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Abstract

A new representation of elastic electron±nucleus (Coulomb) multiple-scattering distributions is developed. Using the

screened Rutherford cross section with the Moli�ere screening parameter as an example, a simple analytic angular trans-

formation of the Goudsmit±Saunderson multiple-scattering distribution accounts for most of the structure of the an-

gular distribution leaving a residual 3-parameter (path-length, transformed angle and screening parameter) function

that is reasonably slowly varying and suitable for rapid, accurate interpolation in a computer-intensive algorithm.

The residual function is calculated numerically for a wide range of Moli�ere screening parameters and path-lengths suit-

able for use in a general-purpose condensed-history Monte Carlo code. Additionally, techniques are developed that al-

low the distributions to be scaled to account for energy loss. This new representation allows ``on-the-¯y'' sampling of

Goudsmit±Saunderson angular distributions in a screened Rutherford approximation suitable for Class II condensed-

history Monte Carlo codes. Published by Elsevier Science B.V.

PACS: 02.50Ng; 13.60Fz; 25.30Bf; 34.80Bm
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1. Introduction

In this article we consider the representation of
multiple elastic-scattering distributions as em-
ployed by condensed-history Monte Carlo meth-
ods. The foundations of the condensed-history

Monte Carlo method were ®rst discussed in detail
by Berger [1]. The condensed-history technique
treats the cumulative e�ect of many elastic and in-
elastic collisions in one step by sampling from cu-
mulative de¯ection or energy-loss distributions,
thus saving computation time. The improbable in-
teractions that cause a sudden change in electron
energy, typically Mller and bremsstrahlung inter-
actions, can be considered to be discrete events
and Berger de®ned two classes of electron con-
densed-history algorithms by the way with which
these large energy-loss interactions are treated.
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The essential di�erence insofar as this work is con-
cerned is that Class I algorithms transport elec-
trons along a predetermined energy-loss grid,
and the multiple-scattering probability distribu-
tions for these grid points may be computed before
the simulation of electron transport, thereby sav-
ing computer time and improving run-time e�-
ciency. The multiple-scattering probability
distributions may be calculated using the Go-
udsmit±Saunderson's formalism [2,3] using the lat-
est elastic cross sections. This approach yields
``exact'' multiple-scattering distributions according
to the single-scattering law, assuming that the nu-
merical accuracy can be controlled. O�setting this
positive attribute are a lack of correlation between
the primary and secondary particles, the necessity
to interpolate distributions when the electron ener-
gy does not conform to the grid, and approximate
treatment of the crossing of interfaces. Class II al-
gorithms are in principle more accurate since all
distributions are sampled ``on-the-¯y'' as the dis-
tance between interaction points is treated as a sto-
chastic quantity, and the angular distributions for
any path-length may be required. Calculated dif-
ferences between Class I and Class II algorithms
are not seen except for certain specialized applica-
tions and further discussion is not germane to the
present discussion. A more complete discussion of
Class I vs. Class II is given elsewhere [4].

Since Class II algorithms require the sampling
of angular distributions for any electron path-
length, this technique has favored the employ-
ment of multiple-scattering theory formulated in
the small-angle approximation with a specializa-
tion to the screened Rutherford cross section, as
these functional forms may be sampled with rea-
sonable speed during iterative computations. The
usual choice of multiple-scattering formalism is
that of Moli�ere's [5], which can express all kine-
matic parameters (energy, atomic number, angle,
distance) in terms of just two scaled parameters,
providing a very compact and e�cient form. 2

However, it is known that Moli�ere's theory has
constraints for both large and small path-lengths
[7]. Although the Moli�ere formalism is adequate
for many applications, the small-path-length con-
straint is a severe limitation for some interface
studies, and the large-path-length constraint leads
to slow execution of Monte Carlo codes, particu-
larly for high-Z applications. The breakdown of
Moli�ere's formalism has been studied [8]. Bielajew
has reformulated small-angle multiple scattering
theory in such a way as to eliminate the small-
path-length di�culties [6,9] and some of those
techniques are incorporated herein but within
the any-angle formalism of Goudsmit and Saun-
derson [2,3].

