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Chapter 2

Elementary probability theory

Fundamental to the understanding of the Monte Carlo method and interpretion of its results,
is a basic understanding of elementary probability theory. In this chapter we introduce some
elementary probability theory to facilitate later discussions, and establish some notation.

2.1 Continuous random variables

2.1.1 One-dimensional probability distributions

A probability distribution function on x, p(x), also known as a “pdf”, or “PDF”, is a measure
of the likelihood of observing x over some range, xmin ≤ x ≤ xmax. For example, if x
is the distance from its point of creation, at which a photon interacts via the Compton
interaction, the statement p(x1) = 2p(x2) means that an observation of x in a differential
interval x1 ≤ x ≤ x1+dx is twice as likely to be observed than in an interval x2 ≤ x ≤ x2+dx,
in the limit that dx goes to zero. An example pdf, p(x) = exp(−x), is shown in Figure 2.1.

A pdf has necessary properties:

• p(x) ≥ 0 ∀ xmin ≤ x ≤ xmax.
Negative probabilities have no interpretation in our context.

• p(x) must be normalizable, and is normalized in the following fashion:

∫ xmax

xmin

dx p(x) = 1 . (2.1)

• −∞ < xmin < xmax < +∞, that is, xmin and xmax can be any real number, including
±∞, so long as xmin < xmax.
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Figure 2.1: The pdf p(x) = exp(−x). p(ln 2) = 2p(ln 4)

These are the only restrictions on p(x). Note that the statement of normalization above
implies that p(x) is integrable over its range of definition. The pdf may be discontinuous
and even infinite. For example, p(x) = aδ(x − x1) + (1 − a)δ(x − x2) ∀ |x| < ∞, where δ()
is the Dirac delta function, is an example of a properly defined pdf.

Cumulative distribution functions

Associated with every pdf, is its cumulative distribution function, c(x), also known as the
“cdf”, or “CDF” The cdf is computed below:

c(x) =

∫ x

xmin

dx p(x) , (2.2)

and has the property:

c ′(x) = p(x) . (2.3)
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The cdf has a critical role to play in Monte Carlo methods. In this chapter we shall illustrate
by example.

Moments of probability distribution functions

Certain probability functions can be characterized in terms of their integer moments,

〈xn〉 =

∫ xmax

xmin

dx xnp(x) ∀ n ≥ 0 ∧ n ∈ N ,

〈x0〉 = 1 (by definition) . (2.4)

However, the existence of these moments is not guaranteed nor even necessary. When 〈x〉
does exist, it is given the symbol µ, the average value of the probability distribution. When
both 〈x〉 and 〈x2〉 exist, the variance associated with the probability function may be defined
to be:

var{x} = σ2 = 〈x2〉 − 〈x〉2 , (2.5)

where σ is a measure of the “width” of the probability distribution, measured in the same
units as µ. var{x} is zero for the Dirac delta function and greater than zero for all other
probability distribution functions, even combinations of delta functions.

Examples of probability distributions

The δ-function probability distribution

Consider the probability distribution,

p(x) = δ(x− x0) ∀ |x| < ∞ . (2.6)

By definition of the delta function,

∫

∞

−∞

dx p(x) = 1 ,

∫

∞

−∞

dxxn p(x) = xn
0 ∀ n ≥ 0

c(x) = Θ(x− x0) .

where Θ() is the Heaviside step function.
Note that µ = x0 and σ =

√

〈x2〉 − 〈x〉2 = 0 in this case. The pdf and cdf are shown in 2.2.
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Figure 2.2: The pdf p(x) = δ(x− x0) and its associated cdf.

The “true or false” probability distribution

Consider the “true or false” probability distribution,

p(x) = (1/2)[δ(x) + δ(x− 1)] ∀ |x| < ∞. (2.7)

This could describe a coin-flip experiment where a result of zero (or false) corresponds to
“tails” and a result of one (or true) correspondes to “heads”.

By definition of the delta function,

∫

∞

−∞

dx p(x) = 1 ,

∫

∞

−∞

dxxn p(x) =
1

2
∀ n > 0 ,

c(x) =
1

2
[Θ(x) + Θ(x− 1)] .

