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It is still an unending source of surprise for me to see how a few scribbles on a blackboard or
on a sheet of paper could change the course of human affairs.—Stan Ulam, founder of the
modern Monte Carlo method, in his 1991 autobiography

Motivating Monte Carlo

Generally speaking, the Monte Carlo method provides a numerical solution to a problem
that can be described as a temporal evolution (”translation/reflection/mutation”) of ob-
jects (“quantum particles” [photons, electrons, neutrons, protons, charged nuclei, atoms and
molecules], in the case of Medical Physics) interacting with other objects based upon object-
object interaction relationships (“cross sections”). Mimicking nature, the rules of interaction
are processed randomly and repeatedly, until numerical results converge usefully to estimated
means, moments and their variances. Monte Carlo represents an attempt to model nature
through direct simulation of the essential dynamics of the system in question. In this sense,
the Monte Carlo method is, in principle, simple in its approach—a solution to a macroscopic
system through simulation of its microscopic interactions. Therein is the advantage of this
method. All interactions are microscopic in nature. The geometry of the environment, so
critical in the development of macroscopic solutions, plays little role except to define the
local environment of objects interacting at a given place at a given time.

The scientific method is dependent on observation (measurement) and hypothesis (theory)
to explain nature. The conduit between these two is facilitated by a myriad of mathematical,
computational, and simulation techniques. The Monte Carlo method exploits all of them.
Monte Carlo is often seen as a “competitor” to other methods of macroscopic calculation,
which we will call deterministic and/or analytic methods. Although the proponents of either
method sometimes approach a level of fanaticism in their debates, a practitioner of science
should first ask, “What do I want to accomplish?” followed by “What is the most efficient
way to do it?”, and then, ”What serves science the best?”. Sometimes the correct answer will
be “Deterministic” and other times it will be “Monte Carlo”. The most successful scientist
will avail himself or herself of more than one method of approach.

There are, however, two inescapable realities. The first is that macroscopic theory, par-
ticularly transport theory, provides deep insight and allows one to develop sophisticated
intuition as to how macroscopic particle fields can be expected to behave. Monte Carlo can
not compete very well with this. In discovering the properties of macroscopic field behav-
ior, Monte Carlo practitioners operate very much like experimentalists. Without theory to
provide guidance, discovery is made via trial and error, guided perhaps, by some brilliant
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intuition.

However complexity is measured, when it comes to developing an understanding of a physical
problem, Monte Carlo techniques become, at some point, the most advantageous. A proof is
given, in the Appendix to this article, that the Monte Carlo method is the more advantageous
in the evolution of five and higher dimensional systems. The dimensionality is just one
measure of a problem’s “complexity”. The problems in RTP and Dosimetry are typically
of dimension 6.ε, or 7.ε. That is, particles move in Cartesian space, with position ~x, that
varies continuously, except at particle inception or expiration. They move with momentum,
~p, that varies both discretely and continuously. The dimension of time is usually ignored for
static problems, though it can not be for non-linear problems, where a particle’s evolution
can be affected by the presence of other particles in the simulation. (The “space-charge”
effect is a good example of this.). Finally, the ε is a discrete dimension that can encompass
different particle species, as well as intrinsic spin.

This trade-off, between complexity and time to solution is expressed in Figure 1.
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Figure 1: Time to solution using Monte Carlo vs. deterministic/analytic approaches.
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Although the name ”Monte Carlo method” was coined in 1947, at the start of the computer
age, stochastic sampling methods were known long before the advent of computers. The first
reference known to this author, is that of Comte de Buffon [1] who proposed a Monte Carlo-
like method to determine the outcome of an “experiment” consisting of repeatedly tossing a
needle onto a ruled sheet of paper, to determine the probability of the needle crossing one
of the lines. This reference goes back to 1777, well before the contemplation of automatic
calculating machines. Buffon further calculated that a needle of length L tossed randomly
on a plane ruled with parallel lines, distance d apart, where d > L, would have a probability
of crossing one of the rules lines of:

p =
2L

πd
. (1)

Much later, Laplace [2] suggested that this procedure could be employed to determine the
value of π, albeit slowly. Several other historical uses of Monte Carlo predating computers
are cited by Kalos and Whitlock [3].

