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The object of this paper is to employ the screened Rutherford cross section to construct a charged-particle multiple- 
scattering theory that does not suffer from either the small step-size artefact associated with the conventional Moliere 
multiple-scattering distribution or the large step-size instability of the theory of Keil et al. [Z. Naturforsch. 15a (1960) 
103 11. An exact numerical solution to the Wentzel elastic-scattering integral is found for charged particle step-sizes less than 
about 3000 mean-free-paths. The new distribution contains explicitly the expected single and no-scattering distributions in 
the limit of small step-size, matches the standard Moliere distribution for large step-sizes and is expressed in terms of simple 
functional forms and numerical tables that may be sampled quickly for use in Monte Carlo methods. The new distribution 
may be expressed entirely in terms of only two parameters - a “reduced” angle and the mean free path. The large-angle limit 
of the distribution is expressed analytically and compared to the results of Keil et al. and Moliere. Despite the fact that the 
conventional Moliere distribution is based upon the assumption that many interactions participate in the development of 
the multiple-scattering angle, it is found that Moliere’s large-angle limit is mostly correct although the large-angle behaviour 
is dominated by one or two interactions! The design of a Monte Carlo electron transport algorithm that incorporates the 
unique features of the new distribution is discussed. 

1. Introduction 

Modern “high-energy” Monte Carlo electron-transport algorithms ( e.g. EGS4 [ 11, ETRAN [2], 
ITS [ 31) employ multiple-scattering theories and “condensed history” methods to model electron 
transport in order to avoid prohibitively long computation times. However, when multiple-scattering 
theories are employed in the vicinity of material interfaces, varying degrees of approximation are in- 
troduced [4]. In the case of EGS4, which employs the Moliere multiple-scattering theory [ $61, elec- 
tron transport step-lengths which violate Moliere’s lower step-size limit are either not deflected or a 
numerical fitting procedure is applied to the Moliere theory that is approximate and unsubstantiated. 
In the case of ETRAN, which employs the Goudsmit-Saunderson [7,8] formalism, small step-sizes 
are modeled by extrapolating the scattering angle for a small step from the scattering angle of a larger 
step. ITS takes much of its physics modelling from ETRAN including the ETRAN implementation 
of Goudsmit-Saunderson multiple scattering. However, for small steps near interfaces a Gaussian ap- 
proximation to the multiple-scattering distributions is employed. It may be argued that the small step- 
size limit of a multiple-scattering theory should contain the no-scattering and single-scattering terms 
as dominant components, not Gaussian shapes that arise naturally from a large step-size analysis [ 61. 
While the Goudsmit-Saunderson theory contains no explicit small step-size constraint, numerical con- 
vergence difficulties prevent its use in the small step-size regime. Although modifications ameliorat- 
ing this problem have been discussed [ 91, they have not been incorporated into the general-purpose 
Monte Carlo codes. 
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The purpose of this work is to revisit Wentzel’s analysis [lo] and develop a numerical solution 
that is valid from zero to large step-size. The incentive to employ a Wentzel-type analysis is that the 
multiple-scattering distributions can be expressed in the form of a “reduced” angle related to the true 
multiple-scattering angle by a scale factor that contains both energy and material dependence. This is 
a useful feature that reduces the amount of calculation and table look-ups in repetitive calculations. 
The new distribution should match the standard Moliere expansion at large step-size and be expressed 
in terms of simple functional forms that facilitate use in Monte Carlo calculations. 

There have been previous attempts to provide expressions valid for the plural-scattering regime 
that match the lower step-size range of validity of Moliere theory. Leisegang [ 111 introduced an 
approximate numerical procedure valid for small step-sizes but with an intrinsic numerical inaccuracy 
that increases with increased step-size. Keil et al. [ 121 were able to reduce Leisegang’s numerical 
instabilities to the extent that their distributions and Moliere’s distribution are equally approximate 
(within about 3-4% in the forward direction) for 20 mean-free-paths. 

