez-
Varea, Bard, and Sempau 1996; Sempau, Acosta, Bard, Fernandez-Varea, and Salvat 1997).

Coupled electron-photon transport

The process by which coupled electron-photon transport is carried out is described in Fig-
ure 5.

In Figure 5(a) the simulation geometry is depicted by the outer rectangular box. Photons are
represented by straight dashed lines, electrons and positrons by solid curves. A photon starts
the simulation by insertion, I, into the simulation geometry. It undergoes a pair interaction
P producing an e"e™ pair. The electron track (on the left) undergoes a bremsstrahlung
interaction at B. Following the photon we see that there is a Compton interaction at C.
The resulting electron is then transported until it runs out of energy at X. The photon
undergoes a Rayleigh interaction at R and is then absorbed in a photoelectric event at Ph.
The photoelectron escapes the simulation geometry at E. Returning to the initial electron, it
undergoes a Mgller interaction at M. Both the electron and its knock-on are then transported
until their end-of range at the X’s. The positron that was born in the pair interaction at P
undergoes a bremsstrahlung interaction at B, followed by a Bhabha interaction at Bh. The
electron from B reaches its end-of-range at X. The positron eventually annihilates, producing
two back-to-back annihilation quanta that escape the simulation geometry at their respective
E’s. We now focus in on the details of the CHM depicted in Figure 5(b). At each one of the
vertices, represented by a solid circle, the positron changes direction. (Electron and positron
transport in the CHM are essentially the same.) The deposition of energy according to the
CSD or other models can be considered to happen anywhere along the track segments.
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Figure 4: Mean free path to a bremsstrahlung interaction (a) or a Mgller interaction (b)

for different thresholds (Data extracted from the EGS4 code system (Nelson, Hirayama, and
Rogers 1985).)
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Mathematical methods of Monte Carlo

Before concluding this chapter, we will discuss some of the basic mathematics of the Monte
Carlo method. A complete discussion would involve a discussion of random number genera-
tion (RNG), sampling theory, displacements and rotations, estimating means and variances,
and geometry. With insufficient space remaining, we will reference most of the requisite
material.

Random Number Generation

We shall assume that we have a good source of random numbers. Much mathematical study
has been devoted to RNG (Ehrman 1981; Knuth 1981; James 1988). These three references
are excellent reviews of RNG theory and methods up to about 1987. The following references
contain more modern material (Marsaglia, Zaman, and Tsang 1990; Marsaglia and Zaman
1991; Liischer 1994; James 1994; Knuth 1997). It must also be noted that random number
generation is an area of active research. Information that was given last year may be proven
to be misleading this year. The best way to stay in tune is to track the discussions concerning
this topic on the web sites of organizations for which random number generation is critical.
A particularly good site is CERN’s site (www.cern.ch). CERN is the European Laboratory
for Particle Physics. Monte Carlo applications are quite important in particle physics.

Elementary Sampling Theory

Assume that we have a probability function p(x) that is normalized over some range between
a and b, that is,

/abdx’ pla)=1. (2)

We now construct its cumulative probability distribution function:

clw) = [ da/ pla) (3)

that is nondecreasing and bounded between 0 and 1. It can be shown that a variable x
is distributed randomly according to p(x) if we select x’s according to the inverse of ¢(z)
according to

r=c(e), )

where ¢ is a uniformly distributed random number between 0 and 1.

For example, it can be shown that the distance to an interaction can be sampled from:

r=-%"log(1¢), (5)
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where Y71 is the macroscopic cross section. This follows directly from the probability dis-
tribution for interaction distances,

p(x) =Yexp(—Xz) 0<zx<oc0. (6)

We note that the function inversion technique implicit in Equation 4 may not always be
possible analytically, but it is always possible numerically! Other sampling techniques are
discussed elsewhere (Nelson, Hirayama, and Rogers 1985; Bielajew 1993).

Displacements and rotations

Ray tracing (displacement and rotation) is carried out using very simple geometrical con-
structs. Given that a particle has a position 7 and direction iy and distance to travel s,
the new position, 7, is given by:

T = .’Eo + ’J()S s (7)

where @y = (ug, v, wy) = (sin by cos ¢y, sin by sin ¢, cosby), 6y and ¢y are the polar and
azimuthal angles respectively.

Rotation after a scattering by polar angle © and azimuthal angle ® is carried out via the
rotation:

u=sinfcos¢p = ugcosO + sin O(wycos P cos ¢y — sin P sin ¢y) ,
v=sinfsing = vycosO + sin O(wg cos P sin Pg + sin P cos ¢y)
w = cos 0 = wpcos® —sinOsinfycos P | (8)

that provides the new direction for the particle after a scattering.

Estimating means and variances

The conventional approach to calculating the estimated error is as follows:

e Assume that the calculation calls for the simulation of N particle histories.

e Assign and accumulate the value z; for the score associated with the i’th history, where
1 <i < N. Assign as well the square of the score xf for the 7’th history.

e Estimate the mean value of x:

@)=y L ©

12



e Estimate the variance associated with the distribution of the x;:

e The estimated variance of (z) is the standard variance of the mean:

2 S2
Sty = N (11)
Note that it is the error in (x) we are seeking, not the “spread” of the distribution of

the Z;.

e Report the final result as (x) = %s.

The Central limit Theorem interpretation is that (x) satisfies [T — ()| < s(5) 68% of
the time.