The idea of using stochastic sampling methods first occurred to Ulam1, who, while convalesc-
ing from an illness, played solitaire repeatedly, and then wondered if he could calculate the
probability of success by combinatorial analysis. It occurred to him, that it would be possible
to do so by playing a large number of games, tallying the number of successful plays [5, 6],
and then estimating the probability of success. Ulam communicated this idea to von Neu-
mann who, along with Ulam and Metropolis, were working on theoretical calculations related
to the development of thermonuclear weapons. Precise calculations of neutron transport are
essential in the design of thermonuclear weapons. The atomic bomb was designed by exper-
iments, mostly, with modest theoretical support. The trigger for a thermonuclear weapon
is an atomic bomb, and the instrumentation is destroyed before useful signals can be ex-
tracted2. Von Neumann was especially intrigued with the idea. The modern Monte Carlo
age was ushered in later, when the first documented suggestion of using stochastic sampling
methods applied to radiation transport calculations appeared in correspondence between von
Neumann and Richtmyer [5, 6], on March 11, 1947. (Richtmyer was the leader of the Theo-
retical Division at Los Alamos National Laboratories [LANL].) This letter suggested the use
of LANL’s ENIAC computer to do the repetitive sampling. Shortly afterward, a more com-
plete proposal was written [8]. Although this report was declassified as late as 1988, inklings
of the method, referred to as a “mix of deterministic and random/stochastic processes”,
started to appear in the literature, as published abstracts [9, 10]. Then in 1949, Metropolis
and Ulam published their seminal, founding paper, “The Monte Carlo Method” [11], which
was the first unclassified paper on the Monte Carlo methods, and the first to have the name,
“Monte Carlo” associated with stochastic sampling.

1The direct quote from Ulam’s autobiography [4] (p 196, 1991 edition):”The idea for what was later called
the Monte Carlo method occurred to me when I was playing solitaire during my illness.”

2The book “Dark Sun”, by Richard Rhodes, is an excellent starting point for the history of that topic [7].
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Already by the 1949, symposia on the Monte Carlo methods were being organized, focus-
ing primarily on mathematical techniques, nuclear physics, quantum mechanics and general
statistical analysis. A later conference, the “Symposium on Monte Carlo Methods”, held at
the University of Florida in 1954 [12] was especially important. There were 70 attendees,
many of whom would be recognized as “founding fathers” by Monte Carlo practitioners in
the radiological sciences. Twenty papers were presented, including two involving gamma
rays, spanning 282 pages in the Proceedings. This Proceedings also includes a 95 page bibli-
ography, a grand summary of the work-to-date, with many references having their abstracts
and descriptions published in the Proceedings.

The rest, to quote an overused expression, is history. It is interesting to note the wonderful
irony: This mathematical method was created for destruction by means of the most terrible
weapon in history, the thermonuclear bomb. Fortunately, this weapon has never been used
in conflict. Rather, millions have benefited from the development of Monte Carlo methods
for medicine. That topic, at least a small subset of it, will occupy the rest of this Chapter.

As of this writing, with the data from 2011 still incomplete, we have found that about 300,000
papers have been published on the Monte Carlo method. If we restrict this search to only
those papers related to medicine, the number of publications is almost 30,000. The 10%
contibution to the Monte Carlo method seems to be consistent over time, at least since 1970.
That represents an enormous investment in human capital to develop this most useful tool.
The temporal evolution of this human effort is shown in Figure 2. Before 2005, the growth in
both areas appears exponential in nature. The total effort shows three distinct areas of slope,
with sudden changes, currently unexplained, though it may be due to the sudden emergence
of “vector” and “massively parallel” machines, and the increase in research associated with
this fundamentally new computer architecture. The growth in the “Medicine” area has been
constant.

Since 2005, both areas are statistically consistent with constant output, with the “Medicine”
area leveling out, at greater than 2100 publications/year. It appears that this communication
is being written at the pinnacle of this scientific endeavor!

Monte Carlo in Medical Physics

Every historical review has its biases, and the one employed here will restrict the discussion
to the applications of radiotherapy and radiation dosimetry. Moreover, the focus will be on
the development of electron Monte Carlo, for reasons explained in the following paragraph.
There is an abundance of reviews on the use of Monte Carlo in medical physics. A few of the
more recent ones that discuss radiotherapy physics and dosimetry are: [13, 14, 15, 16, 17, 18].

The rise of the use of linear electron accelerators (LINACs) for radiotherapy, also ushered in
the need to develop Monte Carlo methods for the purpose of dose prediction and dosimetry.
LINACs employed in radiotherapy provide an energetic and penetrating source of photons
that enter deep into tissue, sparing the surface and attenuating considerably less rapidly
than 60Co or 137Cs beams. Relativistic electrons have a range of about 1 cm for each 2
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MeV of kinetic energy in water. At its maximum, starting with a pencil beam of electrons,
the diameter of the electron energy deposition, pear-shaped “plume” is also about 1 cm
per 2 MeV of initial kinetic energy. These dimensions are commensurate with the organs
being treated, as well as the organs at risk. The treatment areas are heterogeneous, with

Figure 2: The number of papers published per year garnered from the Web of Knowledge
(‘All’) and MedLine (‘Medicine’).

differences in composition and density. Moreover, the instruments used to meter dose are
even more diverse. It is true now, as it was then, that the Monte Carlo method provides the
only prediction of radiometric quantities that satisfies the accuracy demand of radiotherapy.

Thus, the history of the utility of the Monte Carlo method in medical physics is inextricably
tied to the development of Monte Carlo methods of electron transport in complex geometries
and in the description of electromagnetic cascades3.