In this report we discuss a new multiple-scatter-
ing formalism that allows Class II algorithms to
sample angular distributions using the any-angle
formalism of Goudsmit and Saunderson [2,3].
We specialize to the screened Rutherford cross sec-
tion [10] using the Moli�ere screening angle [11].
The choice of cross section is not an essential ap-
proximation but it serves as a concrete example
with much inherent application. The inclusion of
spin and relativistic corrections via Mott cross sec-
tions [12,13] or more recent compilations [10,14] is
left for later work. Additionally, we introduce en-
ergy loss in the continuous slowing down approx-
imation (CSDA) in such a way as to retain
compatibility with Class II condensed-history al-
gorithms and allow large condensed-history steps
involving appreciable energy loss ± up to 25% with
little loss of accuracy. For preparation, we start
with a general discussion of multiple-scattering
theories, showing the connection between the var-
ious formulations.

2. Multiple-scattering theories

2.1. The small-angle approximation

Bothe [15] and Wentzel [16] have described
a theory of small-angle multiple elastic scatter-
ing which provides the probability for scattering
into an angular interval dh at an angle h after a to-
tal path-length corresponding to k mean-free-
paths:

2 It can be shown that this characteristic is general for small-

angle multiple-scattering distributions using screened Ruther-

ford cross sections. Moli�ere's theory is just one expression of

that property [6].
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FSA�h; k�h dh � dh h
Z1

0

dg g J0�gh�

� exp ÿk
Z1

0

dv v ~r�v��1ÿ J0�gv��
0@ 1A; �1�

where J0 is the Bessel function of zeroth order and
~r�v� the single-scattering law normalized to unity, 3

~r�v� � r�v�Rp
0

dv sin vr�v�
: �2�

This approximate expression has been used by
Moli�ere to derive an analytic expansion of
Eq. (1) with respect to a parameter B depending
on k [5]. Because of its simple analytic form and
the little amount of pre-calculated data required,
Moli�ere's theory has found widespread use in elec-
tron and proton transport models. To overcome
the breakdown of Moli�ere's theory at small path-
lengths, Bielajew developed an exact numerical so-
lution of Eq. (1) for use in Monte Carlo simula-
tions [6,9]. Although this theory represents an
improvement of the modeling of multiple electron
scattering, it remains a small-angle approximation
with decreasing accuracy for increasing electron
step-sizes and/or decreasing energies.

2.2. The any-angle formalism

Goudsmit and Saunderson [2,3] presented a
formal solution of the multiple-scattering problem
in the form of an expansion in Legendre polynomi-
als Pl�cos h�, which is valid for any-angle scatter-
ing

FGS�cos h� �
X1
l�0

l� 1

2

� �
Pl�cos h�exp�ÿkQl�;

�3�
where Ql denotes the moments of the single-scat-
tering distribution,

Ql �
Z1
ÿ1

d�cos v�~r�cos v��1ÿ Pl�cos v��: �4�

Bethe [7] and Winterbon [17] have discussed
some of the approximations required to obtain
the small-angle expression, Eq. (1), from the
Goudsmit±Saunderson (GS) series. Bethe has pro-
posed a correction factor

����������������
sin h=h

p
to improve the

small-angle multiple-scattering approximation at
large angles, while Winterbon discusses higher-or-
der corrections.

2.3. The small momentum transfer approximation

Kawrakow [18] performed a Wentzel-type anal-
ysis using the momentum transfer instead of the
scattering angle as the angular variable. The con-
nection between the momentum transfer q and
the scattering angle h is given by,

q2 � 2p2�1ÿ cos h�; �5�
p being the electron's momentum. The resulting
multiple-scattering distribution in the small-angle
approximation is:

FSAq�q; k�q dq � dq q
Z1

0

db b J0�bq�

� exp ÿk
Z1

0

dq0 q0 ~r�q0��1ÿ J0�q0b��
0@ 1A: �6�

For small scattering angles q � ph and the above
expression is equivalent to Eq. (1). It was conclud-
ed in Ref. [18] that Eq. (6) has advantages com-
pared to Eq. (1) due to the fact that the any-
angle form of the single-scattering cross section
can be used to evaluate the integral in the exponen-
tial. In this paper we will show that Eq. (6) yields
an exact description of the multiple-scattering dis-
tribution at all angles when the small-angle ap-
proximation is justi®ed (see the condition (7)
below).