Note that µ = 1

2
and σ =

√

〈x2〉 − 〈x〉2 = 1

2
in this case. The pdf and cdf are shown in 2.3.
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Figure 2.3: The pdf p(x) = (1/2)[δ(x) + δ(x− 1)] and its associated cdf.

The exponential probability distribution

Consider the exponential probability distribution,

p(x) = Σ exp(−Σx) for 0 ≤ x < ∞ . (2.8)

This probability distribution is used in the decay of nuclides and determination of pathlength
distributions in particle interactions in matter. For interaction pathlength distributions, Σ
is the macroscopic cross section in an attenuating material.

Computing the characteristics of this distribution,

∫

∞

0

dx p(x) = 1 ,

∫

∞

0

dxxn p(x) =
n!

Σn
∀ n ≥ 0 ,

c(x) = 1− exp(−Σx) .

Note that µ = σ = Σ−1 in this case. The pdf and cdf are shown in 2.4.
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Figure 2.4: The pdf p(Σx) = exp(−Σx) and its associated cdf.

The Cauchy probability distribution

An example of a probability distribution function that has no moments is the Cauchy prob-
ability distribution, also known as the Lorentz, or Breit-Wigner distribution. In our context,
this distribution arises from an interesting application—the intrinsic probability distribution
of the energy of a quantum from an excited atomic state of finite lifetime.

The Cauchy probability distribution is

p(x) =
1

π

γ

γ2 + (x− x0)2
∀ |x| < ∞ . (2.9)

The Cauchy distribution has no moments, but its mode and median are x0. The parameter
γ is the half width at half maximum, since p(x0 ± γ) = 1

2
p(x0), and serves as a measure of

the width of the pdf.

The mean value of the Cauchy/Lorentz distribution can be made to be x0 if the “principle
value” of the first moment is obtained in the following way:

〈x〉 =
γ

π
lim

a−→∞

∫ a−x0

−a−x0

dx
x

γ2 + (x− x0)2

=
γ

π
lim

a−→∞

∫ a−x0

−a−x0

dx
x0 + (x− x0)

γ2 + (x− x0)2

= x0 +
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘✘✿

0
γ

π
lim

a−→∞

∫ a

−a

du
u

1 + u2
(by antisymmetry) (2.10)
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but the second moment and hence the variance can not be defined in any fashion.

Of course, this procedure would cause a mathematician to have conniptions! However,
infinities in physical applications can usually be rationalized by physical argument.

The Cauchy pdf, being a proper probaility function, has the cdf:

c(x) =
1

2
+

arctan(x−x0

γ
)

π
. (2.11)

The Cauchy pdf and cdf for x0 = 0 and γ = 1 are shown in 2.5. The pdf was denormalized
for display purposes.
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Figure 2.5: The Cauchy pdf and its associated cdf for x0 = 0 and γ = 1.

A generalized Cauchy probability distribution

A generalized Cauchy probability distribution1 is

pm(x) =
Γ(m)

γ
√
π Γ(m− 1/2)

[

γ2

γ2 + (x− x0)2

]m

∀ |x| < ∞∧m >
1

2

cm(x) =
1

2
+

Γ(m)√
π Γ(m− 1/2)

(

x− x0

γ

)

2F1

[

1

2
, m;

3

2
;−

(

x− x0

γ

)2
]

, (2.12)

1A standard version of the generalized Cauchy distribution does not yet exist, though there is some
literature to be found on this topic. For this book, we will consider this form, and exploit it to illustrate
aspects of moments.
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where the properties of the gamma function that would be used in the evaluation of (2.12)
for m ≥ 1 and half-integral are:

Γ(m+ 1) = nΓ(n) recursive formula for Γ()

Γ(1/2) =
√
π

Γ(1) = 1

Γ(m) = (m− 1)!

Γ(m+ 1) = m!

Γ(2m− 1) =
√
π
1 · 3 · 3 · · · (2m− 1)

2m

(2m− 1)!! =
√
π
(2m− 1)!!