Some recent work has addressed the issue of improving the Moliere distribution using a Moliere- 
type analysis. Although it is assumed that the Moliere expressions are valid for multiple-scattering 
distributions starting at about 20 mean-free-paths, it has been found that discrepancies of the order 
of 6% occur in the peak of the distributions for step-sizes of this magnitude [ 131. In that work, the 
corrected distributions were given in numerical form using the parameters, but not the approximations, 
of the Moliere development. The Moliere parameters relating real angles to reduced angles are either 
not defined for small path-lengths or are subject to numerical instabilities in that region. Therefore, a 
new approach is motivated that characterises the small path-length behaviour in a consistent way and 
matches smoothly with either Moliere distributions or corrected distributions. 

2. Small-angle scattering theory 

Bothe [ 141 and Wentzel [ lo] have described a theory of small-angle multiple elastic scattering 
which provides the probability for scattering into an angle 13 after a total path-length t: 

00 

f(e,t)ede = dee 
J 

d~+J&B)exp -Jo(w)1 
0 

> (1) 

where JO is the Bessel function of zeroth order, NA is Avogadro’s number, A is the atomic weight, 
and t is given in g/cm2. Substituting the small-angle form of the Rutherford cross section, CJ (x ) 0: 
(x2 + ~2) -2, where xa is a screening angle, results in: 

where Kr is the first-order modified Bessel function of the second kind, J_ is the length of the particle 
step measured in mean free paths, ;1 = 2aNAt/A Jo” dx G (x ), and 5 = 0/x e 

Eq. (2) has two important properties: normalisation to unity, 
00 

J deef(e,t) = 1, (3) 

0 

and the small step-size limit, 

ppe, t)ede = de 8 e-' ( 6(e) 2/I 
- 

+ 8 + 0 +w + O(A2) . 
> 

Another form that will be useful for later development can be obtained by extracting the unscattered 
forward amplitude. Thus Eq. (2) may be rewritten: 
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) 

(5) 

0 

where j(L, z) = ( elzKl(z) -l)/( e A - 1). The above equation employs a definition of the Dirac 
delta-function, 6 (<)/< = Jr d~r.Js(~<>, that is consistent with the Fourier-Bessel integral, 
&=dttJo(C) Sp”duuJo(tu)W = F(t). The sub-distribution, d~$< JoMdz zJs(z<)j(& z), repre- 
sents a normahsed probability conditional upon at least one scattering having taken place. 

This report describes the solution of Eq. (5) treating 1, and xa as arbitrary parameters. Some 
discussion of the choice of these parameters is presented later in this report. 

2.1. Molihe’s large step-size approximation 

The main purpose of this section is to demonstrate that Moliere’s expansion can be derived from 
Eq. (2). In the course of this demonstration, leading order correction terms for Moliere’s expansion 
will be presented. However, it will also be demonstrated that Moliere’s expansion is divergent without 
arbitrary cut-off parameters. The divergence is not eliminated through use of the correction terms, 
nor is it eliminated through use of Eq. (5) after application of Moliere’s approximations. 

Moliere considered this expansion valid for ;1 > 23. The function 1 - zKt (z) is a monotonically 
increasing function of z on the range 0 5 z < 00 with a value of zero at z = 0 and unity for z + 03. 
Therefore, in regions where )\. is large, a good approximation to the integrand of Eq. (2) may be 
obtained by keeping the low order terms in an expansion of 1 - zKt (z) about small values of z. The 
function 1 - zK1 (z) has the following asymptotic form for small z: 

VFo [l - zK1 (z)l = (T) [I-Zy-In(c)] +i($)‘[i--2yl”($)].... (6) 

Keeping terms of this order, Eq. (2) becomes: 

S(p,B)y,dy, 
00 

=dy,a, dfifiuJo(pp) 
s 
0 

x exp $f(ln$-:)I}, 

where the change of variables, < = p &%, s = p/m, B - In B = 1 - 2y + ln& where y is Euler’s 
constant (0.577 216. . .), has been effected. The term proportional to e1-2y-B represents a correction 
to the MolSre distribution. 