Two approximations are required to obtain
Eq. (6) from the GS-series: (a) the replacement of
the summation by an integral and (b) the approx-
imation of the Legendre polynomials by the Bessel

3 When r�v� is used in its small-angle approximation and

the small-angle integral is convergent, the form ~r�v� �
r�v�= R1

0
dv vr�v� may be used.
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function of zeroth order J0. Concerning (a), Eu-
ler's summation formula [19] may be used. High-
er-order corrections will be small when a large
number of terms is required to obtain convergence
of the GS-series. Convergence of the GS-series is

obtained for l > �kQ1�ÿ1=2
(see Ref. [20] and the

discussion below) where Q1 is de®ned in Eq. (4).
That is, the ®rst condition for the applicability of
the small-angle approximation is

kQ1 � kh1ÿ cos vi � 1: �7�

Here, h i means averaging with respect to the sin-
gle-scattering law. The above condition will be sat-
is®ed when both the average angle in a single-
scattering event and the average multiple-scatter-
ing angle are small.

The approximation (b) a�ects the evaluation of
the GS-moments Ql in the exponent of Eq. (3) and
the summation itself. To investigate the errors in-
troduced by (b) we ®rst note that Eq. (6) can be
transformed to

FSAq�cos h; k� �
Z1

0

dz z J0 z
��������������������������
2�1ÿ cos h�

p� �
� exp ÿkQSAq�z�

ÿ �
; �8�

where we have de®ned

QSAq�z� �
Z

dv sin v ~r�cos v�

� 1ÿ J0 z
��������������������������
2�1ÿ cos v�

p� �h i
: �9�

We can then compare the power series expansion
of the zeroth order Bessel function to the expan-
sion of the Legendre polynomials:

J0 z
��������������������������
2�1ÿ cos h�

p� �
� 1ÿ l�l� 1�

4
h2

� l�l� 1�
48

� l2�l� 1�2
64

 !
h4

ÿ l�l� 1�
1440

� l2�l� 1�2
384

� l3�l� 1�3
2304

 !
h6 � � � � ;

�10�

Pl�cos h� � 1ÿ l�l� 1�
4

h2

� l�l� 1�
48

� �lÿ 1�l�l� 1��l� 2�
64

� �
h4

ÿ l�l� 1�
1440

� �lÿ 1�l�l� 1��l� 2�
384

�
� �lÿ 2��lÿ 1�l�l� 1��l� 2��l� 3�

2304

�
h6 � � � �

�11�
In the ®rst equation we have made use of
z2 � l�l� 1�. With this formulas we have

Ql � l�l� 1�
4

hv2i

ÿ l�l� 1�
48

� �lÿ 1�l�l� 1��l� 2�
64

� �
hv4i � � � � ;

QSAq � l�l� 1�
4

hv2i

ÿ l�l� 1�
48

� l2�l� 1�2
64

 !
hv4i � � � � �12�

Here, h i means again averaging over the single-
scattering cross section. For small-angle scattering,
hv4i � hv2i and therefore the terms proportional
to hv4i are only small corrections for small l. On
the other hand, the di�erence between l�l� 1�
and �lÿ 1��l� 2� is negligible for large l (this is
of course true also for the higher-order terms,
not shown in Eq. (12) for the sake of brevity).
We can therefore conclude that QSAq represents a
su�ciently accurate approximation to Ql for any
l when the small-angle approximation is justi®ed
(see also Eq. (18) and the subsequent discussion
below).

Concerning the summation, it is important to
realize that terms with large l are more important
when condition (7) is satis®ed. To see this, we write
Eq. (3) in the form FGS�cos h� �P1

l�0 wlPl�cos h�
with

wl � l� 1

2

� �
exp�ÿkQl�

� l� 1

2

� �
exp ÿ khv2i

4
l� 1

2

� �2
" #

� exp�ÿkhv2i=16�: �13�
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Here, we have made use of Eq. (12). It is obvious
that Legendre polynomials around lmax,

lmax �
�����������

2

khv2i

s
ÿ 1

2
�

��������
1

kQ1

s
; �14�

will give the most important contribution to the
summation since wl has a maximum. 4 If condition
(7) is satis®ed, lmax is large and therefore the most
important contributions to the GS-series will come
from terms with large l where we can neglect the
di�erence between l�l� 1� and �lÿ 1��l� 2�,
�lÿ 2��l� 3�, etc. In this case, the power series ex-
pansion of J0 almost exactly matches the power se-
ries expansion of the Legendre polynomials (this
holds also for higher-order terms not shown in
Eqs. (10) and (11)). Therefore, the replacement
of the Legendre polynomials by the Bessel func-
tion will be su�ciently accurate and we expect
good agreement between the exact multiple-scat-
tering distribution and the small-angle approxima-
tion when the condition expressed by Eq. (7) is
satis®ed.