The first papers employing the Monte Carlo method using electron transport, were authored
by Robert R. Wilson [19, 20, 21], who performed his calculations using a “spinning wheel
of chance”.4 Although apparently quite tedious, Wilson’s method was still an improvement

3Certainly there are important applications in brachytherapy and imaging that ignore electron transport.
However, we shall leave that description to other authors.

4R. R. Wilson is also acknowledged as the founder of proton radiotherapy [22].
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over the analytic methods of the time—particularly in studying the average behavior and
fluctuations about the average [23]. Hebbard and P. R. Wilson [24] used computers to
investigate electron straggling and energy loss in thick foils. The first use of an electronic
digital computer in simulating high-energy cascades by Monte Carlo methods was reported by
Butcher and Messel [25, 26], and independently by Varfolomeev and Svetlolobov [27]. These
two groups collaborated in a much publicized work [28] that eventually led to an extensive
set of tables describing the shower distribution functions [29]—the so-called “shower book”.

For various reasons, two completely different codes were written in the early-to-mid 1960’s
to simulate electromagnetic cascades. The first was written by Zerby and Moran [30, 31, 32]
of the Oak Ridge National Laboratory, motivated by the construction of the Stanford Linear
Accelerator Center. Many physics and engineering problems were anticipated as a result
of high-energy electron beams showering in various devices and structures at that facility.
This code had been used by Alsmiller and others [33, 34, 35, 36, 37, 38, 39] for a number of
studies since its development.5

The second code was developed by Nagel [41, 42, 43] and several adaptations have been
reported [44, 45, 46]. The original Nagel version, which Ford and Nelson called SHOWER1,
was a FORTRAN code written for high-energy electrons (≤ 1000 MeV) incident upon lead
in cylindrical geometry. Six significant electron and photon interactions (bremsstrahlung,
electron-electron scattering, ionization-loss, pair-production, Compton scattering, and the
photoelectric effect) plus multiple Coulomb scattering were accounted for. Except for an-
nihilation, positrons and electrons were treated alike and were followed until they reached
a cutoff energy of 1.5 MeV (total energy). Photons were followed down to 0.25 MeV. The
cutoff energies were as low as or lower than those used by either Messel and Crawford or
by Zerby and Moran.The availability of Nagel’s dissertation [42] and a copy of his original
shower program provided the incentive for Nicoli [45] to extend the dynamic energy range
and flexibility of the code in order for it to be made available as a practical tool for the ex-
perimental physicist. It was this version of the code that eventually became the progenitor
of the EGS Code Systems [47, 48, 49, 50, 51].

On a completely independent track, and apparently independent from the electromagnetic
cascade community, was Berger’s e-γ code. It was eventually released to the public as
ETRAN in 1968 [52], though it is clear that internal versions were being worked on at
NBS (now NIST) [53] since the early 60s, on the foundations laid by Berger’s landmark
paper [54]. The ETRAN code then found its way, being modified somewhat, into the Sandia
codes, EZTRAN [55], EZTRAN2 [56], SANDYL [57], TIGER [58], CYLTRAN [59], CYL-
TRANNM [60], CYLTRANP (unpublished), SPHERE [61], TIGERP [62], ACCEPT [63],
ACCEPTTM [64], SPHEM [65] and finally the all-encompassing ITS [66, 67] codes. The
ITS electron transport code was incorporated into the MCNP code at Version 4, in 1990 [68].
The MCNP code lays claim to being a direct descendant of the codes written by the origi-

5According to Alsmiller[40], the Zerby and Moran source code vanished from ORNL and they were forced
to work with an octal version.
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nators of the Monte Carlo method, Fermi, von Neumann, Ulam, as well as Metropolis and
Richtmyer [69]. Quoting directly6,

“Much of the early work is summarized in the first book to appear on Monte Carlo by

Cashwell and Everett in 1957.a Shortly thereafter the first Monte Carlo neutron transport

code MCS was written, followed in 1967 by MCN. The photon codes MCC and MCP were

then added and in 1973 MCN and MCC were merged to form MCNG. The above work

culminated in Version 1 of MCNP in 1977. The first two large user manuals were published

by W. L. Thompson in 1979 and 1981. This manual draws heavily from its predecessors.“

a1959, to be exact [70].

The first appearance of electron transport in MCNP occurred with Version 4, in 1990 [68].
After that time, MCNP became an important player in medical-related research, to be
discussed later.

Berger’s contribution [54] is considered to be
the de facto founding paper (and Berger the
founding father) of the field of Monte Carlo
electron and photon transport. That article,
81 pages long, established a framework for
the next generation of Monte Carlo compu-
tational physicists. It also summarized all the
essential theoretical physics for Monte Carlo
algorithm development. Moreover, Berger
introduced a specialized method for electron
transport. Electron transport and scatter-
ing, for medical physics, dosimetry, and many
other applications, is subject to special treat-
ment. Rather than modeling every discrete
electron interaction (of the order of 106 for

Martin Berger, on a beach near Erice, 1987 7

relativistic electrons), cumulative scattering theories, where by 103 − 105 individual elastic
and inelastic events are “condensed” into single “virtual” single-scattering events, thereby
enabling a speedup by factors of hundreds, typically. Nelson, the originator of the EGS
code system, is quoted as saying [71], “Had I known about Berger’s work, I may not have
undertaken the work on EGS!”.