Geometry

Geometrical elements are made up of regions of space bounded by planes and quadric surfaces
(spheres, cylinders, etc). The essential problem is to determine the smallest intercept distance
along the forward flight direction to one of the bounding surfaces. A well-defined prescription
for doing this (Nelson and Jenkins 1987; Bielajew 1995) is summarized below.

Borrowing from the notation of Olmsted (1947), an arbitrary quadric surface in 3(x,y,z)-
space? can be represented by:

f(@) =" ayziz; =0. (12)

1,7=0

The a;;’s are arbitrary constants and the 4-vector x; has components (1, z,y, z). The zeroth
component is unity by definition ,allowing a very compact representation and a;; is symmetric
with respect to the interchange of 7 and j, that is a;; = aj;. Equation 12 is very general
and encompasses a wide variety of possibilities, including solitary planes (e.g. only ag; non-
zero), intersecting planes (e.g. only aj; and age non-zero), cylinders (circular, elliptical,
parabolic and hyperbolic), spheres, spheroids and ellipsoids, cones (circular and elliptical),
hyperboloids of one and two sheets and elliptic and hyperbolic paraboloids. These surfaces
can be combined to make geometrical objects of great complexity and are extremely useful
in Monte Carlo modeling of physical objects.

Despite having apparently 10 independent constants, Equation 12 represents only 10 inde-
pendent real surfaces (including the simple plane), unique after a translation and rotation

4The only variance with Olmsted’s notation is that the 4™ component is labelled as the 0" component
in this work.
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to standard position. The three cross terms (a;; for ¢ # j and 4, j > 1) can be eliminated
by rotation. The resultant equation then only involves terms like 2? and z;. In addition,
providing that a given variable’s quadratic constant is non-zero, the linear terms can be
eliminated by a translation. The result is that there are only two generic forms:

F@) = e +e=0, (13)
i=1
and )
(@) =" aai +bas = 0. (14)

i=1
Equations 13 and 14 describe only 10 distinct possibilities with real solutions.
1. ellipsoids: ajz? + a3z + aja3 — ¢ = 0.
2. cones: a?r? + alri — a3zl = 0.
3. cylinders: aiz? + a3z3 — ¢ = 0.

4. hyperboloids of one sheet: a?z? + a3z3 — ajz3 — 2 = 0.

5. hyperboloids of two sheets: a?r? + ax3 — a3z + ¢ = 0.

6. elliptic paraboloids: ajz? + a3z3 + azzz = 0.

7. hyperbolic paraboloids: ajz? — a3z3 + azxs = 0.

8. hyperbolic cylinders: a?z? — a3z3 + ¢ = 0.

9. parabolic cylinders: a?z? + azrs = 0.

10. simple planes: asx3 + ¢ = 0.

There are other imaginary surfaces (e.g. imaginary ellipsoids a?z? + a3z3 + a3z + ¢ =
0) that we will not consider, nor will we consider quadrics that can be made up of two

independent planes in various orientations (e.g. intersection planes a?x? — a2x3 = 0, parallel

2.2 2 _ . 2,2 _
planes ajzi — ¢* = 0, and coincident planes ajz] = 0).

For more information on the reduction to canonical form, the reader is encouraged to read
Olmsted’s book (1947). Olmsted also gives the classification of the surfaces and lists the
entire set of 17 canonical quadric forms.

To calculate the intercept distance to an arbitrary quadric surface, consider that the particle’s
trajectory is given by:
=+ jis (15)



where the starting position of the particle is = (ps, py, p.). A positive value of s expresses
a distance along the direction that the particle is going (forward trajectory) and a negative
value is associated with a distance that the particle came from (backward trajectory). Thus,
negative solutions that are found for s below will be rejected.

In Monte Carlo particle transport calculations as well as ray-tracing algorithms, a common
problem is to find the distance a particle has to travel in order to intersect a surface. This
is done by substituting for ¥ from Equation 15 in Equation 12 to give:

3 3 3
s (Z az‘jﬂiﬂj) + 2s (Z az‘jPz‘Mj) + (Z aijpipj) =0, (16)

1,7=0 1,7=0 1,7=0

where we have adopted the convention that pg = 0 and py = 1. This is a quadratic equation
in s of the form A(ji)s® + 2B(ji,p)s + C(p) = 0 where A(ji) = X7 ;o aspipj, B, p) =
Z?,jzo a;pip; and C(p) = Z?,j:O QijPilj-

The intercept distance is given by the smallest positive solution of the above quadratic
equation.

Conclusion

This chapter merely skims the surface of the Monte Carlo method as applied to radiotherapy
and dosimetry. However, we can not overstate the simplicity of the approach and the powerful
conclusions. With sufficient computational resources, we can answer any well-posed question
as accurately as our knowledge of the basic cross sections allows us. Other approaches suffer
from systematic uncertainties that may be impossible to estimate. However, these methods
may be useful if the computational time for a Monte Carlo approach is prohibitive. The
phrase Don’t be in a hurry to get the wrong answer! is relevant in this respect®. If a
computation is feasible by Monte Carlo methods, one is not required to estimate systematic
errors, and one may proceed with some confidence to tackle other problems. If one factors in
the human effort, ultimately the Monte Carlo approach may prove to be the most productive.

®According Dermott (Red) Cullen of Lawrence Livermore National Laboratory (LLNL), the originator
of this expression, in reference to Monte Carlo calculations, was Bob Howerton (LLNL, ca. 1974) who said
“Obviously, we are never in a rush for the wrong answer.” However, Red Cullen’s paraphrase “Don’t be in
a hurry to get the wrong answer!” seems somewhat preferable to this author.—AFB
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