To be more concrete, let us consider the case
where the screened Rutherford cross section is
used to describe single scattering, i.e.

~r�cos v� � 2g�1� g�
�1ÿ cos v� 2g�2 ; �15�

where g is the screening parameter (we use the no-
tation of Berger and Wang [10]). In this case the
GS-moments Ql are given by

Ql � 1ÿ 1� g
gl�1

C�l� 1�C�l� 2�
C�2l� 2�

�2 F1 l� 1; l� 2; 2l� 2;ÿ 1

g

� �
; �16�

where 2F1 is the hypergeometric function. In com-
parison, the small-angle moments QSAq read

QSAq�y� � 1ÿ yK1�y�; y � 2
������������������
l�l� 1�g

p
; �17�

where K1 a modi®ed Bessel function. To investi-
gate the di�erences between both expressions, we

have expanded the ratio Ql=QSAq in a power series
of the screening parameter g. The result is

Ql � 1ÿ yK1�y� 1� 2gl�l� 1�
�

� W�l� ÿ 1

2
ln �l�l� 1��

� �
� � � �

�
; �18�

where W�l� is the logarithmic derivative of the
gamma function,

W�l� � d lnC�l� 1�
dl

� ÿc� 1� 1

2
� � � � � 1

l
; �19�

where c � 0:5772 . . . is Euler's constant. The term
in the square brackets proportional to g is a mono-
tonically increasing function of l which approach-
es 1=6 for l!1. Because for most physically
relevant situations g� 1, the ®rst order correction
to the small-angle approximation is always small.
The ratio �QSAq ÿ Ql�=QSAq which expresses the
relative error has a maximum for l � 1 given by

QSAq�l � 1� ÿ Q1

QSAq�l � 1�

� 4g�1ÿ cÿ ln�2�=2� �����8g
p

K1

�����
8g
pÿ �

1ÿ �����
8g
p

K1

�����
8g
pÿ � � � � �

� 2ÿ 2cÿ ln�2�
1ÿ 2cÿ ln�2g� : �20�

For g as large as 0.01 (e.g. 2 keV electrons in wa-
ter) the error is of the order of 4% being much
smaller at higher energies.

Finally, we have calculated the multiple-scatter-
ing distributions FGS according to Eq. (3) and FSAq

from Eq. (8) respectively, using the screened Ruth-
erford cross section and di�erent values of
n � kQ1. The ratio FGS=FSAq is shown in Fig. 1(a)
for n � 0:001 and in Fig. 1(b) for n � 0:2. The lat-
ter value of n corresponds to a typical condensed-
history path-length for the simulation of electron
transport in low Z materials (e.g. graphite) at
low energies (a few keV to a few hundred keV).
The former has been chosen in order to demon-
strate that FGS in fact converges to FSAq when the
small-angle approximation is justi®ed (n� 1).
To show the strong improvement when using the
momentum transfer as the angular variable, also

4 If we take into account terms proportional to hv4i and

higher in the evaluation of Ql, lmax is shifted towards even larger

values of l.
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the small-angle results from the scattering angle
formulation with and without Bethe correction
are shown in these ®gures. For n � 0:001 the max-
imum deviation between FGS and FSAq is 0.2%. It is
very interesting to observe that the deviations be-
tween FGS and FSAq grow to approximately 10%
when changing the screening parameter by 3 order
of magnitude! This fact will allow us to construct a
method for sampling the multiple-scattering angle
from the exact distribution for arbitrary path-
lengths with a relatively small amount of pre-cal-
culated data. The procedure is described in the
next section.

3. Any-angle hybrid multiple-scattering theory

In Refs. [6,9] Bielajew developed a new small-
angle approach to multiple scattering. In this pa-
per we will extend the formalism of Refs. [6,9]
to allow for the sampling of the multiple-scatter-
ing angle from the exact distribution using the
any-angle form of the screened Rutherford cross
section.