Ignoring the correction term for the moment, one notes that the forward amplitude of f (0, B ) is 
unbounded. Once the integration variable exceeds 2 eB12, the exponential increases and the integral 
diverges. 

The presence of the correction term does not prevent the divergence nor does a reformulation using 
Eq. (5 ). The divergence is not caused by the unscattered forward amplitude but by the approximation 
in Eq. (6). The large-z asymptotic form of 1 - zK1 (z) is required to cure this anomaly. 

Moliere further approximated the distribution by making an expansion in B-l: 

Again the divergent forward amplitude emerges as it can be shown that f@) (0) + log” n for large 
n. Although it is often considered that keeping only 3 terms in the Molikre expansion is somewhat 
satisfactory for L > 23, the presence of the divergences makes problematic the extension of Moliere’s 
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expression to smaller rl. Indeed, retaining higher order terms in B-l worsens the divergences for 
small ;Z [ 13 ] ! A three-term expansion at 1 x 23 can be in error by up to 6%. The additional O(z2) 
correction term given above reduces the discrepancy to about 1% at 1 M 23 although smaller I’s still 
give difficulties somewhat reduced in magnitude. 

In the previous work [ 131, numerical solutions for Eq. (2) were presented in terms of the Moliere 
parameters B and q. However, the parameter B cannot be employed for small path-lengths, and 
instabilities in the numerical solution in the vicinity of B < 3 were observed. The main motivation 
for this work is to present a solution that is valid for arbitrarily small path-lengths. 

2.2. The large-angle limit 

The large-angle asymptotic form of Eq. (5 ) can be determined directly. If one postulates that: 

(9) 

where b(J), c(n) and d(A) are constants that depend only upon II, then these constants can be deter- 
mined by matching the factors of cx in the following equation: 

lili0{2b + (I! [2d - yc] - co logcr} = liio4cy 2 rac evacz /dz .rJs(z<) ( e-ill-IK1(z)l). (10) 

0 0 

The convergence factor e-“c2 . IS employed to define the integral. The integral over < may be performed. 
Then a change of variables, u = z2/ (4cr), gives: 

Iilio{2b + cx[2d - yc] - caloga} 

=FFo/du e-U(6 _ 18~ + gu2 _ u3)$ ( e-A[l-aKl(G)l). (11) 
0 

Finally, an expansion of X/&&I (&) in (I! may be performed using Eq. (6) allowing the identifi- 
cation of b, c and d with the result: 

linlf(t,A) = g l- r’i 
( > 

- $1 -log<) + o(c-s). (12) 

This is the identical limit obtained by Moliere in his large path-length analysis except for the -4em6 
term. 

The above results suggest that the asymptotic behaviour may be obtained by an expansion of Eq. (5) 
in 1. This can be justified more fundamentally since it may be argued that the large-angle asymptotic 
behaviour develops through single or few scatterings as the probability for single large-angle scattering 
is very small. Thus, a wide-angle scattering comes predominantly from a single event rather than many 
small-angle events. 

An expansion of Eq. (5) in terms of 2 yields: 

f(c,n) = e-‘y+ ” 12 (2Fl(li?,$g;f)- 6 ) 
(<2 + 1)2 + 3 (<2 + I)2 + o(n3), (13) 

where 2Fr ( ) is the hypergeometric function *l . The asymptotic behaviour of Eq. ( 13) is identical to 
that given in Eq. ( 12). 

Apart from the small difference in the cm6 term there is a remarkable agreement between these re- 
sults for the asymptotic behaviour and the asymptotic Moliere results. Despite the large path-length 

xl The mathematical notation used in this report follows those of Wolfram [ 15 1, and the Mathematics code system was 
employed for most of the numerical computations reported herein. 
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development of the Moliere expressions, the asymptotic forms which result from 
terings are modeled accurately! 