2m

The generalized Cauchy distribution has its mode and median are x0. There exist exactly
⌊2(m− 1)⌋ moments for this distribution.2 After centering the distribution, u = x− x0,

pm(u) =
Γ(m)

γ
√
π Γ(m− 1/2)

[

1

γ2 + u2

]m

∀ |u| < ∞∧m >
1

2

cm(u) =
1

2
+

Γ(m)√
π Γ(m− 1/2)

(

u

γ

)

2F1

[

1

2
, m;

3

2
;−

(

u

γ

)2
]

〈un〉 =
γn[1 + (−1)n]Γ

(

n+1

2

)

Γ
(

m− n+1

2

)

2
√
π Γ

(

m− 1

2

) ∀ n < 2m− 1 (2.13)

(2.14)

From (2.14) one can readily compute the moments of x using:

〈un〉 = 〈(x− x0)
n〉 (2.15)

2⌊2(m− 1)⌋ rounds to an integer in the direction of −∞.
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10 CHAPTER 2. ELEMENTARY PROBABILITY THEORY

The Rutherfordian probability distribution

Another interesting probability distribution function of great importance in the simulation
of electron transport is the screened Rutherford or Wentzel distribution function:

p(µ) =
a(2 + a)

2

1

(1− µ+ a)2
; − 1 ≤ µ ≤ 1, (2.16)

where µ is the cosine of the scattering angle, cosΘ.

The Rutherfordian probability distribution (small-angle form)

The conventional small-angle form of the screened Rutherford or Wentzel distribution func-
tion is:

p(Θ) = 4a
Θ

(Θ2 + 2a)2
; 0 ≤ Θ < ∞, (2.17)

Its first moment exists, 〈Θ〉 = π
√

a/2 but its second moment is infinite! This strange
behavior, the nonexistence of an angular variance is responsible for the theory of electron
transport being so problematic. Of course, one could restrict the range of integration to
physical angles, 0 ≤ Θ ≤ π, but the problems persist.

2.1.2 Two-dimensional probability distributions

Consideration of two and higher-dimensional probability distributions follows from a gen-
eralization of one-dimensional distributions with the added features of correlation between
observables and conditional probabilities.

Consider a two-dimensional (or joint) probability function p(x,y). A tangible example is the
distribution in energy and angle of a photon undergoing an inelastic collision with an atom3.

Another example is the two-dimensional probability distribution presented in Figure 2.7.
The meaning of two-dimensional probability distributions is as follows: Hold one variable,
say x fixed, and the resulting distribution is a probability distribution function in the other
variable, y. It as if you cut through the two-dimensional probability distribution at a given
point in x and then displayed the “cross cuts”. Several examples of these cross cuts are
shown in Figure 2.8.

The notions of normalization and moments follow directly. Thus,

〈xnym〉 =
∫ ymax

ymin

∫ xmax

xmin

dxdy xnymp(x, y) , (2.18)

3“Inelastic” in this definition relates to the energy of the photon changing, not the energy of the atom.
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Figure 2.7: A two-dimensional probability function f(x, y)

with the normalization condition 〈x0y0〉 = 1, the only “moment” that must be defined.
Higher order moments may or may not exist. If they exist, we define the covariance:

cov{x, y} = 〈xy〉 − 〈x〉〈y〉 , (2.19)

which can be positive or negative. Note that cov{x, x} = var{x}.
The covariance is a measure of the independence of observing x or y. If x and y are inde-
pendent random variables, then p(x, y) = p1(x)p2(y) and cov{x, y} = 0. A related function
is the correlation coefficient:

ρ{x, y} =
cov{x, y}

√

var{x}var{y}
, (2.20)

where −1 ≤ ρ{x, y} ≤ 1.

Some interesting relations involving the variances and the covariances may be found. For
example,

var{x± y} = var{x}+ var{y} ± 2 cov{x, y} , (2.21)
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Figure 2.8: Cross cuts of the two-dimensional probability function given in Figure 2.7.

or simply var{x}+ var{y} if x and y are independent.

The marginal probabilities are defined by integrating out the other variables.

m(x) =

∫ ymax

ymin

dy p(x, y) ; m(y) =

∫ xmax

xmin

dx p(x, y) . (2.22)

Note that the marginal probability distributions are properly normalized. For the example
of joint energy and angular distributions, one marginal probability distribution relates to the
distribution in energy irrespective of angle and the other refers to the distribution in angle
irrespective of energy. This the joint probability distribution function may be written:

p(x, y) = m(x)p(y|x) , (2.23)

where the conditional probability is defined by

p(y|x) = p(x, y)

m(x)
. (2.24)
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The interpretation of the conditional probability is that given x, what is the probability
that y occurs. The appearance of m(x) in the denominator guaranteed the normalization of
p(y|x).