3.1. General formulae

There are two steps necessary to obtain the
q�2��-surface used in Ref. [9] to describe the multi-
ple-scattering distribution:

(i) Subtract the no-scattering and single-scatter-
ing contributions from the multiple-scattering dis-
tribution, i.e.

FGS�cos h� � eÿkd�1ÿ cos h�
� keÿk~r�cos h�
� 1ÿ kÿ keÿk
ÿ �

F �2��GS �cos h�: �21�
The distribution for at least two collisions, F �2��GS , is

F �2��GS �cos h� �
X1
l�0

l� 1

2

� �
Pl�cos h�j�2��l �22�

with the short hand notation

j�2��l

� exp�ÿkQl� ÿ �1� k�1ÿ Ql��exp�ÿk�
1ÿ exp�ÿk� ÿ kexp�ÿk� : �23�

The explicit extraction of the single-scattering term
suggests the adjective ``hybrid'' since in the regime
of small path-lengths the multiple-scattering distri-
bution is dominated explicitly by the single-scatter-
ing distribution. This may be exploited by
geometry-adaptive electron-transport algorithms
such as PRESTA [21,22] or Seltzer's TLC (Trans-
verse and Longitudinal Correction) [23] to e�ect
the crossing of material (or scoring) boundaries.
As a boundary is approached the condensed-histo-
ry algorithm ``evaporates'' into a single-scattering
algorithm. The combination of single-scattering
and multiple-scattering algorithms into a single
formalism is therefore a hybrid method that can
exploit both the computational e�ciency of multi-
ple-scattering theories with the accuracy of a sin-
gle-scattering approach.

(ii) A variable change which makes the 2+ scat-
tering distribution ``¯at'' and easy for numerical
evaluation.

Concerning (ii), in Refs. [6,9] the variable trans-
formation

u � 1ÿ v2
aw2

h2 � v2
aw2

�24�

Fig. 1. The ratio of the exact MS-distribution to the MS-distri-

bution in a small-angle approximation using the momentum

transfer as the angular variable, FGS=FSAq, calculated from

Eqs. (3) and (8) for n � 0:001 (top ®gure) and n � 0:2 (bottom

®gure). For comparison, the same ratio calculated with the scat-

tering angle as the angular variable with (short-dash line) and

without (long-dash line) Bethe correction is shown.

330 I. Kawrakow, A.F. Bielajew / Nucl. Instr. and Meth. in Phys. Res. B 134 (1998) 325±336



was employed. This was motivated by the use of
the screened Rutherford cross section to describe
single scattering and by the fact that the multi-
ple-scattering distribution at large angles is deter-
mined mainly by the single-scattering law. We
have namely

du � 2w2v2
ah dh

�h2 � w2v2
a�2

; �25�

which looks like a single-scattering cross section
with a screening angle increased by the ``spread-
ing'' parameter w. The formalism of Refs. [6,9]
can be generalized to arbitrary variable transfor-
mations

u � f �a1; . . . ; an; l�; �26�
where a1; . . . ; an are some parameters characteriz-
ing the transformation and l is a short hand nota-
tion for cos h. We will denote the 2+ distribution
in the variable u by q�2��, i.e.

q�2���u� du � F �2��GS �l� dl �27�
or

q�2���u� � F �2��GS �l�
of �a1; . . . ; an; l�

ol

� �ÿ1

: �28�

The parameters a1; . . . ; an can be ®xed from the re-
quirement that q�2���u� is as close to unity as pos-
sible, i.e. by minimizing the function r2�a1; . . . ; an�,

r2�a1; . . . ; an� �
Z

du�q�2���u� ÿ 1�2: �29�

This leads to the following set of n equationsZ1
ÿ1

dl F �2��GS �l�
of �a1; . . . ; an; l�

ol

� �ÿ1
" #2

� o2f �a1; . . . ; an; l�
ol oai

� 0; i � 1; . . . ; n: �30�

The above formalism can be used with any sin-
gle-scattering law. However, to guess the appropri-
ate variable transformation, it is necessary to
know the single-scattering distribution analytical-
ly. This may make it di�cult to combine the re-
sults of this paper with single-scattering cross
sections from partial-wave analysis [10]. On the