2.3. Small step-size approximation 

261 

single and few scat- 

Leisegang [ 111 introduced an approximation for the argument of the exponential in Eq. (2) : 

erKl (2)-l = 0.368 + 0.742 e-o.914z -0.111 e-5.55z. (14) 

and was able to solve Eq. (2) for integral values of 2 introducing more approximations. Keil et al. 
have argued that Leisegang’s results are useful for ;Z 5 4 and introduced a refined approximation: 

erKl(z)-l = e-1 (1 + bl e+’ +bz emczz), (15) 

with br = 2.10667, cl = 0.935, bz = -0.388388, c2 = 5.000. For integral values of 2, the use of 
approximation ( 15 ) reduces Eq. (2 ) to a double sum: 

(16) 

While Eq. ( 14) and Eq. ( 15) represent increasingly accurate numerical representations of the 
exp [ zK1 (z) - 1 ]-factor in the integrand of Eq. (2) or Eq. (5), there are several difficulties with 
this approach. As 1 increases, the error in the numerical approximation “compounds” because of the 
{exp[zKi (z) - l]}“-d ependence. In the large-angle asymptotic region (< - 00) the behaviour of the 
approximate expressions become & A (bl cl + b2c2 )re3, not 0 (rm4) as expected. The tail region ought 
to reproduce the single-scattering cross section tail for asymptotically large angles. This behaviour may 
be corrected by choosing blq + bZc2 = 0 at the expense of reducing the quality of the fit to the function 
erKl(r)-l. Alternatively, more parameters could be added to the fit. However, this approach was not 
pursued further herein. Finally, the 1 - 0 limit should produce the unscattered forward amplitude 
plus the single-scattering cross section evident in Eq. (4). The approximations do not, although the 
discrepancy in the forward direction is of the order of the numerical discrepancy in Eq. ( 14) and Eq. 

(15). 
Further numerical approximations have been developed by Braicovich and Dupasquier [ 161 using 

the Leisegang numerical approach but employing a cross section that may be more suitable for the 
plural-scattering regime. Because of their numerical approximation their work is still subject to the 
difficulties described in the previous paragraph. Their use of a different (and more realistic) cross 
section is beyond the scope of this work which is dependent upon the functional form of the screened 
Rutherford cross section. However, with some effort their cross section may be implemented in the 
methodology introduced in the next section. This is left for future considerations. 

3. An “exact” solution 

Within the context of this paper, the “exact” solution is represented by the equivalent forms Eq. 
(2) or Eq. (5) recognising the fact that the screened Rutherford cross section is an approximation, 
the small-angle approximation to the screened Rutherford cross section is another approximation, and 
finally, the small-angle formalism of Wentzel’s equation introduces another level of approximation. 
Bethe [ 171 and Winterbon [ 181 have discussed in detail corrections dealing with the last assumption. 
Corrections for the first two are beyond the scope of this work. It should be noted that the results of 
this work do not depend on the exact form of the screening angle or total cross section. Any form 
would suffice. The assumption of the small-angle Rutherford cross section, da/d0 K 0/ (e2 + ~2) 2, is 
fundamental to the following development. Enhancements to this may take the form of a perturbation 
development, but this is not pursued herein. 
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Starting with the part of Eq. (5) that describes at least one scattering (the 1 - ePn term), consider 
the change of variables u = 1 - w2/(r2 + 02)), where for the moment o is arbitrary. Thus, the 
distribution that describes at least one scattering is: 

q(u,I,o)du = du W2 TdzzJ,(wz[ul(l -u)]1/2)j(&z). 
2(1 - u)2 

0 

(17) 

The distribution function q (u, ;1, co) has the properties $ q (u, ;1, co) du = 1, q (0, A, o) = 

1. 2 “dzzj(I,z) andq(l,I,w) = J/[02(1 - eBA)]. 20 so 

The motivation for the form of u is that du = 202a/(r2 + w~)~, which looks like a single- 
scattering angular distribution but with a “spreading” parameter, o. Having chosen a form for w as 
in the following development, the q (u, 1, co )-distribution is the correction to this “spreading-single- 
scattering” approximation. 