As for general-purpose uses in medical-related fields, with multi-material, combinatorial ge-
ometries, the two historically dominant players in RTP/Dosimetry8, are the EGS and MCNP
codes, introduced above. In the last decade, GEANT [78, 79] has also made significant con-
tributions as well, presently equal in use to MCNP. A plot of the number of papers published,

6The codes and manuals referred to in this quote appear to have vanished.
7Photograph courtesy of Ralph Nelson.
8There are some very relevant, alternative approaches, that the reader should be aware of, namely

FLUKA [72, 73, 74] (that traces its roots to 1964 [75]), and the Penelope code [76, 77]. As of this writing,
the number of papers produced using these codes in medical-areas is about 240, about half that of MCNP.
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using these methods is charted in Figure 3. Once MCNP introduced electron transport, we
see, from Figure 3, that usage of MCNP experienced exponential growth in its use in medical-
related areas. That exponential growth ended in about 2000. Since then, both the EGS and
MCNP code systems seem to be experiencing steady use, with GEANT still, arguably, on the
increase. If one considers all of the non-medical literature related to Monte Carlo, MCNP is
undeniably the most cited Monte Carlo code, by about a factor of 7 over EGS.

Figure 3: Papers using EGSx, MCNPx, and GEANTx, as captured on MedLine.

It should be emphasized that these two code systems are very different in nature. EGS
has specifically targeted the medical area, since 1984, though it has enjoyed some use in
other areas of physics as well. Some features are genuinely unique, such as the tracking of
separate electron spins, a feature introduced [80] in EGS5 [51], as well as Doppler broaden-
ing [81], both inclusions of great interest to those doing research in synchrotron radiation
light sources. Overall, however, considering Monte Carlo uses over all areas, MNCP’s state-
of-the-art neutron transport, makes it the world leader in the Nuclear and Radiological
Sciences conglomerate. The EGS code systems are supported by practitioners representing
a panoply of scientific disciplines: Medical Physics, Radiological Scientists, Pure and Ap-
plied Physicists. MCNP serves these communities as well, but also enjoys the support of
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a vibrant Nuclear Engineering profession, where transport theory of neutrons is a rich and
active research area.

The EGSx Code systems

The history of how EGS, a code developed primarily for high-energy physics shielding and
detector simulations, came to be used in medical physics, has never appeared in text, in
its entirety. Rogers’ [82] humility probably interfered with its exposition in his article.
However, I was an observer at those early events, and think I may offer some insights.
In 1978, SLAC published EGS3 [47], and Rogers employed it in several important publi-
cations [83, 84, 85, 86, 87]. Of particular importance was the publication that offered a
patch to the EGS3 algorithms to mimic a technique employed in ETRAN, making electron-
dependent calculations reliable, by shortening the steps to virtual interactions. At the time,
electron transport step-size artefacts were completely unexplained. Shortening the steps is
understood to solve the problem, as explained most eloquently by Larsen [88], but at the
cost of added computational time. These “step-size artefacts”, attracted the attention of
Nelson, who invited Rogers to participate in authoring the next version of EGS, EGS4 [48],
along with Hirayama, a research scientist at the KEK, the High Energy Accelerator Research
Organization, Tsukuba, Japan.

Following its release in December 1985, Rogers’ institution (a Radiation Standards’ Labo-
ratory, and a sister laboratory to Berger’s NIST) became a nucleus of medical physics and
dosimetry Monte Carlo dissemination. It took over support and distribution of the EGS4
code, and began offering training courses all over the world. Hirayama was engaged in similar
efforts in the Asian regions.

Yet, the step-size artefacts in EGS4 remained unexplained. Nahum, who was interested in
modeling ionization chamber response, visited Rogers’ laboratory in the spring of 1984, to
collaborate on this topic. Nahum already had a scholarly past in electron Monte Carlo [89],
producing what would eventually be realized, through a Lewis [90] moments analysis [91],
to be a far superior electron transport algorithm. While using EGS4 to predict ionization
chamber response, EGS4 would predict responses that could be 60% too low. Quoting
Nahum, ”How could a calculation that one could sketch on the back of an envelope, and
get correct to within 5%, be 60% wrong using Monte Carlo?”. Step-size reduction solved
the problem [92, 93], but the search for a resolution to step-size anomalies was commenced,
resulting in the PRESTA algorithm [49, 94]. The release of PRESTA was followed by the
demonstration of various small, but important, shortcomings [95, 96]. There were improve-
ments over the years [97, 98, 99, 100], eventually resulting in a revision of the EGS code,
known as EGSnrc [50] and EGS5 [51]. A PRESTA-like improvement of ETRAN [101, 102]
was even developed.