other hand, the use of the condensed-history tech-
nique and multiple-scattering theories is meaning-
ful only for problems that involve a large number
of collisions of electrons with surrounding matter.
In this case, the precise shape of the single-scatter-
ing law becomes less and less important and the
electron-transport problem under consideration
can be well described in terms of the ®rst few mo-
ments of the single-scattering distribution. For in-
stance, the average transition in the initial
direction of motion hsi is determined completely
by the ®rst moment kQ1, the average lateral dis-
placement hr2i as well as hs cos hi; hs2i; hr sin hi
by the ®rst and second moments of the single-scat-
tering law [20]. It seems therefore justi®ed to use a
simpli®ed single-scattering cross section which de-
scribes the ®rst few moments correctly.

3.2. Multiple scattering from the screened Ruther-
ford cross section

In this section we will apply the formalism de-
veloped above to the special case where single scat-
tering is described by the screened Rutherford
cross section. In this case we can use the variable
transformation

f �a; l� � �1� a� 1ÿ 2a
1ÿ l� 2a

� �
; a � w2g

�31�
which is the any-angle form analogous to Eq. (24).
We have then for the derivatives

of �a; l�
ol

� ÿ 2a�1� a�
�1ÿ l� 2a�2 ;

o2f �a; l�
ol oa

� ÿ2
1ÿ l�1� 2a�
�1ÿ l� 2a�3 : �32�

Inserting the above equations into Eq. (30) and
solving with respect to a we obtain

a � j�
�������������
j2 � j

p
�33�

with the short hand notation

j � h0i ÿ 2h1i � h2i
4h1i �34�

and
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hni �
X1
l�0

l� 1

2

� �
j�2��l

�
X1
m�0

m� 1

2

� �
j�2��m

Z1
ÿ1

dl lnPl�l�Pm�l�; �35�

where j�2��l was de®ned in Eq. (23). Using the
properties of the Legendre polynomials we can
simplify the expression for the hni's necessary to
calculate j:

h0i �
X1
l�0

l� 1

2

� �
�j�2��l �2;

h1i �
X1
l�0

l� 1� �j�2��l j�2��l�1 ; �36�

h2i �
X1
l�0

�l� 1=2��2l2 � 2lÿ 1�
�2l� 3��2lÿ 1� �j�2��l �2

�
X1
l�0

�l� 1��l� 2�
2l� 3

j�2��l j�2��l�2 :

Whereas in the small-angle formulation the
spreading parameter is only a function of k, now
w2 � a=g depends on k and g. However, due to ar-
guments similar to those given in Section 2.3 when
discussing the multiple-scattering distribution, for
n � kQ1 ! 0, w2 converges to the value derived
from the small-angle approximation, wSA, and
changes slowly as n is changed (increased). This
is demonstrated in Fig. 2 where the ratio w=wSA

for various values of n is depicted as a function
of k. The upper limit k � 105 chosen to calculate
x should be su�cient for any practical applica-
tion. The lower limit k � 1 was determined by e�-
ciency considerations: for path-lengths smaller
than 2-3 elastic mean-free-paths, a detailed
(event-by-event) simulation of elastic scattering
becomes computationally more e�cient than a
condensed-history simulation.

For completeness we give also the explicit for-
mula for q�2�� resulting from the transformation
Eq. (31):

q�2���u; k; a� � 2a�1� a�
�1� aÿ u�2

X1
l�0

l� 1

2

� �
� Pl

1� aÿ �1� 2a�u
1� aÿ u

� �
j�2��l �k; a�:

�37�

In Fig. 3, q�2��-curves for three di�erent k's and
various values of the screening parameter are
shown. The curves labeled as ``small-angle limit''
(thick lines) were calculated for a screening pa-
rameter g � 2:618� 10ÿ5 �k � 10�; 1:715 �10ÿ7

�k � 103� and 1:284� 10ÿ9 �k � 105� giving n �
kQ1 � 5� 10ÿ4 in all cases. For even smaller val-

Fig. 2. The ratio of the spreading parameter w�k; n� calculated

according to Eqs. (33)±(35), to the spreading parameter

wSA�k� resulting from a small-angle approximation.