The parameter o can be chosen to control the shape of q (u, 1, co). Indeed, for efficacious numerical 
use, q (u, ;1, co) should be as “flat” as possible. Constructing the integrated square-amplitude: 

1 

r2(Qo) = .I [q(u,ko) - l12du, 
b 

and minimising with respect to o2 yields the solution: 

o;(n) = 
J,“dzz[j”(&z) -j’(&z)/z12 

JTdzzj2(jl,z) ’ 

(18) 

(19) 

where j’ (1, z ) and j” (A, z ) are the first and second derivatives respectively of j (2, z ) with respect 
to z. The parameter wg is plotted in Fig. 1. In the limit of small path-lengths, oo(l + 0) + 1, 
and q (u, 0, 1) = 1 which describes the single-scattering limit. The minimised surface, q. (u, ,?) = 

q(u,&oo(L)) is plotted in Fig. 2 for l/100 5 15 3050.53. 
The shape of qo (u, 1) was reproduced with a single-scattering Monte Carlo code that was formulated 

in the small-angle approximation. Such a procedure can be recast in terms of the variable r and the 
distributions then depend only upon the number of mean free paths, 1. (Details are given in the 
Appendix.) A comparison is given in Fig. 3 for 1 = 0.1, 1, 10 and 100. lo6 particle histories were 
simulated for each il. For il < 1 an “interaction-forcing” scheme [ 193 was employed to avoid wasted 
computer time on particles that do not scatter. To within statistics, the Monte Carlo calculations 
reproduce exactly the shape of qo (u, 2). Although the Monte Carlo results are expressed in terms of 
u = 1 -w;/ (t2 + w$) ), the parameter 00 was not employed during the simulation. It was used simply 
to rescale the final scattering angle into the appropriate u-bin for comparison. 

A comparison with the Moliere 3-term distribution of Eq. (8) is given in Fig. 4 for 10 2 2 5 
3050.53 and in Fig. 5 for selected values of 1. The maximum deviation (\qM (u, A)/@ (u, A) - 1) ) of the 
Moliere distribution is depicted in Fig. 6. The comparison with the Moliere distribution demonstrates 
the appearance of spurious “wiggles” that are known to occur for small values of 2 [ 131. Andre0 et 
al. [ 13 ] also demonstrated that errors of the order of 6% could be expected near the forward peak 
of the Moliere distributions at I M 23 and that result is corroborated here. If one demands that the 
Moliere three-term distribution be “correct” to within l%, then one must go to values of 3, as high 
as 2000. The largest discrepancy generally occurs at u x 0.88, approaching the large-angle limit of 
the expressions. Recall that the Moliere agreement at large angles was correct only to 0(te4), there 
remaining a discrepancy of order 41/c6. It is likely that this and higher-order inaccuracies of the 
Moliere expressions are causing this discrepancy. 

A comparison with the Keil et al. distribution is given in Fig. 7 for 0.01 I 1 5 100 and in Fig. 8 for 
selected values of A. The ratio of the Keil et al. distribution to the exact solution, qmz (u, n)/qo (u, J.), 

is given. The compounded error in the numerical approximation is evident as an increasing departure 
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_ Oo_ fromminimisation ofr'(l,o) 

Fig. 1. The solution for o. (A) based upon the minimisation 
of the integrated square-amplitude, r* (A, w). 

Fig. 2. The minimised qo( u, I) vs. 1 and u. 

1.02 

1.01 1.1 

1.00 

0.99 1.0 

0.96 

-0.97 0.9 
4 0.0 0.2 0.4 0.6 0.6 1.0 0.0 0.2 0.4 0.6 0.6 1.0 
3 

2 1.2 

1.0 

0.6 

0.6 

1.4 

1.2 

1.0 

0.6 

0.6 

0.4 

0.4 1F 0.2 M 
0.0 0.2 0.4 0.6 0.6 1.0 0.0 0.2 0.4 0.6 0.6 1.0 

Fig. 3. The minim&d q. (u, A) vs. u for selected values of A (curves) compared with small-angle Monte Carlo calculations 
(histograms). 
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Fig. 4. The ratio of the Moliere distribution, m(u,A), to 
the new distribution, q. (u, A) vs. 1 and u. 
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2 