2.1.3 Cumulative probability distributions

Associated with each one-dimensional probability distribution function is its cumulative
probability distribution function

c(x) =

∫ x

xmin

dx′ p(x′) . (2.25)

Cumulative probability distribution functions have the following properties which follow
directly from its definition and the properties of probability distribution functions:

• p(x) and c(x) are related by a derivative:

p(x) =
dc(x)

dx
, (2.26)

• c(x) is zero at the beginning of its range of definition

c(xmin) = 0 , (2.27)

• and unity at the end of its range of definition

c(xmax) = 1 , (2.28)

• c(x) is a monotonically increasing function of x as a result of p(x) always being positive
and the definition of c(x) in Equation 2.25.

Cumulative probability distribution functions can be related to uniform random numbers
to provide a way for sampling these distributions. We will complete this discussion in
Chapter ??.

Cumulative probability distribution functions for multi-dimensional probability distribution
functions are usually defined in terms of the one-dimensional forms of the marginal and
conditional probability distribution functions.

2.2 Discrete random variables

A more complete discussion of probability theory would include some discussion of discrete
random variables. An example would be the results of flipping a coin or a card game. We
will have some small use for this in Chapter ?? and will introduce what we need at that
point.



Bibliography

[BHNR94] A. F. Bielajew, H. Hirayama, W. R. Nelson, and D. W. O. Rogers. His-
tory, overview and recent improvements of EGS4. National Research Council
of Canada Report PIRS-0436, 1994.

[Bie94] A. F. Bielajew. Monte Carlo Modeling in External Electron-Beam Radiother-
apy — Why Leave it to Chance? In “Proceedings of the XI’th Conference on
the Use of Computers in Radiotherapy” (Medical Physics Publishing, Madison,
Wisconsin), pages 2 – 5, 1994.

[Bie95] A. F. Bielajew. EGS4 timing benchmark results: Why Monte Carlo is a viable
option for radiotherapy treatment planning. In “Proceedings of the International
Conference on Mathematics and Computations, Reactor Physics, and Environ-
mental Analyses” (American Nuclear Society Press, La Grange Park, Illinois,
U.S.A.), pages 831 – 837, 1995.

[BR92] A. F. Bielajew and D. W. O. Rogers. A standard timing benchmark for EGS4
Monte Carlo calculations. Medical Physics, 19:303 – 304, 1992.

[BW91] A. F. Bielajew and P. E. Weibe. EGS-Windows - A Graphical Interface to EGS.
NRCC Report: PIRS-0274, 1991.

[dB77] G. Comte de Buffon. Essai d’arithmétique morale, volume 4. Supplément à
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Problems

1. Which of the following are candidate probability distributions? For those that are not,
explain. For those that are, determine the normalization constant N . Those that are
proper probability distributions, accompanied by mathematical proof, which contain
moments that do not exist?

(a) f(x) = N exp(−µx) 0 ≤ x < ∞
(b) f(x) = N exp(−µx) 0 ≤ x < Λ/µ where µ,Λ are positive, real constants
(c) f(x) = N sin(x) 0 ≤ x < π
(d) f(x) = N sin(x) 0 ≤ x < 2π
(e) f(x) = N/

√
x 0 ≤ x < 1

(f) f(x) = N/
√
x 1 ≤ x < ∞

(g) f(x) = Nx/(x2 + a2)3/2 0 ≤ x < ∞

2. Verify that Equations 2.9, 2.16, and 2.17 are true probability distributions.

3. Consider the probability distribution,

p(x) = (1/2)[δ(x− a) + δ(x− b)] ∀ |x| < ∞.

What are all the moments of this distribution?

4. Consider the probability distribution,

p(x) = N [Θ(x− a)−Θ(x− b)] . ∀ |x| < ∞.

Can this be a proper pdf? If so, what is N . Does it matter what the relative values of
a and b are? What are all the moments of this distribution?

5. Prove Equation 2.21. Simplify in the case that x and y are independent.