Application: Ion Chamber Dosimetry

The founding paper for applying Monte Carlo methods to ionization chamber response is
attributed to Bond, Nath and Schulz [103], who, using an in-house Monte Carlo code, cal-
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culated ionization chamber response as a function of wall thickness, to 60Co γ irradiation.
While validating the EGS code for this application, it was found that the EGS code had
fundamental algorithmic difficulties with this low energy regime, as well as this application.
The resolution of these difficulties, not patent in other general-purpose Monte Carlo codes,
became of great interest to this author. While general improvements to electron transport
ensued, the fundamental problem was quite subtle, and was eventually described elegantly
by Foote and Smythe [96]. In a nutshell, the underlying algorithmic reason that was iden-
tified arose from electron tracks being stopped at material boundaries, where cross sections
change. EGS used the partial electron path to model a deflection of the electron, from the
accumulated scattering power. The result was a rare, but important effect, the spurious
generation of fluence singularities.

The literature on ionization chamber dosimetry is extensive. A partial compilation of very
early contributions is: [92, 93, 104, 105, 106, 107]

Presently, the calculation of ionization chamber corrections is a very refined enterprise, with
results being calculated to better than 0.1%. The literature on this topic is summarized
by Bouchard and Suentjens in their chapter in this book, ”Applications of Monte Carlo to
radiation dosimetry”. That chapter also summarizes the contribution of Monte Carlo to
dosimetry protocol and basic dosimetry data, some of the earliest applications of Monte
Carlo to medicine.

Early Radiotherapy Applications

For brevity, only the earliest papers are cited in this section, and the reader is encouraged
to employ the comprehensive reviews already cited earlier in this article. Some of the very
early history of radiotherapy applications is rarely mentioned, and I have attempted to gather
them here.

The Monte Carlo modeling of Cobalt-60 therapy units was first mentioned in the ICRU
Report # 18.[108]. However, a more complete descriptive work followed somewhat later [109,
110].

The modeling of LINAC therapy units was first accomplished by Petti et al. [111, 112]
and then, soon after by Mohan et al. [113].

Photoneutron contamination from a therapy unit was first described by Ing at al. [114],
although the simulation geometry was simplified.

Mackie et al. pioneered the convolution method [115] and then with other collaborators,
generated the first database of “kernels” or “dose-spread arrays” for use in radiotherapy. [116]
Independently, these efforts were being developed by Ahnesjö et al. et al [117]. These are
still in use today.

Modeling of electron beams from medical LINACs was first accomplished by Teng et al. [118],
Ho et al. [119], and then Manfredotti et al. [120]
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An original plan to use Monte Carlo calculation for “target button to patient dose” was
proposed by Mackie et al. [121]. That effort became known as “the OMEGA (an acronym for
Ottawa Madison Electron Gamma Algorithm) Project”. However, early on in that project,
a “divide-and-conquer” approach was adopted, whereby the fixed machine outputs (“phase-
space files”) were used as inputs to a patient specific target (applicators and patient), to
generate a full treatment plan. This bifurcation spawned two industries, treatment head
modeling, of which the BEAM/EGSx code is the most refined [122] and is the most cited
paper in the “Web of knowledge” with “Monte Carlo” in the title, and “radiotherapy” as a
topic. The second industry spawned by the OMEGA project was the development of fast
patient-specific Monte Carlo-based dose calculation algorithms. [123, 124, 125, 126]. For
more discussion on the current fast Monte Carlo methods in use, the reader is encouraged
to see the excellent review by Spezi and Lewis [127].

The Future of Monte Carlo

The first step in predicting the future is to look where one has been, extrapolate the process,
thereby predicting the future. The second step in predicting the future is to realize that the
first step involves some very specious, and problematic reasoning!

The progress of time, with the events that it contains, is intrinsically “catastrophic” in
nature. A scientific discovery can be so earth-shattering, that new directions of research are
spawned, while others dissolve into irrelevance. Yet, we persist in the practice of prediction.
Therefore, allow me to be very modest in this effort.

Amdahl’s Law [128]: Amdahl may be saturating due to multiprocessor intercommunication
bottlenecks. Gains in single chip speeds are also slowing. We are nearing the limits of what
we can do, and what new challenges we can address.

Harder to predict is algorithm development, specific to Monte Carlo applications in RTP.
There is historical precedent for this in the citation data. In 1991, there was a 2.8 factor
increase in productivity in only one year, followed by another in 1998, by a factor of 1.6.
These increases are large, and unexplained. Yet, they illustrate the chaotic nature of the
field.

There is a strong suggestion that research in Monte Carlo is saturating. Both the medical
and “all” data have been flat since about 2005. The EGS and MCNP output has been flat
since 2000. Perhaps we are at the pinnacle?

We can safely predict, while the approach to the pinnacle may have been somewhat chaotic,
the decline will be gradual. Monte Carlo codes have gotten easier to use, packaged with more
user-friendly interfaces, and developing into “shrink-wrapped”, “turn-key” software systems.
This is how it should be. The fact that a Monte Carlo method is the “engine” beneath a
computational algorithm, should be transparent, but not invisible, to the researcher using
the tool.