1 

0 

-1 

? 

h=3.17 v h = 23.7 

cl!,! 
Fig. 5. The ratio of the Moliere distribution, qM (u, I), 
to the new distribution, qo (u,l), for selected values 
of d. The smallest value of A. corresponds to e*Y, 
the minimum value for which the Moliere expansion 
may be expressed. (Moliere considered his theory 
valid above 1 z 23, where he stated the accuracy to 

be about l%.) 

from unity with increased ;1. The error in the large-angle asymptotic behaviour of the Keil et al. theory 
is evident at large angles. There is a broad plateau for small 1 and small u. The region where the Keil 
et al. distribution is within 1% of the exact distributions is approximately 12 < 10, u < 0.7. Owing to 
the difference in the asymptotic behaviours the ratio near u + 1 becomes infinite. For this reason, 
the ratio only up to u = 0.99 is shown. In Fig. 7, only values of the ratio between 0.9 and 1.1 were 
depicted. 

4. Application in a Monte Carlo transport algorithm 

As discussed in the introduction, general-purpose Monte Carlo methods that employ multiple- 
scattering methods treat electron transport near interfaces in an approximate manner. Recent de- 
velopments directed at this issue, EGS4/PRESTA [4] and ETRAN/TLC [20] still have difficulties 
with either the small step-size limit of Moliere theory or numerical difficulties with the Goudsmit- 
Saunderson approach. With the new multiple-scattering method, a uniform and consistent approach 
may be taken. On the approach to an interface, the new method may be employed allowing particle 
steps to be reduced until the particle drifts to the interface boundary without scattering. Thus, no ap- 
proximation is made at the interface surface. Once on the surface the particle can be transported using 
the mean-free path to a single elastic scattering, thereafter the new algorithm takes over. 

This is illustrated in Fig. 9. A particle is directed at an interface between media A and B. The 
interface is a distance Af from the particle along its direction of motion and a perpendicular distance 
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h 

1 

Fig. 6. The maximum deviation (1qM (u,L)/qo(u,n) - 11) of the Molitre distribution as a function of 1. 

Fig. 7. The ratio of the Keil et al. distribution, -(~,a), Fig. 8. The ratio of the Keil et al. distribution, qm(u,,l), 
to the new distribution, qo (u, 2) vs. 1 and u. to the new distribution, qo(u,,l), for selected values of A. 
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Medium A Medium 6 

Case: r c e-+ (no scattering) 

Case: r > e-+ 
9, 

__-- 11 
Fig. 9. Elements of a new Monte Carlo scheme that exploits 
the no-scattering drift feature of the small step-size limit of 

the new multiple-scattering scheme. 
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I 

~ single scattering 
- this work 
~ ~ - Moliere 

Fig. 10. Timing comparison between the single-scattering 
method, the new multiple-scattering method employing a 
fine mesh and the Molibre method as extracted form the 

EGS4 code. 

of Iz, from it. A random number r is chosen. If it is less than e- If, the particle is allowed to reach the 
interface surface without scattering. Otherwise, a step of length 1, is taken and the particle is deflected 
by an angle calculated from the new method. Once on the interface the first step is chosen by sampling 
the single-scattering cross section. Thereafter, transport steps are chosen according to the algorithm 
described above. 

While it seems wasteful if each particle step must calculate & and If for each particle step, only I, 
need to be calculated except in the very vicinity of the interface where an interface traversal seems 
imminent. 

The new multiple-scattering distributions may be employed in several ways. However, for the 
purpose of routine sampling, the surface qo (u, A) was calculated on a grid from 1 = 0.01 to 3050.53 
with 64 logarithmically-spaced divisions per decade. The grid in u was divided into 100 equally- 
spaced intervals. These data were then integrated to generate an inverse distribution u (r, 2) where r = 
Jo” du’qo (u’, ;I) with the same grid spacing for 1 and 100 equally-spaced intervals for r. (The numerical 
intergration was performed using an adaptive Romberg technique described by Press et al. [ 211.) 
During routine calculation, a random number r is selected and the u (r, 2) data interpolated linearly 
to extract U. Then the scattering angle is related to u from the equation 8 = xawo(J) dm. 
The parameter 00 (1) is interpolated in a table with the same A-density. 