Fig. 3. q�2�� surfaces for k � 10, 103 and 105. For explanation of

the labels ``small-angle limit'' and ``maximum step-size'', see

text.
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ues of g (or n) the calculated q�2�� did not change
within the numerical precision (0.1% for u! 1
when using double precision variables). The curves
labeled as ``maximum step-size'' represent the situ-
ation where n � 0:5 corresponding to an average
multiple-scattering angle of about one radian. This
is considered to be the maximum acceptable step-
size because for even larger average multiple scat-
tering angles the application of the condensed-his-
tory technique becomes more and more
questionable. Curves depicted with thin lines cor-
respond to intermediate values of n uniformly dis-
tributed between 0 and 0.5. This ®gure con®rms
the conclusion of Section 2.3 that the variation
of the multiple-scattering distribution with the
screening parameter is rather slow once the vari-
able transformation is e�ected.

3.3. Numerical implementation

In this section we will discuss some aspects of
the numerical calculations necessary to obtain
the spreading parameter x and the q�2��-surface,
as well as the implementation of the model for
multiple-scattering sampling in Monte Carlo simu-
lations.

We start with the calculation of the GS-mo-
ments Ql. For the screened Rutherford cross sec-
tion the iterative procedure derived by Spencer
[24] could be used:

Q0 � 0;

Q1 � 2g ln 1� 1

g

� �
�1� g� ÿ 1

� �
;

�lÿ 1�Ql � �2lÿ 1��1� 2g�Qlÿ1 ÿ lQlÿ2

ÿ 2g�2lÿ 1�; l P 2: �38�
However, due to round-o� errors, this method
breaks down for l > � 1000 even when using dou-
ble precision variables. A similar e�ect occurred
when we tried to evaluate Eq. (16) with the Mathe-
matica code system [25]. For small number of elas-
tic collisions and/or very small g, much more than
1000 terms are necessary to obtain convergence of
the GS-series. We decided therefore to use Eq. (18)
to calculate the GS-moments. This expression is
accurate to O�g2� and because g is a small quantity
for most relevant situations, this represents a very

good approximation. We compared the multiple-
scattering distribution calculated with Spencer's it-
erative procedure to the distribution obtained
using Eq. (18) to calculate Ql in various cases
where less than 1000 terms were necessary for
the convergence of the series, and found an agree-
ment to better than 0.3% for all situations studied.

In Refs. [6,9] the q�2��-surface was calculated
only for k6 3050. This limitation was caused by
numerical instabilities for larger k-values. In the
present work, due to the use of the exact expres-
sions rather than small-angle approximations, in-
tegrations are replaced by summations which can
be performed more easily and reliably. We were
able to calculate the spreading parameter x and
the q�2��-surface for arbitrary k without observing
any numerical problems and used k � 105 as our
upper limit for practical considerations.

For the multiple-scattering angle sampling on-
the-¯y, a fast calculation of the q�2��-surface for ar-
bitrary k and g values is required. This can be done
by a linear interpolation between pre-calculated
q�2��-curves on a given �k±g� grid. The density of
this grid depends on the required accuracy. For in-
stance, to obtain an accuracy of 0.2% or better of
the interpolated q�2��-curves, 16 subdivisions per
decade in k-direction are necessary. For every k
value, 11 di�erent screening parameters are used
to calculate q�2�� at 101 u-points. That means, to
score the pre-calculated data in the range
16 k6 105 approximately 360 kB of computer
memory are necessary.

4. Energy loss

To take the energy loss of electrons during the
step into consideration, we have to replace kQl in
the exponent of Eq. (3) by

Gl � 2pN
Zt

0

dt0
Z1
ÿ1

d�cos v�

� r�cos v; t0��1ÿ Pl�cos v��; �39�
where N is the number of atoms per unit volume
and t the path-length. The dependence of the sin-
gle-scattering cross section r�cos v; t0� on the ener-
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gy is expressed through the dependence on the
path-length t0. Although, in principle, it is possible
to use Gl instead of kQl to calculate the q�2��-sur-
face, this approach would not be e�cient on a
present-day computer due to the large increase of
memory required to score the pre-calculated data.
In fact, when we take energy loss into account, the
dependence of the multiple-scattering distribution
on the screening parameter g alone is replaced by
a dependence on the energy and the material in
which the transport takes place. Therefore, one ad-
ditional dimension will be needed to store the pre-
calculated data. We will therefore approximate Gl

in such a way that the application of the method
presented in the last section becomes possible.