Paraphrasing the comment made by Martin Berger, the founder of our field, during his
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speech at his retirement Festschrift symposium [129],

“I am not used to so much public attention. Tonight is quite unusual for me. I hope that,

after tonight, I can disappear into the anonymity that I so assuredly crave.”

And so it may be, for Monte Carlo research—at least, until the next great thing comes along.

A very astute student once said to me, “We no longer have Departments of Railroad En-
gineering.”, in an effort to explain the (then) decline of Nuclear Engineering Departments,
before the “nuclear renaissance”. It may be that the development of the Monte Carlo method
is bound to decline as it matures, but it will remain an essential component of our scientific
infrastructure, forever.

Appendix: Monte Carlo and Numerical Quadrature

In this Appendix, we present a mathematical proof that the Monte Carlo method is the
most efficient way of estimating tallies in 3 spatial dimensions when compared to first-
order deterministic (analytic, phase-space evolution) methods. Notwithstanding the opinion
that the Monte Carlo method is thought of as providing the most accurate calculation, the
argument may be made in such a way, that it is independent of the physics content of the
underlying algorithm or the quality of the incident radiation field.

A.1 The dimensionality of deterministic methods

For the purposes of estimating tallies from initiating electrons, photons, or neutrons, the
transport process that describes the trajectories of particles is adequately described by the
linear Boltzmann transport equation [130]:

[

∂

∂s
+

p

|p| ·
∂

∂x
+ µ(x, p)

]

ψ(x, p, s) =
∫

dp′ µ(x, p, p′)ψ(x′, p′, s) , (2)

where x is the position, p is the momentum of the particle, (p/|p|) · ∂/∂x is a directional

derivative (in three dimensions ~Ω · ~∇, for example) and s is a measure of the particle path-
length. We use the notation that x and p are multi-dimensional variables of dimensionality
Nx and Np. Conventional applications span the range 1 ≤ Np,x ≤ 3. The macroscopic dif-
ferential scattering cross section (probability per unit length) µ(x, p, p′) describes scattering
from momentum p′ to p at location x, and the total macroscopic cross section is defined by:

µ(x, p) =
∫

dp′ µ(x, p, p′) . (3)

ψ(x, p, s) dx dp is the probability of there being a particle in dx about x, in dp about p and
at pathlength s. The boundary condition to be applied is:

ψ(x, p, 0) = δ(x)δ(p0 − p)δ(s) , (4)

where p0 represents the starting momentum of a particle at s = 0. The essential feature of
Equation 2, insofar as this proof is concerned, is that the solution involves the computation
of a (Nx +Np)-dimensional integral.
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A general solution may be stated formally:

ψ(x, p, s) =
∫

dx′
∫

dp′G(x, p, x′, p′, s)Q(x′, p′) , (5)

where G(x, p, x′, p′, s) is the Green’s function and Q(x′, p′) is a source. The Green’s function
encompasses the operations of transport (drift between points of scatter, x′ → x), scattering
(i.e. change in momentum) and energy loss, p′ → p. The interpretation of G(x, p, x′, p′, s) is
that it is an operator that moves particles from one point in (Nx + Np)-dimensional phase
space, (x′, p′), to another, (x, p) and can be computed from the kinematical and scattering
laws of physics.

Two forms of Equation 5 have been employed extensively for general calculation purposes.
Convolution methods integrate Equation 5 with respect to pathlength s and further assume
(at least for the calculation of the Green’s function) that the medium is effectively infinite.
Thus,

ψ(x, p) =
∫

dx′
∫

dp′G

(

|x− x′|,
[

p

|p| ·
p′

|p′|

]

, |p′|
)

Q(x′, p′) , (6)

where the Green’s function is a function of the distance between the source point x′ and
x, the angle between the vector defined by the source p′ and p and the magnitude of the
momentum of the course, |p′|, or equivalently, the energy.

To estimate a tally using Equation 6 we integrate ψ(x, p) over p, with a response function,
R(x, p) [131]:

T (x) =
∫

dx′
∫

dp′ F (|x− x′|, p′)Q(x′, p′) , (7)

where the “kernel”, F (|x− x′|, p′), is defined by:

F (|x− x′|, p′) =
∫

dpR(x, p)G

(

|x− x′|,
[

p

|p| ·
p′

|p′|

]

, |p′|
)

. (8)

F (|x−x′|, p′) has the interpretation of a functional relationship that connects particle fluence
at phase-space location x′, p′ to a tally calculated at x. This method has a known difficulty—
its treatment of heterogeneities and interfaces. Heterogeneities and interfaces can be treated
approximately by scaling |x−x′| by the collision density. This is an exact for the part of the
kernel that describes the first scatter contribution but approximate for higher-order scatter
contributions. It can also be approximate, to varying degrees, if the scatter produces other
particles with different scaling laws, such as the electron set in motion by a first Compton
collision of a photon.