Despite the fact that a 150-kbyte table must be interpolated, timing studies on a variety of 
workstation-class computers showed that this technique samples about as quickly as the Moliere 
method as extracted from the EGS4 code and in one case, a factor of 2 faster. (Results ranged from 
twice as fast to 5O/6 slower.) A timing comparison for a Sun IPX computer is shown in Fig. 10. The 
general features should be similar on other computers. In a production-class code, the u (r, A) tables 
would be reduced to optimise interpolation to within a given accuracy thereby realising even more 
gains in execution speed. Compared to single-scattering sampling, the new method samples more 
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quickly starting at 2 x 1 which indicates great potential for its use for all step-sizes. The timing degra- 
dation for even smaller step-sizes is probably not sufficient to warrant special coding for implementing 
a single scattering algorithm for the purpose of generating elastic-scattering angular distributions. 

5. Discussion and conclusions 

The Wentzel multiple-scattering theory has been recast into a form that does not suffer from the 
small step-size constraint associated with the conventional Moliere expansion, that contains explicitly 
the expected single and no-scattering distributions in the limit of very small step-size and that does 
not rely on the numerical approximations of the Leisegang procedure that are problematic for large 
step-size and large angles. The new distribution matches the standard Moliere expansion at large step- 
size and is expressed in terms of a simple functional form and numerical tables that may be sampled 
quickly for use in repetitive Monte Carlo methods. Sampling methods have been developed for Monte 
Carlo calculations that return scattering angles as quickly as the Moliere method and is more efficient 
than a single-scattering method starting at a drift distance of the order of a single mean-free-path. The 
new distribution may be expressed entirely in terms of only two parameters - a “reduced” angle and 
the mean free path. Thus, the amount of numerical data is kept to a minimum, less than 150 kbytes 
for a line mesh grid encompassing all energies and materials. 

Although the Wentzel multiple-scattering method was used as a basis, the total cross section and 
screening angle were not employed directly. They are only employed to relate the reduced angle to real 
angles. These parameters may be taken from Moliere’s theory, although Moliere’s multiple-scattering 
theory has the same freedom of choice. More sophisticated approaches may be employed. For example, 
Fernandez-Varea et al. [22] have considered these as free parameters that can be adjusted by the 
first and second transport cross sections obtained from partial-wave cross sections. Although it may 
be argued that the small-angle Rutherford functional form employed in this work is a significant 
approximation, the new distribution developed in the course of this work could be used as a basis for 
perturbative methods that model the single-scattering cross section more accurately. Other large-angle 
corrections, such as that discussed by Bethe and Winterbon may be incorporated directly. A more 
realistic cross section may be employed, such as that proposed by Braicovich and Dupasquier [ 161 
and the six parameters of their theory may be employed directly or as fitting parameters to partial- 
wave cross sections. Their cross section is couched in a small-angle formalism and is amenable to the 
mathematical procedures developed in this paper. 

The large-angle limit of the new distribution has been expressed analytically. Remarkably, the large- 
angle limit agrees closely with the results of Moliere despite the fact that the conventional Moliere 
distribution assumes that many interactions participate in the development of the multiple-scattering 
angle and that the large-angle behaviour is dominated by single large-angle interaction. However, the 
Leisegang numerical procedure causes a large discrepancy at large angles and this shortcoming has 
affected the large-angle behaviour of the Keil et al. theory and, presumably, that of Braicovich and 
Dupasquier who adopted similar approximations. 

The design of a new electron transport algorithm that makes use of the correct small step-size 
no-scattering limit was discussed. Since the distribution is “universal” the step-sizes can be made so 
small as to enter the no-scattering limit and the particle may be allowed to drift to the boundary 
without approximation. In effect, although there is a shortcoming associated with the use of a small- 
angle screened Rutherford cross section, the consistency of the approach is maintained. There are two 
important applications where this consistency is critical. 