We rewrite Eq. (39) as

Gl � 2pN
ZEi

Ef

dE
S�E� rtot�E�

�
Z1
ÿ1

d�cos v�~r�cos v;E��1ÿ Pl�cos v��

� bc

ZEi

Ef

dE

S�E�b2
Ql�E�: �40�

Here, Ei and Ef are the initial and ®nal kinetic en-
ergies of the electron, S�E� the restricted collision
stopping power, 5 rtot�E� the total elastic cross sec-
tion and ~r is again normalized to unity. To arrive
at the second equation, we have made use of the
fact that rtot is proportional to 1=b2 where b is
the electron's velocity in units of the velocity of
light and introduced the short hand notation bc

for the product of all constants in the total elastic
cross section times 2pN . If we now neglect the very
weak (logarithmic) energy dependence of Sb2,
Eq. (40) becomes

Gl � bc DE
~b2S� ~E�

1

DE

ZEi

Ef

dE Ql�E�: �41�

Here, DE � Ei ÿ Ef is the energy loss during the
step under consideration, ~E � �Ei � Ef�=2 the av-
erage energy of the electron and ~b the velocity cal-
culated from ~E. To carry out the E-integration we
can perform a power series expansion in DE,

ZEi

Ef

dE Ql�E� � DE Ql� ~E� 1� DE2

24

Q00l � ~E�
Ql� ~E�

� � � �
" #

;

�42�

where Q00l is the second derivative of Ql with res-
pect to E. Using Eq. (18) for Ql and neglecting
terms of the order of g and terms small compared
to ln�1=g�, we arrive at the result

Gl � keffQl� ~E�;

keff � bcDE
~b2S� ~E� 1� 4� 6~s� 3~s2

3�2� ~s�2
�2

�2ÿ ��2
" #

; �43�

where ~s is the ratio of the average electron kinetic
energy to its rest mass energy and � � DE=Ei the
energy-loss fraction. That means, when energy loss
is taken into account, the multiple-scattering dis-
tribution is to a good approximation equivalent
to the multiple-scattering distribution without en-
ergy loss resulting from keff elastic collisions of
electrons with the energy ~E. With this observation
we can easily apply the theory developed in the
previous sections to realistic calculations with elec-
tron energy loss taken into account.

To test the accuracy of the approximations
leading to Eq. (43), we have calculated the multi-
ple-scattering distribution resulting from the exact
GS-moments Gl and compared it to the distribu-
tion obtained with the approximated Gl's given in
Eq. (43) for various energies, materials and ener-
gy-loss fractions. The energy integration in
Eq. (40) was done by a 32-point Gauss±Legendre
quadrature. The disagreement between the exact
and approximated distributions increases with in-
creasing �. The maximum deviation found for
� � 25% was of the order of 1%. For �6 10%
the agreement was almost perfect. The ratio of
the approximated to the exact distribution for
� � 10, 25 and 33% is shown for typical cases in
Fig. 4.

5 Any energy-loss mechanism may be used so long as its ®rst

two derivatives exist. However, we are anticipating use of the

multiple-scattering distributions in a Class II condensed history

scheme where events below some threshold are considered to be

grouped and those above the threshold are treated discretely.
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5. Conclusions

A compact numerical representation of the Go-
udsmit±Saunderson multiple-scattering distribu-
tion has been calculated using the screened
Rutherford elastic cross section with a Moli�ere
screening factor. The 360 kB of data represents
the scattering distribution over a range of distance
16 k6 105 measured in terms of elastic collision
mean-free-paths, screening parameters covering a
wide dynamic range and all scattering angles.
The scaling function essentially removes all of
the ``forward-directedness'' of the distribution
leaving a surface that is optimally ¯at and suitable
for rapid interpolation in Class II condensed-his-
tory schemes. The interpolation accuracy is 0.2%
or better. For adaptation into Class II algorithms
where the subthreshold interactions are treated in
the CSDA, we have developed a method that al-
lows for energy losses of up to 25% with a ®lling
accuracy of about 1%. These developments should
allow high-accuracy Monte Carlo transport in the
approximation that the screened Rutherford elas-
tic cross section with a Moli�ere screening factor
is adequate to describe the elastic physics. If it is
not, it is possible that the technique developed

herein could be extended to more accurate cross
sections.
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