For calculation methods that are concerned with primary charged particles, the heterogeneity
problem is more severe. The true solution in this case is reached when the pathlength steps,
s in Equation 5 are made small [88] and so, an iterative scheme is set up:

ψ1(x, p) =
∫

dx′
∫

dp′G(x, p, x′, p′,∆s)Q(x′, p′)
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ψ2(x, p) =
∫

dx′
∫

dp′G(x, p, x′, p′,∆s)ψ1(x
′, p′)

ψ3(x, p) =
∫

dx′
∫

dp′G(x, p, x′, p′,∆s)ψ2(x
′, p′)

.

.

.

ψN(x, p) =
∫

dx′
∫

dp′G(ψN−1(x
′, p′) (9)

which terminates when the largest energy in ψN (x, p) has fallen below an energy threshold
or there is no x remaining within the target. The picture is of the phase space represented
by ψ(x, p) “evolving” as s accumulates. This technique has come to be known as the “phase-
space evolution” model. Heterogeneities are accounted for by forcing ∆s to be “small” or of
the order of the dimensions of the heterogeneities and using a G() that pertains to the atomic
composition of the local environment. The calculation is performed in a manner similar to
the one described for convolution. That is,

T (x) =
N
∑

i=1

∫

dx′
∫

dp′ F (x, x′, p, p′,∆s)ψi(x
′, p′) , (10)

where the “kernel”, F (x, x′, p, p′,∆s), is defined by:

F (x, x′, p, p′,∆s) =
∫

dpR(x, p)G(x, p, x′, p′,∆s)) . (11)

In the following analysis, we will not consider further any systematic errors associated with
the treatment of heterogeneities in the case of the convolution method, nor with the “step-
ping errors” associated with incrementing s using ∆s in the phase space evolution model.
Furthermore, we assume that the Green’s functions or response kernels can be computed
“exactly”—that there is no systematic error associated with them. The important result of
this discussion is to demonstrate that the dimensionality of the analytic approach is Nx+Np.

A.2 Convergence of Deterministic Solutions

The discussion of the previous section indicates that deterministic solutions are tantamount
to solving a D-dimensional integral of the form:

I =
∫

D
duH(u) . (12)

In D dimensions, the calculation is no more difficult than in two dimensions, only the notation
is more cumbersome. One notes that the integral takes the form:

I =
∫ u1,max

u1,min

du1

∫ u2,max

u2,min

du2 · · ·
∫ uD,max

uD,min

duDH(u1, u2 · · ·uD)
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=

N
1/D
cell
∑

i1=1

∫ ui1
+∆u1/2

ui1
−∆u1/2

du1

N
1/D
cell
∑

i2=1

∫ ui2
+∆u2/2

ui2
−∆u2/2

du2 · · ·
∫ uiD

+∆uD/2

uiD
−∆uD/2

duD

N
1/D
cell
∑

iD=1

H(u1, u2 · · ·uD)

(13)

The Taylor expansion takes the form

H(u1, u2 · · ·uD) = H(ui1, ui2 · · ·uiD) +
D
∑

j=1

(ui − uij )∂H(ui1, ui2 · · ·uiD)/∂uj +

D
∑

j=1

(ui − uij )
2

2
∂2H(ui1, ui2 · · ·uiD)/∂u2

j +

D
∑

j=1

D
∑

k 6=j=1

(ui − uij )(ui − uik)∂
2H(ui1, ui2 · · ·uiD)/∂ui∂uj · · · (14)

The linear terms of the form (ui −uij ) and the bilinear terms of the form (ui −uij )(ui −uik)

for k 6= j all vanish by symmetry and a relative N−2/D is extracted from the quadratic terms
after integration. The result is that:

∆I

I
=

1

24N
2/D
cell

∑N
1/D
cell

i1=1

∑N
1/D
cell

i2=1 · · ·∑N
1/D
cell

iD=1

∑D
d=1(ud,max − ud,min)

2∂2H(ui1, ui2 · · ·uiD)/∂u2
d

∑N
1/D
cell

i1=1

∑N
1/D
cell

i2=1 · · ·∑N
1/D
cell

iD=1 H(ui1, ui2 · · ·uiD)
.

(15)
Note that the one and two-dimensional results can be obtained from the above equation.
The critical feature to note is the overall N

−2/D
cell convergence rate. The more dimensions in

the problem, the slower the convergence for numerical quadrature.

A.3 Convergence of Monte Carlo solutions

An alternative approach to solving Equation 2 is the Monte Carlo method whereby Nhist

particle histories are simulated. In this case, the Monte Carlo method converges to the true
answer according to the central limit theorem [132] which is expressed as:

∆TMC(x)

TMC(x)
=

1√
Nhist

σMC(x)

TMC(x)
, (16)

where TMC(x) is the tally calculated in a voxel located at x as calculated by the Monte Carlo
method and σ2

MC(x) is the variance associated with the distribution of TMC(x). Note that
this variance σ2

MC(x) is an intrinsic feature of how the particle trajectories deposit energy in
the spatial voxel. It is a “constant” for a given set of initial conditions and is conventionally
estimated from the sample variance. It is also assumed, for the purpose of this discussion,
that the sample variance exists and is finite.