Electron step-size artefacts have been discussed in detail in a previous report [4] and a general 
method for correcting artefacts associated with crossing boundaries was proposed. The solution re- 
quired the shortening of electron transport steps in the vicinity of boundaries so that it would appear 
that most the transport steps occurred in an “infinite” medium. This procedure requires a multiple- 
scattering theory to be consistent since the transport step could be divided into segments of arbitrary 
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length. Even the optimum balance of Moliere and Keil et al. theories has inconsistencies that may 
result in calculations differing depending on how the transport steps were subdivided. The consistent 
multiple-scattering theory developed herein does not suffer from this difficulty. 

The other application is the calculation of ion chamber response to photon beams in the radiotherapy 
or diagnostic dosimetry [23,24]. Typically, an electron set in motion by a Compton or photoelectric 
event traverses the gas of an ion chamber in 2 or 3 elastic scatterings. However, for chambers with 
walls sufficiently thick, the electron fluence is in a state of quasi-equilibrium. As a consequence of near- 
equilibrium the fluence in the cavity is nearly independent of the difference in density between the ion 
chamber material wall and the cavity gas [ 25 1. Thus, calculations of this phenomenon are sensitive to 
artificial sources of fluence perturbation that are produced by inconsistencies in the multiple-scattering 
theory as well as other aspects of the transport algorithm. 

Although the new multiple-scattering theory, by virtue of its use of a simplistic single-scattering 
cross section, may have shortcomings when short step-size distributions are considered by themselves, 
its real advantage is to allow the arbitrary division of transport distances in a rigorously consistent 
manner. 
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Appendix A. Small angle Monte Carlo calculations 

The equations that relate the angles 8 and 4 with respect to some coordinate system before and 
after a scattering event can be expressed as: 

cos 8’ =cos@cosf3-sin@sin0cos@. 

sinVsin# =cos@sin8sinf$ + sin@(cos8cos@sin& + sin@cos4), 

sin8’cos~‘=cos8sin8cosd,+sin8(cos8cos~cos~-sin~sin~), (A.1) 

where 8 and 4 are the laboratory polar and azimuthal angles before scattering, 8’ and # are the 
laboratory angles after scattering, and the particle scatters by angles Q and 0. For general scattering, 
0 can be measured relative to a particle transverse polarisation vector, but for elastic scattering the 
interaction is azimuthally symmetric and @ is chosen uniformly over the range [ 0,27r]. 

In the small-angle approximation, all the polar angles are considered to be “small”. Thus the ap- 
proximation is made: cos( [elWl@]) = 1 - i[0(Wl@]2 and sin( [0(Wl@]) M [e]W]e]. This allows 
the scaling c = Bxa, <’ = 8 k o and 3 = 8x a The small-angle form of the deflection equation then 
becomes: 

<‘sin@ =<sin+ + Zsin(@ + +), 

~‘cos~‘=~cos~ + Zcos(@ + 4). (A.2) 

This small-angle form of the deflection equations retains explicitly the normalisation of the azimuthal 
angle sin’ 4’ + cos2 f#~ = 1 and depends only upon the scaled angle. 

The iteration procedure then takes the form: 
For the @-iteration: 
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(i) Choose mean-free-path to next interaction from e-l, i.e. 1, = - log r where r is a random 
number. 

(ii) If Cy= 1 Ai > A, exit iteration loop and accumulate final angle in a scoring array. Then, start over 
at n = 1. (2 is the total number of mean-free-paths for which the angular distribution is desired.) 

(iii) Choose Z from the normalised single-scattering cross section da = 28de”(E2 + 1 )-2, i.e. 
E=dm. 

(iv) Deflect particle according to Eq. (A.2). 
(v) Execute iteration n + 1. 
This iteration procedure depends only upon L and c and was employed to generate the Monte Carlo 

results depicted in Fig. 5. 
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