A.4 Comparison between Monte Carlo and Numerical Quadrature
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The deterministic models considered in this discussion pre-calculate F (|x− x′|, p′) of Equa-
tion 8 or F (x, x′, p, p′,∆s) of Equation 11 storing them in arrays for iterative use. Then,
during the iterative calculation phase, a granulated matrix operation is performed. The asso-
ciated matrix product is mathematically similar to the “mid-point”Nx+Np-multidimensional
integration discussed previously:

T (x) =
∫

D
duH(u, x) , (17)

where D = Nx +Np and u = (x1, x2 · · ·xNx , p1, p2 · · · pNp). That is, u is a multidimensional
variable that encompasses both space and momentum. In the case of photon convolution,
H(u, x) can be inferred from Equation 7 and takes the explicit form:

H(u, x) =
∫

dp F (|x− x′|, p′)Q(x′, p′) . (18)

There is a similar expression for the phase space evolution model.

The “mid-point” integration represents a “first-order” deterministic technique and is ap-
plied more generally than the convolution or phase space evolution applications. As shown
previously, the convergence of this technique obeys the relationship:

∆TNMC(x)

TNMC(x)
=

1

N
2/D
cell

σNMC(x)

TNMC(x)
, (19)

where TNMC(x) is the tally in a spatial voxel in an arbitrary Nx-dimensional geometry calcu-
lated by a non-Monte Carlo method where Np momentum components are considered. The
D-dimensional phase space has been divided into Ncell “cells” equally divided among all the
dimensions so that the “mesh-size” of each phase space dimension is N

1/D
cell . The constant of

proportionality as derived previously is:

σNMC(x) =
1

24

N
1/D
cell
∑

i1=1

N
1/D
cell
∑

i2=1

· · ·
N

1/D
cell
∑

iD=1

D
∑

d=1

(ud,max − ud,min)
2∂2H(ui1, ui2 · · ·uiD)/∂u2

d , (20)

where the u-space of H(u) has been partitioned in the same manner as the phase space
described above. ud,min is the minimum value of ud while ud,max is its maximum value. uij is
the midpoint of the cell in the jth dimension at the ithj mesh index.

The equation for the proportionality factor is quite complicated. However, the important
point to note is, that it depends only on the second derivatives of H(u) with respect to
the phase-space variables, u. Moreover, the non-Monte Carlo proportionality factor is quite
different from the Monte Carlo proportionality factor. It would be difficult to predict which
would be smaller, and almost certainly, would be application dependent.

We now assume that the computation time in either case is proportional to Nhist or cell.
That is, TMC = αMCNhist and TNMC = αNMCNcell. In the Monte Carlo case, the computation
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time is simply Nhist times the average computation time/history. In the non-Monte Carlo
case, the matrix operation can potentially attempt to connect every cell in the D-dimensional
phase space to the tally at point x. Thus, a certain number of floating-point and integer
operations are required for each cell in the problem.

Consider the convergence of the Monte Carlo and non-Monte Carlo method. Using the above
relationships, one can show that:

∆TMC(x)/TMC(x)

∆TNMC(x)/TNMC(x)
=

(

σNMC(x)

σMC(x)

)(

αD
NMC

αMC

)1/2

t(4−D)/2D , (21)

where t is the time measuring computational effort for either method. We have assumed
that the two calculational techniques are the same. Therefore, given enough time, DMC(x) ≈
DNMC(x). One sees that, given long enough, the Monte Carlo method is always more ad-
vantageous for D > 4. We also note, that inefficient programming in the non-Monte Carlo
method is severely penalized in this comparison of the two methods.

Assume that one desires to do a calculation to a prescribed ε = ∆T (x)/T (x). Using the
relations derived so far, we calculate the relative amount time to execute the task to be:

tNMC

tMC

=
(

αMC

αNMC

)

(

[σNMC(x)/TNMC(x)]D/2

σMC(x)/TMC(x)

)

ε(4−D)/2 , (22)

which again shows an advantage for the Monte Carlo method for D > 4. Of course, this con-
clusion depends somewhat upon assumptions of the efficiency ratio αMC/αNMC which would
be dependent on the details of the calculational technique. Our conclusion is also dependent
on the ratio [{σNMC(x)/TNMC(x)}D/2]/[σMC(x)/TMC(x)] which relates to the detailed shape
of the response functions. For distributions that can vary rapidly, the Monte Carlo method
is bound to be favored. When the distributions are flat, non-Monte Carlo techniques may
be favored.

Nonetheless, at some level of complexity (large number of Ncell’s required) Monte Carlo be-
comes more advantageous. Whether or not one’s application crosses this complexity “thresh-
old”, has to be determined on a case-by-case-basis.

Smaller dimensional problems will favor the use of non-Monte Carlo techniques. The degree
of the advantage will depend on the details of the application.
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